ÁLGEBRA LINEAR

RESOLUÇÃO DO SEGUNDO TESTE - 28/11/2023 LMAC, LEFT

(1) Aplicando pelo menos uma vez a regra de Laplace, calcule o determinante

$$\begin{vmatrix}
1 & 0 & 0 & 3 \\
-1 & -1 & -1 & 4 \\
1 & 0 & 0 & 2 \\
0 & 2 & 1 & 2
\end{vmatrix}$$

Resolução: Aplicando a regra de Laplace ao longo da primeira linha temos

$$\begin{vmatrix} 1 & 0 & 0 & 3 \\ -1 & -1 & -1 & 4 \\ 1 & 0 & 0 & 2 \\ 0 & 2 & 1 & 2 \end{vmatrix} = (-1)^{1+1} \cdot 1 \cdot \begin{vmatrix} -1 & -1 & 4 \\ 0 & 0 & 2 \\ 2 & 1 & 2 \end{vmatrix} + (-1)^{1+4} \cdot 3 \cdot \begin{vmatrix} -1 & -1 & -1 \\ 1 & 0 & 0 \\ 0 & 2 & 1 \end{vmatrix}$$
$$= (-1)^{2+3} \cdot 2 \cdot \begin{vmatrix} -1 & -1 \\ 2 & 1 \end{vmatrix} - 3 \cdot (-1)^{2+1} \cdot 1 \cdot \begin{vmatrix} -1 & -1 \\ 2 & 1 \end{vmatrix}$$
$$= -2(-1+2) + 3(-1+2) = 1$$

(2) Sejam V o espaço vetorial dos polinómios de grau ≤ 3 e considere as seguintes bases ordenadas

$$B_1 = (1 - t, t + t^2, t, t^3)$$
 para V e $B_2 = ((1, 1), (1, 2))$ para \mathbb{R}^2

Considere a transformação linear $T\colon V\to \mathbb{R}^2$ definida pela expressão

$$T(p(t)) = (p(0) + p'(0), p(1))$$

e a transformação linear $g\colon \mathbb{R}^2 \to V$ cuja representação matricial com respeito à base canónica de \mathbb{R}^2 e à base B_1 é

$$A_{g,B_{can},B_1} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$$

- (a) Calcule $(g \circ T)(t t^2)$. A imagem de T está contida no núcleo de g?
- (b) Determine $S_{B_{can} \to B_2}$.
- (c) Determine $A_{T,B_1,B_{can}}$ e A_{T,B_1,B_2} .
- (d) Determine uma base para o núcleo de $g \circ T$ indicando se $g \circ T$ é um isomorfismo.
- (e) Resolva a equação linear $(q \circ T)(p(t)) = 1 + t + t^2$.
- (f) Sendo $h: \mathbb{R}^3 \to V$ for uma transformação linear injetiva, quais são os possíveis valores para $\dim(T \circ h)(\mathbb{R}^3)$?

Resolução:

- (a) Temos $T(t-t^2)=(0+1,0)$ logo $(g\circ T)(t-t^2)=g(1,0)=1\cdot (1-t)+1\cdot (t+t^2)+1\cdot t=1+t+t^2$. Uma vez que $g\circ T$ não é identicamente nula, a imagem de T não está contida no núcleo de g.
- (b) Temos $S_{B_2 \to B_{can}} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ logo

$$S_{B_{can} \to B_2} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^{-1} = \frac{1}{2-1} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

(c) Uma vez que $T(1-t) = (0,0), T(t+t^2) = (1,2), T(t) = (1,1)$ e $T(t^3) = (0,1)$ temos

$$A_{T,B_1,B_{can}} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 2 & 1 & 1 \end{bmatrix}$$

e portanto

$$A_{T,B_1,B_2} = S_{B_{can} \to B_2} A_{T,B_1,B_{can}} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

(d) Temos

$$A_{g \circ T, B_1, B_1} = A_{g, B_{can}, B_1} A_{T, B_1, B_{can}} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & -1 \\ 0 & 3 & 2 & 1 \\ 0 & 2 & 1 & 1 \end{bmatrix}$$

Aplicando o método de Gauss obtemos

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & -1 \\ 0 & 3 & 2 & 1 \\ 0 & 2 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

logo $N(q \circ T)$ é definido em coordenadas pelo sistema

$$\begin{cases} y = -z \\ z = w \end{cases} \Leftrightarrow \begin{cases} y = -w \\ z = w \end{cases}$$

ou seja $\{(x, -w, w, w) : x, w \in \mathbb{R}\} = L(\{(1, 0, 0, 0), (0, -1, 1, 1)\})$. Conclui-se que uma base para $N(g \circ T)$ é formada pelos vetores 1 - t e $-(t + t^2) + t + t^3 = -t^2 + t^3$, ou seja, podemos tomar $B = (1 - t, -t^2 + t^3)$. Uma vez que o núcleo de $g \circ T$ é não trivial, a tranformação $g \circ T$ não é injetiva e portanto não é um isomorfismo.

