ÁLGEBRA LINEAR

SEGUNDO TESTE - 28/11/2023 DURAÇÃO: 45M

LMAC, LEFT

INSTRUÇÕES

- As cotações das alíneas estão indicadas na margem esquerda da folha do enunciado.
- Desligue o telemóvel!
- Não é permitida a utilização de quaisquer elementos de consulta nem de máquinas calculadoras.
- O teste não pode ser realizado a lápis.
- Justifique todas as respostas e apresente todos os cálculos.
- Boa sorte!

pergunta	classificação
1	
2 (a)	
2 (b)	
2 (c)	
2 (d)	
2 (e)	
2 (f)	
3	
4	
5	
total	

Nome:			
Nº:			
G 1			

(2 val.) (1) Aplicando pelo menos uma vez a regra de Laplace, calcule o determinante

$$\begin{vmatrix}
1 & 0 & 0 & 3 \\
-1 & -1 & -1 & 4 \\
1 & 0 & 0 & 2 \\
0 & 2 & 1 & 2
\end{vmatrix}$$

(2) Sejam V o espaço vetorial dos polinómios de grau ≤ 3 e considere as seguintes bases ordenadas

$$B_1 = (1 - t, t + t^2, t, t^3)$$
 para V e $B_2 = ((1, 1), (1, 2))$ para \mathbb{R}^2

Considere a transformação linear $T\colon V\to\mathbb{R}^2$ definida pela expressão

$$T(p(t)) = (p(0) + p'(0), p(1))$$

e a transformação linear $g\colon \mathbb{R}^2 \to V$ cuja representação matricial com respeito à base canónica de \mathbb{R}^2 e à base B_1 é

$$A_{g,B_{can},B_1} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$$

- (1,5 val.) (a) Calcule $(g \circ T)(t-t^2)$. A imagem de T está contida no núcleo de g?
- (1,5 val.) (b) Determine $S_{B_{can} \to B_2}$.
- (3 val.) (c) Determine $A_{T,B_1,B_{can}} \in A_{T,B_1,B_2}$.
- (2 val.) (d) Determine uma base para o núcleo de $g \circ T$ indicando se $g \circ T$ é um isomorfismo.
- (2 val.) (e) Resolva a equação linear $(g \circ T)(p(t)) = 1 + t + t^2$.
- (1 val.) (f) Sendo $h: \mathbb{R}^3 \to V$ for uma transformação linear injetiva, quais são os possíveis valores para dim $(T \circ h)(\mathbb{R}^3)$?
- (2 val.) (3) Determine os valores de a, b para os quais a matriz $\begin{bmatrix} a & 2ab & 3a \\ 1 & b & 2 \\ a & b & -1 \end{bmatrix}$ é invertível.
- (2 val.) (4) Determine a representação com respeito à base canónica de \mathbb{R}^2 (tanto no domínio como no conjunto de chegada) de todas as transformações lineares $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ tais que $N(T) = \{(x,y) \in \mathbb{R}^2 \colon y = x\}$ e $T(\mathbb{R}^2) = L(\{(1,2)\})$.
- (3 val.) (5) Seja $n \ge 2$ e A uma matriz $n \times n$. Mostre que a matriz cofatora cof A é identicamente nula se e só se A tem característica $\le n-2$.