Collapse Expand

Search

 

xml

8 seminars found





, Friday

Mathematical Relativity


, CAMGSD - Instituto Superior Técnico, Univ. Lisboa.

Abstract

In this talk I will discuss some results obtained in collaboration with Filipe C. Mena and former PhD student Vítor Bessa on the global dynamics of a minimally coupled scalar field interacting with a perfect-fluid through a friction-like term in spatially flat homogeneous and isotropic spacetimes. In particular, it is shown that the late time dynamics contain a rich variety of possible asymptotic states which in some cases are described by partially hyperbolic lines of equilibria, bands of periodic orbits or generalised Liénard systems.



, Friday

Mathematics for Artificial Intelligence


, Sapienza University of Rome.

Abstract

The Hopfield Neural Network has played, ever since its introduction in 1982 by John Hopfield, a fundamental role in the inter-disciplinary study of storage and retrieval capabilities of neural networks, further highlighted by the recent 2024 Physics Nobel Prize.

From its strong link with biological pattern retrieval mechanisms to its high-capacity Dense Associative Memory variants and connections to generative models, the Hopfield Neural Network has found relevance both in Neuroscience, as well as the most modern of AI systems.

Much of our theoretical knowledge of these systems however, comes from a surprising and powerful link with Statistical Mechanics, first established and explored in seminal works of Amit, Gutfreund and Sompolinsky in the second half of the 1980s: the interpretation of associative memories as spin-glass systems.

In this talk, we will present this duality, as well as the mathematical techniques from spin-glass systems that allow us to accurately and rigorously predict the behavior of different types of associative memories, capable of undertaking various different tasks.

, Friday

Mathematics for Artificial Intelligence


, Sapienza University of Rome.

Abstract

The Hopfield Neural Network has played, ever since its introduction in 1982 by John Hopfield, a fundamental role in the inter-disciplinary study of storage and retrieval capabilities of neural networks, further highlighted by the recent 2024 Physics Nobel Prize.

From its strong link with biological pattern retrieval mechanisms to its high-capacity Dense Associative Memory variants and connections to generative models, the Hopfield Neural Network has found relevance both in Neuroscience, as well as the most modern of AI systems.

Much of our theoretical knowledge of these systems however, comes from a surprising and powerful link with Statistical Mechanics, first established and explored in seminal works of Amit, Gutfreund and Sompolinsky in the second half of the 1980s: the interpretation of associative memories as spin-glass systems.

In this talk, we will present this duality, as well as the mathematical techniques from spin-glass systems that allow us to accurately and rigorously predict the behavior of different types of associative memories, capable of undertaking various different tasks.



Instituto Superior Técnico
Av. Rovisco Pais, Lisboa, PT