First, additive manufacturing technologies are able to build finely graded microstructures (called lattice materials). Their optimization is therefore an important issue but also an opportunity for the resurrection of the homogenization method ! Indeed, homogenization is the right technique to deal with microstructured materials where anisotropy plays a key role, a feature which is absent from more popular methods, like SIMP. I will describe recent work on the topology optimization of these lattice materials, based on a combination of homogenization theory and geometrical methods for the overall deformation of the lattice grid.

Second, additive manufacturing, especially in its powder bed fusion technique, is a very slow process because a laser beam must travel along a trajectory, which covers the entire structure, to melt the powder. Therefore, the optimization of the laser path is an important issue. Not only do we propose an optimization strategy for the laser path, but we couple it with the usual shape and topology optimization of the structure. Numerical results show that these two optimizations are tightly coupled.

This is a joint work with many colleagues, including two former PhD students, P. Geoffroy-Donders and M. Boissier.

]]>Factorization algebras provide a flexible language for describing the observables of a perturbative QFT, as shown in joint work with Kevin Costello. Those constructions extend to a manifold with boundary for a special class of theories. I will discuss work with Eugene Rabinovich and Brian Williams that includes, as an example, a perturbative version of the correspondence between chiral ${\rm U}(1)$ currents on a Riemann surface and abelian Chern-Simons theory on a bulk 3-manifold, but also includes a systematic higher dimensional version for higher abelian CS theory on an oriented smooth manifold of dimension $4n+3$ with boundary a complex manifold of complex dimension $2n+1$. Given time, I will discuss how this framework leads to a concrete construction of the center of higher enveloping algebras of Lie algebras, in work with Greg Ginot and Brian Williams.

]]>

Then we focus on the study of the regularity of the optimal shapes and on the link with the regularity of related free boundary problems.

The main topic of the talk is the regularity of the optimal sets for a "degenerate'" functional, namely the second Dirichlet eigenvalue in a box. Given $D\subset \mathbb{R}^d$ an open and bounded set of class $C^{1,1}$, we consider the following shape optimization problem, for $\Lambda>0$,\begin{equation}\label{eq:main}\min{\Big\{\lambda_2(A)+\Lambda |A| : A\subset D,\text{ open}\Big\}},\end{equation}where $\lambda_2(A)$ denotes the second eigenvalue of the Dirichlet Laplacian on $A$.

In this talk we show that any optimal set $\Omega$ for \eqref{eq:main} is equivalent to the union of two disjoint open sets, $\Omega^\pm$, which are $C^{1,\alpha}$ regular up to a (possibly empty) closed singular set of Hausdorff dimension at most $d-5$, which is contained in the one-phase free boundaries.

In particular, we are able to prove that the set of two-phase points, that is, $\partial \Omega^+\cap \partial \Omega^-\cap D$, is contained in the regular set.

This is a joint work with Baptiste Trey and Bozhidar Velichkov.

In this talk, we will discuss some results on the regularity of the vectorial free boundaries obtained in the last years by Caffarelli-Shahgholian-Yeressian, Kriventsov-Lin, Mazzoleni-Terracini-V., and Spolaor-V.. Finally, we will present some new results on the rectifiability of the singular set obtained in collaboration with Guido De Philippis, Max Engelstein and Luca Spolaor.

]]>In this talk, I will argue that Lyapunov based techniques play an important role for analysis of model based optimization methodologies and moreover, both approaches can be combined for control design resulting in powerful frameworks with formal guarantees of robustness, stability, performance, and safety. Illustrative examples in the area of motion control of autonomous robotic vehicles will be presented for Autonomous Underwater Vehicles (AUVs), Autonomous Surface Vehicles (ASVs) and Unmanned Aerial Vehicles (UAVs).

]]>]]>

]]>

In this talk, we place this invariant in the setting of Operator theory, that is, the study of linear maps between normed vector spaces, let it be Euclidean space, spaces of sequences or function spaces. We make a tour through some of the main concepts and examples, and consider the class of Fredholm operators, the ones that lead to a well-defined index. We see what stability means and explain how the strong properties of the index lead in some cases to remarkable index formulas, depending on the shape of the space our model takes place, thus establishing a strong link between analysis and topology.

]]>]]>

In this talk we will see several examples of this, ranging from everyday situations to astrophysics and elementary particles.

]]>