Quantum Computation and Information Seminar   RSS

29/07/2015, 12:00 — 13:00 — Room P3.10, Mathematics Building
, University of Porto

Relativistic Quantum Information Theory

We investigate the properties of entanglement between two modes of a free Dirac and Scaler Field as seen by two relatively accelerated parties. A uniformly accelerated observer is unable to access information about the whole of spacetime, therefore there is a loss of information and a corresponding degradation of entanglement. The entanglement degradation in the limit of infinite acceleration for the Dirac field asymptotically reaches a non-vanishing minimum value. While for the case of bososnic field, a bipartite system becomes fully seperable in the limit of infinite acceleration. This means that the state always remains entangled to a degree for fermionic field and can be used in quantum information tasks, such as teleportation, between parties in relative uniform acceleration. We also investigate the effect of relativity on a tripartite maximally entangled GHZ state

Please note exceptional time.

Supported by: Phys-Info (IT), SQIG (IT), CeFEMA and CAMGSD, with funding from FCT, FEDER and EU FP7, specifically through the Doctoral Programme in the Physics and Mathematics of Information (DP-PMI), FCT strategic projects PEst-OE/EEI/LA0008/2013 and UID/EEA/50008/2013, IT project QuSim, project CRUP-CPU CQVibes, the FP7 Coordination Action QUTE-EUROPE (600788), and the FP7 projects Landauer (GA 318287) and PAPETS (323901).


Instituto de TelecomunicaçõesCAMGSDFCT7th Framework Programme