11/11/2005, 15:00 — 16:00 — Room P3.10, Mathematics Building
Cristina Câmara, Instituto Superior Técnico, U.T. Lisboa
Riemann-Hilbert problems, factorization of functions and structure of the factors
Let be a matrix function of Daniele-Khrapkov type. An equivalence between linear Riemann-Hilbert problems with coefficient and a class of scalar boundary value problems relative to a contour in a Riemann surface is established. By studying the solutions of these problems, it can be shown that the solution of the former Riemann-Hilbert problems must satisfy certain relations. In particular, if admits a canonical bounded factorization, it follows that the factors must have a certain structure.