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Abstract.
We analyze the multi-party contract-signing protocols of Garay and MacKenzie

(GM) and of Baum and Waidner (BW). We use a finite-state tool, Mocha, which
allows specification of protocol properties in a branching-time temporal logic with
game semantics. While our analysis does not reveal any errors in the BW protocol,
in the GM protocol we discover serious problems with fairness for four signers and an
oversight regarding abuse-freeness for three signers. We propose a complete revision
of the GM subprotocols in order to restore fairness.

1. Introduction

The problem of digitally signing a contract over a network is more
complicated than signing a contract by “pen and paper”. The problem
arises because of an inherent asymmetry: no signer wants to be the first
one to sign the contract because another signer could refuse to do so
after having obtained the first signer’s contract.

A simple solution consists in using a trusted party (T ) as an in-
termediary. Signers send their respective contracts to T , which first
collects the contracts and then distributes them among the signers.
An intermediary is known to be necessary (Even and Yacobi, 1980).
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However, because of the communication and computation bottleneck at
T , this solution is inefficient. Other solutions include randomized proto-
cols as well as protocols based on gradual information exchange. More
recently, the so-called optimistic approach was introduced in (Asokan
et al., 1997; Burk and Pfitzmann, 1990). The idea is that T intervenes
only when a problem arises, e.g., a signer is trying to cheat or a network
failure occurs at a crucial moment during the protocol. Such protocols
generally consist of a main protocol and one or several subprotocols,
each with a fixed number of messages. The main protocol is executed
by the signers in order to exchange their signatures. The subprotocols
are used to contact T in order to force a successful outcome or to abort
the protocol.

A contract-signing protocol should respect several desirable prop-
erties. The first property is fairness. Intuitively, a contract-signing
protocol is fair if at the end of the protocol either each signer obtains
all the other signers’ contracts or no signer gets any valuable infor-
mation. A second property, timeliness, ensures that signer has some
recourse to prevent endless waiting. Both fairness and timeliness are
standard properties that are also important in fair exchange, certified
e-mail and fair non-repudiation protocols. A property that is specific
to contract signing, abuse-freeness, was introduced in (Garay et al.,
1999). A protocol is abuse-free if no signer A is able to prove to an
external observer that A has the power to choose between successfully
concluding the protocol and aborting the protocol. A protocol that is
not abuse-free gives an undesirable advantage to one signer, say Alice,
who has the power to decide the outcome of the protocol and can prove
this to an external observer. If, for instance, Alice wants to sell a house
to Charlie, she could initiate a contract with Bob just to force Charlie
to increase his offer.

There have been several applications of formal methods to con-
tract signing, so far only for the special case of two signers. The finite
model-checker Murϕ is used in (Shmatikov and Mitchell, 2002) to ana-
lyze two contract-signing protocols, discover subtle errors and suggest
corrections. In (Chadha et al., 2001) inductive methods are used to rea-
son about contract-signing protocols specified in the multiset-rewriting
framework, MSR. Protocol properties are expressed in terms of strate-
gies, which provide a natural framework for the analysis. In (Kremer
and Raskin, 2002) the finite model-checker Mocha is used to analyze
two contract-signing protocols. The advantage of using Mocha rather
than Murϕ is that Mocha allows to specify protocol properties in ATL,
a temporal logic with game semantics, which in turn allows reasoning
about strategies. In (Gürgens and Rudolph, 2003) the finite state tool
SHVT is used to analyze several variants of the Zhou-Gollmann non-
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repudiation protocols (non-repudiation protocols are closely related to
contract signing protocols). Protocols are modeled using asynchronous
product automata and properties are basically invariants. They show
unknown attacks which can occur in a realistic implementation of the
protocol. The most recent work on contract signing (Chadha et al.,
2004b) introduces the notion of an optimistic signer, i.e., a signer that
prefers to wait for “some time” for messages from the other signers
before contacting the trusted party. The main theorem of (Chadha
et al., 2004b) is that, independently of a specific protocol, if any of the
signers is optimistic, then the other signer will at some point of the
protocol have the power to decide the outcome.

All the efforts just described consider only two-party protocols. In
this paper we analyze multi-party contract-signing protocols (Baum-
Waidner and Waidner, 2000; Garay and MacKenzie, 1999). The pro-
tocol goal in that case is that each signer sends its signature on a
previously agreed upon contract text to all other signers and that each
signer receives all other signers’ signatures on this contract. In a multi-
party framework, fairness, timeliness, and abuse-freeness should hold
against any coalition of dishonest parties. Unlike in the two-party case,
the complexity level of the multi-party protocols, especially (Garay and
MacKenzie, 1999), is such that a tool, e.g., a model-checker, is indis-
pensable in the analysis. This partly comes about from an important
difference between the two-party and the multi-party case, namely, in
the multi-party case T has to be able to overturn its previous abort
decisions (Garay et al., 1999). As our analysis shows, this feature is
particularly difficult to design correctly.

