16/06/2003, 15:00 — 16:00 — Room P3.31, Mathematics Building
Irina Denissova, Institute of Problems in Mechanical Engineering, St. Petersburg, Russia
Evolution of compressible and incompressible fluids separated by a closed interface
This work solves the problem governing the simultaneous motion of two viscous liquids of different kinds: compressible and incompressible. The boundary between the fluids is considered as an unknown (free) interface where the surface tension is taken into account. Although the fluids occupy the whole space $\mathbb{R}^3$, one of them should have a finite volume. Local (in time) unique solvability of this problem is obtained in the Sobolev--Slobodetskii spaces of functions. Estimates of the solution of a model problem for the Stokes equations are considered in detail, the interface between the fluids being a plane. The Schauder method is used to study a linear problem with a compact boundary. The passage to the nonlinear problem is made by successive approximations.
12/06/2003, 14:30 — 15:30 — Room P5, Mathematics Building
Anne Marie Robertson, University of Pittsburgh, U.S.A.
Constitutive Modeling of the Arterial Wall
In this lecture, we will cover the fundamental concepts behind constitutive modeling of the arterial wall. We will begin with a brief description of the arterial wall structure, focusing on the behavior of elastine and collagene, the components responsible for the passive mechanical strength of the wall. We will then briefly review some fundamentals in continuum mechanics, necessary for discussing nonlinear elastic constitutive equations used for modeling the arterial wall. This will be followed by a discussion of some of the most commonly used nonlinear constitutive models as well as a novel inelastic model introduced in our research group. We will then cover some commonly used experimental methods for measuring material constants found in the nonlinear models. We will end with a discussion of some outstanding problems in the field.
12/06/2003, 11:30 — 16:00 — Room P4.35, Mathematics Building
Giovanni P. Galdi, University of Pittsburgh, U.S.A.
Existenceand Uniqueness of Time-Periodic Physically Reasonable Navier-StokesFlow Past an Obstacle
Let $\Omega$ be a three-dimensional exterior domain of class $C^2$. We consider the following Navier-Stokes problem: \[\begin{equation}\begin{gathered}\partial_t v+v\cdot \operatorname{grad}v = \Delta v+\operatorname{grad}p+\operatorname{div}f, \quad \operatorname{div} v = 0, \text{ in } \Omega\times (0,\infty) \\ v(x,t)|_{\partial\Omega}=0, \quad \lim_{|x|\to\infty} v(x,t)=0, \quad t\in [0,\infty),\end{gathered} \label{eq1:522}\end{equation}\] where $f=\{f_{ij}(x,t)\}$ is a second-order tensor field such that $f(x,t)=f(x,t+T)$, for all $t\geq 0$, and some $T\gt 0$.
The objective of this talk is to show that, if $f$ satisfies suitable regularity conditions and its norm, in appropriate function spaces, is sufficiently small, problem ($\ref{eq1:522}$) admits at least one time-periodic strong solution $v, p$. Moreover, the velocity field $v$ decays to zero for large $x$ as $|x|^{-1}$ and its spatial gradient decays as $|x|^{-2}$, both uniformly in time. In addition, the pressure $p$ decays like $|x|^{-2}$ and its gradient like $|x|^{-3}$, for almost all $t\in [0,T]$. If, in particular, $f$ is time-independent, the corresponding solution is also time-independent and coincides with Finn's “physically reasonable” solution.
Finally, we show that the above solutions are unique in a class of weak solutions satisfying the “energy inequality” and with corresponding pressure field satisfying certain summability conditions in $\Omega\times [0,T]$.
