##
12/06/2024, 17:00 — 18:00 — Online

Hubert Lacoin, *Instituto de Matemática Pura e Aplicada*

```
```###
Strong disorder and very strong disorder are equivalent for directed polymers

The Directed Polymer in a Random Environment is a statistical mechanics model, which has been introduced (in dimension 1) as a toy model to study the interfaces of the planar Ising model with random coupling constants. The model was shortly afterwards generalized to higher dimensions. In this latter case, rather than an effective interface model, the directed polymer in a random environment can be thought of as modeling the behavior of a stretched polymer in a solution with impurities. The interest in the model model, triggered by its rich phenomenology, has since then generated a plentiful literature in theoretical physics and mathematics. An important topic for the directed polymer is the so-called localization transition. This transition can be defined in terms of the asymptotic behavior of the renormalized partition function of the model. If the finite volume partition function converges to an almost surely positive limit we say that weak disorder holds. On the other hand, if it converges to zero almost surely, we say that strong disorder holds. It has been proved that weak disorder implies that the distribution of the rescaled polymer converges to standard Brownian motion while some localization results have been proved under the strong disorder assumptions. Much stronger characterizations of disorder-induced localization have been obtained under the stronger assumption that the partition function converges to zero.

(joint with Stefan Junk, Gakushuin University)