05/07/2023, 17:00 — 18:00 — Online
Alessandra Occelli, Université d'Angers
Universality of multi-component stochastic systems
Universality classes are identified by exponents and scaling functions that characterise the macroscopic behaviour of the fluctuations of the thermodynamical quantities of interest in a microscopic system. When considering multi-component systems different universality classes might appear according to the asymmetry of the interactions. To see which universality classes might appear, we outline the approach of Nonlinear Fluctuation Hydrodynamics Theory (NLFHT), introduced by Spohn 2014. As an example, we study the equilibrium fluctuations of an exclusion process evolving on the discrete ring with three species of particles named $A$, $B$ and $C$. We prove that proper choices of density fluctuation fields (that match of those from nonlinear fluctuating hydrodynamics theory) associated to the conserved quantities converge, in the large $N$ limit, to a system of stochastic partial differential equations, that can either be the Ornstein-Uhlenbeck equation or the Stochastic Burgers' equation.
See also: https://spmes.impa.br