22/05/2003, 14:30 — 15:30 — Room P3.10, Mathematics Building
Robert G. Owens, EPFL - Lausanne
Fokker-Planck-based methods for flows of dilute polymeric solutions
described by dumbbell models
Some viscoelastic constitutive models, such as the Oldroyd B model,
may be described in two ways: a closed-form differential
constitutive equation and a kinetic theory description. There are,
however, many other constitutive models of polymeric liquids that
allow only the latter form. These (mesoscopic) models are generally
regarded as being potentially more realistic than their closed-form
counterparts but their numerical simulation may require much more
work. Mathematically, these models can be written in two equivalent
forms: either as stochastic differential equations or as
deterministic Fokker-Planck (FP) equations. The first option gives
rise to stochastic numerical methods, which have become very
popular during the last 10 years (CONNFFESSIT method, Brownian
configuration fields etc.) The second option is relatively
unexploited. In this seminar we will consider the application of
FP-based methods to the solution of flows of dilute polymeric
solutions where the polymers are represented as FENE dumbbells. The
seminar is divided into two parts: (i) We begin by describing some
FP-based methods with the usual homogeneous flow assumption (over
an ensemble of dumbbells) that enables the velocity of a fluid at
any point in the flow domain to be written as the linear part of a
Taylor series about a reference point (ie the velocity gradient is
a constant). We note the considerable saving in CPU time over
conventional stochastic techniques that is realisable for low-order
configurational space. (ii) We then consider the consequences of a
departure from the usual homogeneous flow assumption. This leads to
an FP equation for the configurational distribution function (cdf)
with diffusion terms in both real space and configurational space.
Thus, unlike the case of homogeneous flows, boundary conditions on
the cdf must be found. The modified Fokker-Planck equation for the
cdf is solved in both physical and configurational space with
appropriate boundary conditions and proper account is taken of the
fact that configurational space will change as a function of
physical position. On this latter point, it has usually been
assumed that for dumbbells in two-dimensional flow the
configurational space is a disc with radius the maximum
extensibility of the dumbbell. However it is clear that within a
molecule distance of a physical solid boundary the dumbbell (or,
more realistically, the chain) is restricted in the configurations
that it may assume. The seminar will conclude with a brief overview
of extensions of the above methods to high-order configurational
space and to the simulation of flows of melts and concentrated
polymeric solutions.
28/04/2003, 17:00 — 18:00 — Room P3.10, Mathematics Building
Ivan L. Sofronov, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow
Transparent Boundary Conditions for Aeroelastic Problems in Wind
Tunnels
Transparent conditions on open boundaries of a wind tunnel for
time-dependent transonic flow problems are proposed. Under
assumption that the far field is described by the Euler equations
linearized about the free-stream flow, we obtain exact conditions
on inflow and outflow cross-sections of a computational domain. The
exact conditions are non-local; therefore a special attention is
paid to the efficient numerical implementation of our formulae.
Examples of numerical calculations are discussed.
28/04/2003, 14:00 — 15:00 — Room P3.10, Mathematics Building
Fernanda Cipriano, GFM-UL e Univ. Nova de Lisboa
Um problema inverso para a equação de Burgers
11/04/2003, 16:00 — 17:00 — Room P5, Mathematics Building
K. R. Rajagopal, Texas A and M University, College Station, USA
Mathematical Modelling of Growth and Remodelling
10/04/2003, 14:30 — 15:30 — Room P3.10, Mathematics Building
Lourenço Beirão da Veiga, Università di Pavia, Italia
Energy Behavior of Two Classical Benchmark Shell Problems
In the classification of shells, among the two classical families
known as membrane dominated and bending dominated, there is a third
class which is surely less known. For such family, theoretical
results about the energy norm behavior and percentage of bending
energy have been proved rather recently. Such results allow a
rigorous study of the asymptotic behavior of some "famous" shell
benchmarks (in other words, problems which are classical tests for
shell finite elements in the engineering literature). In the first
part of the talk I will therefore introduce briefly the classical
theory of shells and follow with a survey of the recent
aforementioned results. In the second part I will show the
theoretical results obtained for the classical shell benchmarks
known as "pinched roof" and "Scordelis-Lo roof", and compare them
with those obtained through numerical techniques.
04/04/2003, 12:00 — 13:00 — Room P3.31, Mathematics Building
Zinedine Khatir, University of Warwick
A Hybrid Vortex-Boundary Integral Method Applied for the Study of
Three-Dimensional Near-Wall Turbulence Flow Structure
03/02/2003, 16:30 — 17:30 — Room P3.10, Mathematics Building
Arvet Pedas, Tartu University
Numerical solution of a class of weakly singular
integro-differential equations
First we study the regularity properties of linear Volterra
integro-differential equations with weakly singular or other
nonsmooth kernels. We then use these results in the analysis of
piecewise polynomial collocation methods for solving such equations
numerically.
