Contents/conteúdo

Applied Mathematics and Numerical Analysis Seminar   RSS

30/07/2020, 16:00 — 17:00 — Online
Marília Pires, Departamento de Matemática, Escola de Ciências e Tecnologia, Universidade de Évora

An alternative stabilization in numerical simulations of Oldrod-B type fluids

The numerical simulation of non-Newtonian viscoelastic fluids flow is a challenging problem. One of the approaches being often adopted to stablize the numerical simulations is based on addition of stress diffusion term into the transport equations for viscoelastic stress tensor. The additional term affect the solution of the problem and special care should be taken to keep the modified model consistent with the original problem.

In this work it was analyzed in detail the influence of numerical stabilization using artificial stress diffusion and it was presented a new arternative. Instead of the classical addition of artificial stress diffusion term it was used the modified additional term which is only present during the transient phase and should vanish in when approaching the stationary case. The steady solution is not affected by such vanishing artificial term, however the stability of the numerical method is improved.

This is joint work with Tomás Bodnár (Institute of Mathematics, Czech Academy of Sciences and Faculty of Mechanical Engineering, Czech Technical University in Prague, Czech Republic).


CEMAT logo