

Álgebra Linear

LEBiom

Exame 2 - 10 de Fevereiro de 2023 - 10h30 Duração: 2h

Apresente e justifique todos os cálculos

Exame 2

1. Para cada parâmetro real α , considere o sistema linear

$$A\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ \alpha \\ 1 \end{bmatrix}, \quad \text{onde} \quad A = \begin{bmatrix} 1 & 1 & \alpha \\ 3 & 4 & 2 \\ 2 & 3 & -1 \end{bmatrix}.$$

- (2 val.) (a) Determine em função de α quando é que o sistema é impossível, possível, determinado ou indeterminado.
- (1 val.) (b) Para $\alpha=3$, determine o conjunto de soluções do sistema.
- (2 val.) (c) Para $\alpha=3$ determine a dimensão e uma base para a intersecção do espaço das linhas de A com o subespaço $U=\{(x,y,z)\in\mathbb{R}^3: x+y+z=0\}.$
 - 2. Seja $T:M_{2\times 2}(\mathbb{R})\to\mathbb{R}^3$ a transformação linear cuja representação nas bases ordenadas $B_1=\left(\begin{bmatrix}1&1\\0&0\end{bmatrix},\begin{bmatrix}1&-1\\0&0\end{bmatrix},\begin{bmatrix}1&1\\1&0\end{bmatrix},\begin{bmatrix}0&0\\0&1\end{bmatrix}\right)$ e $B_2=((1,0,0),(0,1,1),(0,1,-1))$ é

$$A_{T,B_1,B_2} = \begin{bmatrix} 3 & 0 & 0 & 2 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

- (1 val.) (a) Calcule $T \begin{pmatrix} 2 & 2 \\ 1 & 2 \end{pmatrix}$.
- (1 val.) (b) Indique, justificando, se a imagem de T é isomorfa a um plano em \mathbb{R}^3 .
- (1 val.) (c) Determine o núcleo de T.
- (1 val.) (d) Resolva em $M_{2\times 2}(\mathbb{R})$ a equação linear T(A)=(5,1,-1).
- (2 val.) (e) Considere o produto interno em $M_{2\times 2}(\mathbb{R})$ dado por $\langle A,B\rangle=\operatorname{tr}(A^TB)$. Determine a distância de $\begin{bmatrix} 4 & 0 \\ 1 & 1 \end{bmatrix}$ ao núcleo de T.

(2 val.) 3. Seja
$$A=\begin{bmatrix}1&2&3\\a&b&c\\0&d&1\end{bmatrix}$$
 tal que $\det A=3$ e $B\in M_{2 imes2}(\mathbb{R})$ uma matriz invertível. Calcule

$$\det\begin{bmatrix} \det(2B^TB^{-1}) & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 2d & 2 \end{bmatrix}.$$

- 4. Seja V o espaço linear dos polinómios reais de grau ≤ 2 . Considere a transformação linear $T:V\to V$ tal que
 - $1 + t^2$ é um vetor próprio com valor próprio 1;
 - ullet 1+t é um vetor próprio com valor próprio 3;
 - o núcleo de T é dado por $N(T) = \{\alpha t^2 : \alpha \in \mathbb{R}\}.$
- (1 val.) (a) Determine a matriz mudança de base $S_{B\to B_c}$ da base $B=(1+t^2,1+t,t^2)$ para a base canónica $B_c=(1,t,t^2)$.
- (1 val.) (b) Determine a matriz que representa T na base canónica B_c .
- (1 val.) (c) Determine a expressão geral da transformação linear T.
 - 5. Considere a forma quadrática $f: \mathbb{R}^3 \to \mathbb{R}$ definida por $f(x,y,z) = -x^2 y^2 + 4xy 3z^2$.
- (1 val.) (a) Classifique f.
- (1 val.) (b) Determine um subespaço $U \in \mathbb{R}^3$ de dimensão 1 tal que $f(u) \geq 0$ para todo o $u \in U$.
- (2 val.) 6. Sejam $A, B \in M_{n \times n}(\mathbb{R})$ matrizes simétricas tal que B tem valores próprios positivos. Mostre que BA é diagonalizável. Sugestão: mostre que existe uma matriz X tal que $B = XX^T$ e considere a matriz $X^{-1}BAX$.