21/11/2002, 14:30 — 16:00 — Room P3.31, Mathematics Building
Maria Specovius-Neugebauer, Universität Kassel
The Pressure Stabilization Method for Viscous Flow Problems
Let $\Omega\subset \mathbb{R}^3$ be a domain with smooth boundary $\partial\Omega$. We investigate a mixed boundary value problem for the following strongly elliptic system of second order differential equations \[ \begin{aligned} & S_{\epsilon} u = \left(-\Delta v+ \nabla p, - {\epsilon}^2 \Delta p + \operatorname{div} v \right)=(f',f_4) \quad \text{ in }\Omega, \\ & v= g',\quad \partial_n p=g_4 \quad \text{ on }\partial \Omega, \end{aligned} \qquad (\text{ S$_\epsilon$ }) \] where we focus our interest on asymptotically precise estimates for the solutions describing their behavior as $\epsilon \to 0$. This system ought be considered as a singular perturbation of the Stokes system (S$_0$) which appears if we set $\epsilon=0$ and cancel the Neumann boundary condition for $p$, in particular the type of ellipticity is changed with $\epsilon =0$. With $f_4=0$ and vanishing boundary values, the above system appears in numerical schemes for the Navier-Stokes equations on bounded domains, namely, in the so-called pressure-stabilization methods. If $\Omega$ is a bounded domain, the energy methods applied there to estimate the error between the solution $(v^{\epsilon},p^{\epsilon})$ of the system (S$_{\epsilon}$) and the solution $(v^0,p^0)$ to the Stokes system are of the form \[ \|v^{\epsilon} -v^0; H^1(\Omega)\| + \|p^{\epsilon} -p^0;L^2(\Omega)_\bot\| \leq C\,\epsilon\, \|f';L^2(\Omega)\|. \] (the index $\bot$ stands for functions with vanishing mean value).
To obtain asymptotically precise estimates we introduce Sobolev norms depending on the small parameter $\epsilon \gt 0$. It turns out that for bounded domains, under the additional smoothness assumption $f' \in H^1(\Omega)$, these estimates can be improved up to convergence of $v^{\epsilon}$ in $H^2(\Omega)$ and $p^\varepsilon$ in $H^1(\Omega)_\bot$.
Apparently up to now the corresponding nonlinear problems as well as the case of unbounded domains were not yet considered. Here the interest is focused on the exterior Dirichlet problem for the linear systems. The appropriate function spaces for the investigations are step weighted, parameter dependent Sobolev spaces. This leads to asymptotically precise estimates as $\epsilon \to 0^{+}$, and enables us to derive the complete asymptotics of the solutions to (S$_\epsilon$) as $|x| \to \infty$. The latter is remarkable insofar as this system itself for $\epsilon \gt 0$ the usual arguments of Kondratiev theory, the differential operator $S_\epsilon$ is not admissible at infinity.
The results presented here are obtained in a joint work with S. A. Nazarov, St. Petersburg.
27/09/2002, 11:00 — 12:00 — Room P3.10, Mathematics Building
Didier Bresch, CNRS-Université Blaise Pascal
Low Mach and Rossby limit for fluids
15/07/2002, 15:00 — 16:00 — Room P3.10, Mathematics Building
Helcio R. B. Orlande, Universidade Federal do Rio de Janeiro, Brasil
Problemas Inversos em Transferência de Calor e Massa
Problemas Diretos de transferência de calor e massa envolvem a determinação dos campos de temperatura e/ou concentração, a partir do conhecimento da geometria do problema, das condições de contorno e inicial, dos termos-fonte presentes na região e das propriedades físicas envolvidas na formulação. Problemas diretos, formulados de maneira apropriada, são matematicamente classificados como bem-postos, isto é, a solução do problema satisfaz os critérios de existência, unicidade e estabilidade com relação aos dados de entrada.
