Departamento de Matemática Técnico Técnico

Seminário de Computação e Informação Quântica  RSS

24/10/2014, 14:00 — 15:00 — Sala P9, Pavilhão de Matemática
, D-Wave

Functional Role of Tunneling in a Quantum Annealing Processor

Quantum annealing has been proposed as a means to solve optimization problems using the laws of quantum mechanics. Despite many publications confirming the presence of quantum effects, especially entanglement, in D-Wave quantum annealing processors, the question of whether such effects can lead to a performance advantage still remains open. In this presentation, I start with introducing quantum annealing in general and the D-Wave implementation of it in particular. After a short review of some benchmarking attempts, I present the recent experimental results obtained in collaboration with Google and NASA. The data from the D-Wave II processor installed in NASA Ames clearly show that the processor employs multi-qubit coherent and incoherent tunneling to outperform all classical annealing approaches, including simulated annealing, path integral Monte Carlo, and spin vector Monte Carlo. I end with a brief description of our theoretical modeling of open quantum dynamics and show agreement between theoretical predictions and the experimental data.

Apoiado por: Phys-Info (IT), SQIG (IT), CeFEMA e CAMGSD, com financiamento de FCT, FEDER and EU FP7, especificamente via o Doctoral Programme in the Physics and Mathematics of Information (DP-PMI), os projectos estratégicos FCT PEst-OE/EEI/LA0008/2013 e UID/EEA/50008/2013, o projecto IT QuSim, o projecto CRUP-CPU CQVibes, a Acção de Coordenação FP7 QUTE-EUROPE (600788) e os projectos FP7 Landauer (GA 318287) e PAPETS (323901).


Instituto de TelecomunicaçõesCAMGSDFCT7th Framework Programme