Seminário de Probabilidade e Análise Estocástica  RSS

Persi Diaconis 13/10/2020, 14:00 — 15:00 — Sala P3.10, Pavilhão de Matemática Online
, Stanford University

The Mathematics of making a mess (an introduction to random walk on groups)

How many random transpositions does it take to mix up $n$ cards? This is a typical question of random walk on finite groups. The answer is $\frac{1}{2}n \log{n} + Cn$ and there is a sharp phase transition from order to chaos as $C$ varies. The techniques involve Fourier analysis on non-commutative groups (which I will try to explain for non specialists). As you change the group or change the walk, new analytic and algebraic tools are required. The subject has wide applications (people still shuffle cards, but there are applications in physics, chemistry,biology and computer science — even for random transpositions). Extending to compact or more general groups opens up many problems. This was the first problem where the ‘cutoff phenomenon’ was observed and this has become a healthy research area.

Ver também

Diaconis_notes.pdf

Projecto FCT UIDB/04459/2020.


Excepto para as sessões mais antigas trata-se de sessões do Seminário de Probabilidade e Mecânica Estatística do IMPA e co-organizado com outras instituições, em particular o Instituto Superior Técnico.