06/03/2024, 16:00 — 17:00 — Online
Ali Zahra, IST-Lisboa
Asymmetric exclusion process with next nearest neighbor interaction
We introduce a novel variant of the exclusion process where particles make asymmetric nearest neighbor jumps across a bond (k,k+1) only when the site k-1 to the left of the bond is empty. This next-nearest-neighbor interaction significantly enriches the model's behavior. We show that for a system with periodic boundary conditions, ergodicity is ensured only for systems that are strictly less than half-filled. For half-filling the system segregates into two distinct ergodic components, and we provide the invariant measure for each component and prove that it is reversible. The combinatorial properties of this invariant measure are intimately related to the q-Catalan numbers, where q represents the asymmetry of the two elementary hopping events. Exploiting this relation allows us to extract the asymptotic behavior both in the strongly and weakly asymmetric regimes. We report a phase separation characterized by different critical exponents for which we provide an intuitive geometrical interpretation. This is joint work with Gunter Schütz.