Contents/conteúdo

Quantum Computation and Information Seminar   RSS

11/05/2017, 14:00 — 15:00 — Room P1, Mathematics Building
, Physics of Information and Quantum Technologies Group - IT, IST - Universidade de Lisboa and ASC, LMU Munich

Effect of acceleration on quantum states

In this talk, we discuss the influence of acceleration on quantum states. We start by studying the effects of acceleration on fermionic Gaussian states of localized modes of a Dirac field. Thereby we formulate the action of the transformation to an accelerated frame as a fermionic quantum channel and discuss the entanglement of the vacuum, as well as the entanglement in Bell states. After that, we discuss collective dynamics of accelerated atoms interacting with a massless scalar field via an Unruh-deWitt type interaction. Therefore, we derive the general Hamiltonian describing such a system and employ a Markovian master equation. In particular, we report the emergence of superradiance and entanglement between two-level atoms. Finally, we briefly outline a proposal for an experimental setup for a quantum simulation of this system using Bose-Einstein condensates.


Supported by: Phys-Info (IT), SQIG (IT), CeFEMA and CAMGSD, with funding from FCT, FEDER and EU FP7, specifically through the Doctoral Programme in the Physics and Mathematics of Information (DP-PMI), FCT strategic projects PEst-OE/EEI/LA0008/2013 and UID/EEA/50008/2013, IT project QuSim, project CRUP-CPU CQVibes, the FP7 Coordination Action QUTE-EUROPE (600788), and the FP7 projects Landauer (GA 318287) and PAPETS (323901).

Instituto de TelecomunicaçõesCAMGSDFCT7th Framework Programme