ÁLGEBRA LINEAR

TERCEIRO TESTE - 05/01/2024 DURAÇÃO: 45M

LMAC, LEFT

(2 val.)	(1) Determine se existe $\alpha \in \mathbb{R}$ para	o qual a matriz $\begin{bmatrix} 1 & -1 & 3 \\ 2 & \alpha & 1 \\ 1 & -1 & \alpha \end{bmatrix}$	tenha $(1,2,-1)$ como vetor
	próprio.		

- (2) Considere o subespaço $V = L(\{ \operatorname{sen} t, \cos t, t \operatorname{sen} t, t \cos t \})$ do espaço vetorial complexo das funções de \mathbb{R} para \mathbb{C} e o endomorfismo $T \colon V \to V$ definido por T(f) = f'.
- (3 val.) (a) Determine os valores próprios de T indicando as suas multiplicidades geométricas e algébricas.
- (3 val.)
 (b) Determine a forma canónica de Jordan de T indicando uma base B para V com respeito à qual T é representada pela forma de Jordan achada.
 Nota: Se não conseguir determinar uma representação matricial para T pode fazer os

cálculos de 2(a) e 2(b) com a matriz $\begin{bmatrix} 0 & -1 & 1 & 0 \\ 4 & 0 & 0 & 1 \\ 0 & 0 & 4 & 0 \end{bmatrix}$ (que não é uma possível representação matricial de T).

- (3 val.) (3) Seja $\langle \ , \ \rangle$ um produto interno em \mathbb{R}^3 para o qual $\{(1,1,0),(0,1,0),(0,0,1)\}$ é uma base ortonormada. Determine a matriz da métrica de $\langle \ , \ \rangle$ com respeito à base canónica.
- (2 val.)
 (4) Diga se a função $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ definida pela expressão

$$\langle x, y \rangle = x^T \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 4 \end{bmatrix} y$$

é um produto interno em \mathbb{R}^3 . Sugestão: Para analisar a forma quadrática $x \mapsto \langle x, x \rangle$, calcule o determinante da matriz simétrica dada.

- (5) Considere a matriz $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$.
- (2 val.) (a) Determine uma decomposição SVD para A.
- (2 val.) (b) Calcule a projeção ortogonal de (1, 1, 1, 1) em $N(A^T)$
 - (3 val.) (6) Seja V um espaço vetorial complexo e $T\colon V\to V$ um endomorfismo com forma canónica de Jordan

$$J = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

Descreva o grau de indeterminação do segundo vetor de uma base B para a qual $A_{T,B,B}=J$, isto é, indique (justificadamente) o número mínimo de parâmetros complexos necessários para descrever o conjunto

 $\{v \in V : v \text{ \'e o segundo vetor de alguma base } B \text{ para } V \text{ tal que } A_{T,B,B} = J\}$