Por outro lado, Problemas Inversos envolvem a estimativa de pelo menos um dos parâmetros/funções que aparecem na formulação do problema direto bem-posto, a partir do conhecimento dos valores de temperatura e/ou concentração em pontos apropriados na região em estudo. Por exemplo, o fluxo de calor na superfície de um satélite em reentrada na atmosfera pode ser estimado a partir de medidas de temperatura tomadas no interior do material de proteção térmica. Assim, evita-se a localização de sensores na superfície do satélite, os quais podem ser danificados ou fornecer medidas imprecisas durante o procedimento de reentrada atmosférica.
Problemas inversos são de um modo geral matematicamente classificados como mal-postos. A solução de um problema inverso normalmente não satisfaz o critério de estabilidade, onde pequenas perturbações nos dados de entrada (erros nas medidas experimentais de temperatura e/ou concentração, por exemplo) podem ser amplificadas. Portanto, para a obtenção da solução de um problema inverso é necessário reformulá-lo em termos de um problema bem-posto, utilizando-se técnicas apropriadas de regularização (suavização). Problemas inversos podem ser resolvidos através de técnicas de minimização para a estimativa de parâmetros, onde a minimização é realizada em um espaço de dimensão finita, ou para a estimativa de funções, onde a minimização é realizada em um espaço de funções de dimensão infinita.
Neste seminário serão abordados métodos de solução de problemas inversos de estimativa de parâmetros e de estimativa de funções, incluindo o Método de Levenberg-Marquardt e o Método do Gradiente Conjugado. Serão também apresentados resultados obtidos na solução de problemas inversos de interesse prático, incluindo a estimativa das componentes de condutividade térmica de sólidos ortotrópicos; dos parâmetros adimensionais da formulação de Luikov para transferência de calor e massa em meios porosos capilares; bem como do fluxo de calor nas paredes de canais ou cavidades, em problemas de convecção forçada e natural, respectivamente.
24/06/2002, 15:00 — 16:00 — Room P3.31, Mathematics Building
Murilo Tomé, Universidade São Paulo, Brasil
A numerical method for solving Viscoelastic Free Surface Flows
23/05/2002, 15:30 — 16:00 — Room P5, Mathematics Building
Filomena Dias d'Almeida, Universidade do Porto
Comparação das propriedades de minimização dos métodos CG e GMRES
Os métodos iterativos mais recomendados hoje em dia para a resolução de grandes sistemas, pela sua rapidez, e convergência em grande número de casos, são os métodos baseados em subespaços de Krylov. Todos eles podem ser enquadrados em três grupos de acordo com as propriedades de minimização que se impõem.
A ideia base deste tipo de métodos é procurar uma solução aproximada para o sistema $A x = b$ num subespaço de Krylov afim $x_0 + K_m(A,r_0) = \left\{v: v=x_0 + \sum_{i=0}^{m-1} c_i A^i r_0\right\}$, sendo $K_m(A, r_0)$ gerado por $(r_0, A r_0 ,\dots, A^{m-1} r_0 )$, onde $r_0$ é o resíduo de uma solução inicial $x_0$ dada.
No caso do método do Gradiente Conjugado (CG), que também se pode relacionar com o método da descida mais rápida, no subespaço $K_m(A,r_0)$ resolve-se um problema de minimização da norma-$A$ do erro $x_m-x^\ast)^T A(x_m-x^\ast))^{1/2}$. Isto é equivalente a impor que o resíduo de $x_m$ seja ortogonal a qualquer vector de $K_m$.
No caso não simétrico, podem considerar-se vários métodos, entre os quais o mais robusto é o método GMRES, Generalized Minimum RESidual. Este resolve, no subespaço de menor dimensão, um problema de minimização da norma-$2$ do resíduo.
