

Departamento de Matemática

ÁLGEBRA LINEAR

SEGUNDO TESTE - VERSÃO B 6 DE DEZEMBRO DE 2022 - 18H **DURAÇÃO: 45 MINUTOS**

LMAC E LEFT

- (1) Seja U um espaço vetorial real com bases $B_1 = (v_1, v_2, v_3, v_4)$ e $B_2=(v_3,v_1-v_2,v_1,v_4)$, e W o espaço dos polinómios de grau ≤ 2 com a base $B_3=(1,t,t^2)$. Seja $T\colon U\to W$ a transformação linear determinada por $T(v_1) = t^2 + 1$, $T(v_1 - v_2) = -t + 2$, $T(v_3) = -2t^2 - t$, $T(v_4) = 0$
 - (a) Determine a matriz de mudança de coordenadas $S_{B_2 \to B_1}$.
 - (b) Determine o segundo vetor da base B_4 de U para a qual $S_{B_4 \to B_1} = (S_{B_2 \to B_1})^2$.
 - (c) Determine a matriz que representa a transformação linear -4T com respeito às bases $B_1 \in B_3$.
 - (d) Determine a dimensão do núcleo e imagem de T.
 - (e) Existe alguma transformação linear $f: \mathbb{R}^3 \to U$ tal que $T \circ f$ seja um isomorfismo?
 - (f) Sendo $g: W \to \mathbb{R}$ a transformação linear definida por g(p) = p(-1), determine o conjunto das soluções da equação linear $(q \circ T)(x) = -1$.
- (2) Considere a matriz

$$A = \begin{bmatrix} 1 & 2 & 7 & 2 & -8 \\ -1 & 4 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 & 0 \\ 4 & 5 & 3 & 0 & 3 \\ 1 & 2 & -1 & 0 & -4 \end{bmatrix}$$

- (a) Calcule det A. (b) Calcule $\lim_{x\to +\infty} \frac{\det(xA)}{x^4}$.
- (3) Mostre que se V é um espaço vetorial de dimensão $n \in S \subset V$ é um conjunto de geradores com n elementos, então S é uma base de V.
- (4) Sendo A uma matriz $n \times n$, seja \tilde{A} a matriz que se obtém de A refletindo as entradas relativamente à diagonal que une as entradas (n,1) e (1,n) (portanto a entrada (i,j)de \hat{A} é a entrada (n+1-j, n+1-i) de \hat{A}). Mostre que det $\hat{A} = \det A$.

1