Colóquio  RSS

11/01/2001, 16:30 — 17:30 — Anfiteatro Pa1, Pavilhão de Matemática
, Technische Universität Braunschweig

Initial algebras, final coalgebras and specification of systems

The fact that natural numbers can be presented as an initial algebra of a very simple endofunctor \(F\) of the category of sets (viz., \(F: X \mapsto X + 1 )\), and the algebra of finite binary trees as an initial algebra of the endofunctor \(G: X \mapsto (X \times X) + 1\) has inspired in the l970s the theory of abstract data types. A part of that theory has been concerned with infinite structures (e.g., infinite words and infinite trees), for which the formalism of complete partial orders (CPO) or complete metric spaces has been applied. It turns out that another very natural approach to these infinite structures is to consider the dual concept of intial algebra, namely, final coalgebra. As recently demonstrated by J. Rutten, coalgebras present a convenient formalism for describing systems. And final coalgebras often represent important structures, e.g. the (co-)algebra of finite and infinite binary trees is final for the above functor \(G\). Moreover, each of these coalgebras carries a natural CPO structure which, thus, need not be assumed a priori.
Colloquium_logo

O Colloquium de Matemática é a designação geral para uma série de palestras mensais organizadas pelo Departamento de Matemática do IST que têm como objetivo divulgar ideias de ou sobre Matemática. Está aberto à participação de docentes, investigadores e alunos de licenciatura, de mestrado ou de doutoramento do IST ou de outras instituições, sendo uma oportunidade de reunir pessoas com interesses afins e de estimular a troca de ideias num ambiente informal.


Organização: Conceição Amado, Lina Oliveira e Maria João Borges.