Algebra Seminar  RSS

08/01/2013, 11:00 — 12:00 — Room P3.10, Mathematics Building
Luke Wolcott, University of Western Ontario

Bousfield lattices, quotients, ring maps, and non-Noetherian rings

Given an object X in a compactly generated tensor triangulated category C (such as the derived category of a ring, or the stable homotopy category), the Bousfield class of X is the collection of objects that tensor with X to zero. The set of Bousfield classes forms a lattice, called the Bousfield lattice BL(C). First, we will look at examples of when a functor F:CD induces a lattice map BL(C)BL(D), and will describe several lattice quotients and lattice isomorphisms. Second, we will focus on homological algebra; a ring map f:RS induces, via extension of scalars, a functor D(R)D(S), and this induces a map on Bousfield lattices. Third, we specialize to a specific map between some interesting non-Noetherian rings.

See also

https://www.math.tecnico.ulisboa.pt/~ggranja/Wolcott-IST.pdf

Current organizer: Gustavo Granja

CAMGSD FCT