We chose Mocha for our analysis which allowed specification of
properties in ATL, a branching-time temporal logic with game seman-
tics. Apart from our familiarity with Mocha, two important aspects
of optimistic contract signing influenced our choice of the tool. The
first is the branching aspect of optimistic contract-signing protocols;
the protocols usually consist of subprotocols that can be invoked at
specific moments. The other is that the desired properties of contract
signing are naturally expressed as winning strategies in games.

For example, one possible formulation of fairness often used in lit-
erature (Kremer and Raskin, 2002; Chadha et al., 2004b), is that a
protocol is fair for an honest signer Alice if whenever some other signer,
say Bob, receives Alice’s signature on the contract, then Alice has a
strategy to get the signed contracts from all other signers. Similarly,
a possible formulation for timeliness (Kremer and Raskin, 2002) says
that a protocol is timely for Alice if regardless of the state of execution
of the protocol, Alice has a strategy to reach a terminal state in which
she is neither required to send any messages nor expects any messages.
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It is in the formulation of abuse-freeness, however, that strategies
seem to be indispensable. In (Chadha et al., 2003), for example, a pro-
tocol is said to be abuse-free for Alice if it does not provide a provable
advantage to the remaining signers. Assuming that Alice always prefers
to wait for ”some time” before contacting the trusted party, a protocol
is said to provide provable advantage to a coalition of signers against
Alice at a point in a protocols if a) they have a strategy to abort the
exchange, b) they have a strategy to complete the exchange, and c)
they can prove to an outside observer that Alice is participating in the
protocol. Our formulation of abuse-freeness follows this definition.

Although, ATL does allow elegant formulation of the desired prop-
erties in terms of strategies, the failure of an ATL formula cannot
be explained by an error-trace in general. Hence the model-checker
Mocha does not provide error traces when these properties fail. There-
fore, we looked at other possible formulations of the security properties.
For example, we could formulate fairness as a state invariant: a protocol
is fair for Alice if in all states terminal for Alice, either Alice has the
signed contract or none of the other signers have Alice’s signature on
the contract. The advantage of this formulation is that Mocha does
provide error traces for invariant checking.

The formulation of fairness as an invariant is strictly weaker than
formulation of fairness in terms of strategies mentioned before, and
it is relatively easy to construct examples in which fairness in terms
of strategies is violated even if the invariant holds. However, in pres-
ence of timeliness stated in terms of strategies, these are essentially
equivalent. The importance of this result to our work is that since our
protocol models satisfied timeliness in terms of strategies, verifying the
weaker formulation of fairness in terms of fairness was equivalent to
verifying the stronger formulation of fairness in terms of strategies. In
(Shmatikov and Mitchell, 2002), Shmatikov and Mitchell use a similar
invariant specification of fairness, without however showing the exact
relations with other versions of fairness when timeliness is respected.

Our analysis revealed an essential obstacle in the GM protocol (Garay
and MacKenzie, 1999), which appears not to be removable without
completely changing the subprotocols for T and which leads to the
failure of fairness in the case of four signers. In particular, assuming
that three signers were dishonest, we found traces leading to a state
in which some dishonest signer has the signature of the honest signer,
while the honest signer has terminated without having received any
signed contracts.

Our analysis also showed that the GM protocol is vulnerable if only
two of the signers are dishonest. The dishonest signers may bring the
protocol to a state in which an honest signer has terminated without
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having received any signed contracts, while the other honest signer has
received all the signed contracts. Even though the protocol does not
provide an advantage to the dishonest signers in this case, this protocol
execution must be viewed as being unfair for the first signer. We did
not discover any problems when there was only one dishonest signer.

We present the fairness attacks on the GM protocol in detail in
the paper and propose a corrected version of the GM protocol, which
has been validated by Mocha. Mocha did not find any problems
with fairness in the BW protocol (Baum-Waidner and Waidner, 2000)
nor in the original GM protocol with only three signers. In the latter
case, Mocha did find an amusing problem with abuse-freeness, but
this problem is easily corrected. We believe that the main reason for
robustness of the BW protocol is that overturning the abort decisions
has been designed correctly.

The rest of the paper is organized as follows. In section 2, we de-
scribe the BW and the GM protocols. In section 3, we present briefly
the finite-state tool, Mocha, the temporal logic ATL and its game
semantics. Modeling of the protocols and protocol assumptions in the
game semantics along with the modeling of fairness and timeliness
in ATL is discussed. We also show in this section how the invariant
formulation of fairness is related to other formulations of fairness. In
section 4, we report on our analysis of the BW and GM protocols
using Mocha, present the fairness attacks on four signers in detail and
propose a corrected version of the protocol. We discuss briefly how to
restore fairness and present the anomaly with respect to abuse-freeness
for three signers. In order to detect this anomaly, we had to model
optimistic signers and discuss this issue. We summarize our results and
discuss directions for future work in section 5.

