Contents/conteúdo

Mathematics Department Técnico Técnico

Quantum Computation and Information Seminar  RSS

Sessions

23/11/2007, 15:00 — 16:00 — Room P4.35, Mathematics Building
, U Porto

Long distance entanglement mediated by spin chains

This talk will describe an analytical approach for the computation of Long Distance Entanglement (LDE) mediated through one-dimensional quantum spin chains recently found in numerical studies. I review the formalism that allows the computation of LDE for weakly interacting probes with gapped many-body systems and show that, at zero temperature, a DC response function determines the ability of the physical system to develop genuine quantum correlations between the probes. In the second part of the talk, I show that the biquadratic Heisenberg spin-1 chain is able to produce LDE in the thermodynamical limit and that the finite antiferromagnetic Heisenberg chain maximally entangles two spin-1/2 probes very far apart. This is of crucial importance since feasible mechanisms of entanglement extraction from real solid state systems and their ability to transfer entanglement between distant parties are essential ingredients for the implementation of Quantum Information protocols, such as teleportation or superdense coding.

Supported by: Phys-Info (IT), SQIG (IT), CeFEMA and CAMGSD, with funding from FCT, FEDER and EU FP7, specifically through the Doctoral Programme in the Physics and Mathematics of Information (DP-PMI), FCT strategic projects PEst-OE/EEI/LA0008/2013 and UID/EEA/50008/2013, IT project QuSim, project CRUP-CPU CQVibes, the FP7 Coordination Action QUTE-EUROPE (600788), and the FP7 projects Landauer (GA 318287) and PAPETS (323901).

 

Instituto de TelecomunicaçõesCAMGSDFCT7th Framework Programme