30/07/2010, 15:00 — 16:00 — Room P4.35, Mathematics Building
José Cláudio do Nascimento, U Fortaleza
Statistical model for a quantum noiseless subsystem
One of the most promising physical properties for implementing quantum technology is light polarization. However, since light polarization is fragile, it is crucial to use quantum error correction in order to make quantum information over optical networks feasible. This paper performs a statistical analysis of a noiseless subsystem technique to correct errors on quantum information sent through light polarization. We discuss the performance of the noiseless subsystem scheme in a noisy channel using a two-dimensional random walk to represent the channel variation. Finally, we propose an expression to measure the efficiency of the analyzed setup using the degree of depolarization of light. Joint work with P. Mateus.
Supported by: Phys-Info (IT), SQIG (IT), CeFEMA and CAMGSD, with funding from FCT, FEDER and EU FP7, specifically through the Doctoral Programme in the Physics and Mathematics of Information (DP-PMI), FCT strategic projects PEst-OE/EEI/LA0008/2013 and UID/EEA/50008/2013, IT project QuSim, project CRUP-CPU CQVibes, the FP7 Coordination Action QUTE-EUROPE (600788), and the FP7 projects Landauer (GA 318287) and PAPETS (323901).