Algebra and Topology Seminar  RSS

Past

Newer session pages: Next 8 7 6 5 4 3 2 1 Newest 

02/07/2001, 14:00 — 15:00 — Room P3.31, Mathematics Building
Fernando Pablos Romo, Universidade de Salamanca

Curso de Álgebra Comutativa e Aplicações: Geometria Algébrica e Curvas Algébricas

30/05/2001, 16:00 — 17:00 — Room P3.10, Mathematics Building
Libor Polák, Masaryk University, Brno

Syntactic semiring of a language

23/05/2001, 16:00 — 17:00 — Room P3.10, Mathematics Building
George Janelidze, Universidade de Aveiro

Categorical Galois theory

09/04/2001, 16:00 — 17:00 — Room P3.10, Mathematics Building
, McGill University, Montreal

Aspects of the symmetric monad

The symmetric topos boldmathM() arose as the classifier of the Lawvere distributions on a topos and resulted in a unification of ideas in various fields in mathematics.

  1. The algebraic construction of the symmetric algebra is done without using tensor products and provides an alternative to the usual construction in Algebra.
  2. Mediating support there is a connection between the symmetric topos of a topos of sheaves on a locale X and the topos of sheaves on the lower power locale of X, of interest in Theoretical Computer Science.
  3. The association of the symmetric topos is part of a Kock-Z

21/03/2001, 16:00 — 17:00 — Room P3.10, Mathematics Building
Teresa Sousa, Universidade Nova de Lisboa

Grafos de Cohen-Macaulay

Seja G um grafo com conjunto de vértices V={x 1,,x n} e R=k[x 1,,x n] um anel de polinómios sobre um corpo k. O ideal associado ao grafo G, I(G), é o ideal de R gerado pelos monómios x ix j sempre que x i e x j são adjacentes em G. Dizemos que G é um grafo Cohen-Macaulay (CM), se R/I(G) for um anel Cohen-Macaulay. Muitas propriedades algébricas de I(G) podem ser obtidas no grafo G, através do uso de coberturas de vértices para G. Serão apresentadas algumas classes de grafos Cohen-Macaulay, alguns processos para construir grafos CM e propriedades dos grafos bipartidos CM.

07/02/2001, 16:00 — 17:00 — Room P3.10, Mathematics Building
, University of Sussex, Brighton

Quantal spaces

One of the principal reasons for the introduction of the concept of quantale was to find a categorical context, generalising to the non-commutative case that of locales, within which the insights of Giles and Kummer into the spectral representation of C*-algebras might be placed. Consideration of their ideas led to the concept of the spectrum MaxA of any C*-algebra A, functorial on the category of C*-algebras and admitting a Gelfand-Naimark representation exactly generalising that in the commutative case.

The question remained of whether this spectrum MaxA could be considered in some sense to be a quantal space. Approaching from the classical belief that its points should be the equivalence classes of irreducible representations, one may obtain a concept of a point of an involutive quantale which satisfies this criterion, yet extends that of a point of a locale. Generalising again the situation for locales, one may characterise those involutive quantales that are spatial as those having enough points, arriving finally at the concept of a quantal space.


Current organizer: Pedro Boavida de Brito.

CAMGSD FCT