Contents/conteúdo

Applied Mathematics and Numerical Analysis Seminar   RSS

16/10/2019, 16:00 — 17:00 — Room P3.10, Mathematics BuildingInstituto Superior Técnicohttp://tecnico.ulisboa.pt
Marco Martins Afonso, Universidade do Porto

Renormalized transport of inertial particles

We study how an imposed fluid flow — laminar or turbulent — modifies the transport properties of inertial particles (e.g. aerosols, droplets or bubbles), namely their terminal velocity, effective diffusivity, and concentration following a point-source emission.

Such quantities are investigated by means of analytical and numerical computations, as functions of the control parameters of both flow and particle; i.e., density ratio, inertia, Brownian diffusivity, gravity (or other external forces), turbulence intensity, compressibility degree, space dimension, and geometric/temporal properties.

The complex interplay between these parameters leads to the following conclusion of interest in the realm of applications: any attempt to model dispersion and sedimentation processes — or equivalently the wind-driven surface transport of floaters — cannot avoid taking into account the full details of the flow field and of the inertial particle.


CEMAT logo