(e) Pela alínea (a) temos que $t-t^2$ é uma solução particular da equação, logo tendo em conta a alínea anterior, a solução geral é dada por

$$t - t^2 + \alpha(1 - t) + \beta(t^2 + t^3)$$
 $\alpha, \beta \in \mathbb{R}$

(f) Temos $(T \circ h)(\mathbb{R}^3) = T(h(\mathbb{R}^3))$. Sendo T' a restrição de T ao subespaço $h(\mathbb{R}^3)$, pelo Teorema da característica-nulidade temos

$$\dim T(h(\mathbb{R}^3)) = \dim T'(h(\mathbb{R}^3)) = \dim h(\mathbb{R}^3) - \dim N(T')$$

Uma vez que h é injetiva, $\dim h(\mathbb{R}^3) = 3$. O núcleo de T' é a interseção do núcleo de T (que é um subespaço de dimensão 2) com $h(\mathbb{R}^3)$. Trata-se portanto de um subespaço de dimensão 1 (se $h(\mathbb{R}^3)$ não contém o núcleo) ou de um subespaço de dimensão 2 (se $h(\mathbb{R}^3)$ contém o núcleo). Conclui-se que as possíveis dimensões para $\dim(T \circ h)(\mathbb{R}^3)$ são 2 e 1.

(3) Determine os valores de a, b para os quais a matriz $\begin{bmatrix} a & 2ab & 3a \\ 1 & b & 2 \\ a & b & -1 \end{bmatrix}$ é invertível.

Resolução: Usando linearidade na primeira linha e segunda coluna temos

$$\begin{vmatrix} a & 2ab & 3a \\ 1 & b & 2 \\ a & b & -1 \end{vmatrix} = ab \begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ a & 1 & -1 \end{vmatrix} = ab(-1 + 4a + 3 - 3a + 2 - 2) = ab(a + 2)$$

logo a matriz é invertível se e só se $ab(a+2) \neq 0 \Leftrightarrow a \neq 0$ e $b \neq 0$ e $a \neq -2$.

(4) Determine a representação com respeito à base canónica de \mathbb{R}^2 (tanto no domínio como no conjunto de chegada) de todas as transformações lineares $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ tais que $N(T) = \{(x,y) \in \mathbb{R}^2 \colon y = x\}$ e $T(\mathbb{R}^2) = L(\{(1,2)\})$.

Resolução: Temos T(1,1)=(0,0) e qualquer vetor que não pertença ao núcleo terá de ser enviado num múltiplo não nulo de (1,2). Escrevendo por exemplo $T(1,0)=\alpha(1,2)$ com $\alpha \neq 0$ obtemos $T(0,1)=T(1,1)-T(1,0)=-\alpha(1,2)$ pelo que

$$A_{T,B_{can},B_{can}} = \alpha \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix}$$
 para algum $\alpha \neq 0$

(5) Seja $n \ge 2$ e A uma matriz $n \times n$. Mostre que a matriz cofatora cof A é identicamente nula se e só se A tem característica < n - 2.

Resolução: Suponhamos primeiro que car $A \leq n-2$. Então quaisquer n-1 linhas de A são linearmente dependentes e o mesmo sucede portanto com as linhas de qualquer das matrizes A_{ij} . Conclui-se que cof A=0. Reciprocamente, suponhamos que car $A \geq n-1$. Então existem n-1 linhas de A linearmente independentes. Sem perda de generalidade podemos considerar que são as primeiras (n-1). A matriz que B se obtém de A suprimindo a última linha tem então característica (n-1). Como $car(B) = \dim EC(B) = n-1$, tem que haver (n-1) colunas linearmente independentes em B. Suponhamos que eliminando a coluna i de B obtemos um conjunto linearmente independente. Então a matriz A_{ni} tem característica (n-1) e é portanto invertível. Conclui-se que det $A_{ni} \neq 0$ logo cof $A \neq 0$.