24/04/2002, 14:00 — 15:00 — Room P3.10, Mathematics Building
Luigi Berselli, University of Pisa
On the coupling of the Stokes and the porous media equations: G-convergence and domain decomposition methods
To model the transport of substances (back and forth) between surface and ground water, we study the coupling of the Stokes and the Darcy equations. We formulate the problem as a substructuring or interface problem and we solve it by proposing a) an iterative method similar to the Dirichlet-Neumann; b) a preconditioner for elliptic problems with rapidly varying coefficients. We prove the convergence of the iterative method that we introduce with a classical Banach fixed point method argument. Regarding the numerical analysis, we use the P 1 (cross-grid) - P 0 finite elements for the Stokes problem, while in the porous region we use the classical P 1 finite elements (in other words, introducing a suitable method, we do not need to use the mixed formulation). We can use this formulation, based on classical variational principles, since by using a preconditioner based on homogenized (or effective) coefficients, we replace the problem with oscillating coefficients by another one with constant coefficients. Numerical results for some test cases are also provided.
28/02/2002, 10:30 — 11:30 — Room P3.31, Mathematics Building
A. I. Sukov, Moscow State Technological University, Stankin
Numerical Methods for Nonlinear Diferential Equations and Applications to Physics
Short-Course on
Numerical Methods for Nonlinear Diferential Equations and Applications to Physics
1. Numerical Solution of Boundary Value Problems For Nonlinear Ordinary Differential Equations on a Finite Interval
1.1 Linearization method.
1.2 Shooting method.
1.3 Difference pass and differential pass methods.
2. Numerical Solution of Boundary Value Problems for Nonlinear Ordinary Differential Equations on an Infinite Interval
2.1 Example related to electrodynamics: a singular problem for a second-order nonlinear ordinary differential equation.
2.2 Example related to hydrodynamics: a singular problem for a third-order nonlinear ordinary differential equation.
3. Numerical Solution of Boundary Value Problems for Systems of Nonlinear Ordinary Differential Equations on a Finite Interval
3.1 Reduction method applied to Cauchy problems.
3.2 Linearization method.
3.3 Conjugate operator method.
4. Numerical Solution of Boundary Value Problems for Systems of Nonlinear Ordinary Differential Equations on an Infinite Interval
4.1 Example related to hydrodynamics: a flow near a rotating disk of an infinite radius.
4.2 Example related to hydrodynamics: a flow near an immovable infinite base due to a fluid rotation far from the wall (without and in the presence of a magnetic field).
18/02/2002, 15:30 — 16:30 — Room P3.10, Mathematics Building
K. Rajagopal, Texas A & M University, College Station, USA
Constitutive models for blood flow
11/01/2002, 15:00 — 16:00 — Room P3.31, Mathematics Building
Gabriela M. Gomes, University of Warwick, UK
Dinâmica das doenças infecciosas
Documentos históricos são fluentes em exemplos de
tragédias atribuídas a doenças infecciosas. A
transmissão de agentes infecciosos em
populações de hospedeiros (humanos ou animais)
é um processo dinâmico propenso ao desenvolvimento de
modelos matemáticos. Estes vão de simples sistemas de
equações diferenciais ordinárias (EDOs) que
começaram a ser desenvolvidos no início do
século 20, a complicados modelos computacionais cuja
popularidade vai crescendo com o aperfeiçoamento de
técnicas biológicas e capacidade de computadores.
Começarei por introduzir sistemas de EDOs que servem como
simples modelos básicos tradicionalmente utilizados por
epidemiologistas na interpretação de padrões
epidemiológicos, os seus determinantes e possíveis
estratégias de contrôlo. Depois demonstrarei a
construção de variantes destinadas a classes de
doenças com determinadas características. Os
resultados serão descritos e comparados com os modelos
anteriores.
06/11/2001, 15:45 — 16:45 — Room P5, Mathematics Building
Neville Ford, Chester College, UK
Numerical solution of Volterra equations undergoing bifurcations
We consider the numerical solution of some Volterra integro-differential equations of the form: \[ y'(t)= g(t)= \int_0^t k(t,s,y(s)) ds \] By careful choice of the original equation we can give an analysis that shows four distinct types of behaviour in the exact solution. The challenge for the numerical methods is then to show that we obtain the correct behaviour in the numerical solution for each of these types of true behaviour. We focus on simple numerical methods and give diagrams that illustrate how well each method performs.