2. Protocol description

In this section we describe the multi-party contract-signing protocols
proposed by Baum and Waidner in (Baum-Waidner and Waidner, 2000)
and Garay and MacKenzie in (Garay and MacKenzie, 1999). Unlike
two-party protocols, which generally have similar structures, the two
multi-party protocols which we describe below have fundamentally dif-
ferent structures. For this section and for the rest of the paper, we
shall assume that each protocol participant has a private signing key
and a corresponding public verification key. Each participant shall be
identified with this private/public key pair, and if we say that “A can
. . . ”, we shall mean anyone that possesses the private key of A.
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2.1. GM multi-party contract-signing protocol

The protocol allows n (n ≥ 2) participants, say P1, . . . , Pn, to exchange
signatures with the help of a trusted party T on a preagreed contract
text m. Pi is said to have a contract if it has everybody’s signature
on the text m. The order of the participants P1, . . . , Pn, henceforth
referred to as signers, and the identity of T are also agreed upon
before the protocol begins. The preagreed contract text m contains
an identifier that uniquely identifies each protocol instance. In (Garay
and MacKenzie, 1999), the communication amongst the participants
is assumed to be over a network channel in control of a “Dolev-Yao
intruder”, while the communication between the participants and the
trusted party is assumed to be over a private channel.

The protocol uses zero-knowledge cryptographic primitives, private
contract signatures, that were first introduced in (Garay et al., 1999).
The private contract signature of A for B on text m with respect
to a trusted party T , denoted as PCSA(m,B, T ) has the following
properties:
a) PCSA(m,B, T ) can be created by A.
b) PCSA(m,B, T ) can be faked by B. Only A, B and T can tell
difference between PCS and its simulation.
c) PCSA(m,B, T ) can be converted into a conventional universally-
verifiable digital signature, SA(m), by both A and T . Only A and T
can do this conversion.

The protocol itself consists of three subprotocols: main, abort, and
recovery subprotocols. Usually signers try to achieve the exchange by
executing the main subprotocol. They contact T using one of the other
two subprotocols when they think something is amiss. Once a signer
contacts T , it no longer takes part in the main subprotocol. T re-
sponds to a request with either an abort token or a signed contract.
The decision whether to reply with an abort token or with a signed
contract is based on a database maintained by T , which stores all the
relevant information of the requests and its responses. Once T sends
back a signed contract, it always replies with the signed contract. As
discussed below, a decision to abort may, however, be overturned in
order to maintain fairness. We discuss the subprotocols in some detail.

Main protocol. The main protocol for n signers is divided into n-levels,
that can be described recursively. For each level of recursion, a different
“strength” of promise is used. The strength of a promise is denoted by
an integer “level”, and an “i-level promise from signer A to signer B on
a message m” is implemented using PCS: PCSA((m, i), B, T ).
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In level i, signers Pi through P1 exchange i-level promises to sign
the contract. The i-level protocol is triggered when Pi receives 1-level
promises from Pi+1, . . . , Pn. After receiving these promises, Pi sends
out its 1 level promise to signers Pi−1, . . . , P1 and waits for i− 1 level
to finish. At the end of the i − 1 level, P1, . . . , Pi−1 have exchanged
i − 1 level promises and Pi receives a i − 1 level promise from each of
the signers P1, . . . , Pi−1. Now Pi . . . , P1 exchange i level promises, and
close the higher levels.

In order to close level a where a > i, Pi sends an (a − 1)-level
promise to Pa and waits for a-level promises from signers Pi+1, . . . , Pa.
After receiving these promises, Pi indicates its willingness to close the
level a to signers P1, . . . , Pi−1 by sending them its a-level promise, and
in return waits for a-level promises from them. Upon receiving these,
Pi sends its a-level promises to Pi+1, . . . , Pa completing its obligation
in the a-level protocol. Pi then proceeds to complete a+ 1 level.

Once the n-levels are completed, each signer has a n-level promise
from everybody else, and the contract exchange is ready to begin. In
this exchange, each signer also sends a n+1-level promise to everybody
along with its signature on the preagreed text. In order to complete the
exchange, signer Pi waits for the contract and n+1-level promises from
Pn, . . . , Pi+1. Upon receiving these, Pi sends its signature and n + 1-
level promises to everybody, and waits for the signatures and n+1-level
promises from Pi−1, . . . , P1. Once these are received, the protocol ends
for Pi, and Pi has the contract.

If some expected messages are not received, Pi may either quit the
protocol or contact T . Pi may simply quit the protocol if it has not sent
any promises or contact T if it has sent some promises. It may contact
T with a request to abort if it has not received any promise from some
signer. It may request T to recover the protocol if it has a promise from
every other signer. A detailed description of the main protocol is given
in table 1.

In order to illustrate the main protocol, consider an instance of the
protocol with three signers: Alice, Bob and Carol playing the roles of
P3, P2 and P1 respectively. For lack of space, we just illustrate the role
of Alice. Alice starts the protocol by sending level 1 promises to Bob
and Carol, and waits for level 2 promises from Bob and Carol. If Alice
does not receive them, then Alice may contact T with a request to abort
the exchange. If Alice does receive the promises, then she sends her level
3 promises to Bob and Carol, and waits for their level 3 promises in
return. If Alice does not receive these promises then she contact T with
a recovery request. Otherwise, she sends her signature on the preagreed
text along with level 4 promises to Bob and Carol, and waits for their
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signatures. The protocol finishes for her when she receives the contract.
Otherwise, she may launch the recovery subprotocol and contact T .

Table 1 GM multi-party contract-signing protocol—Main for Pi

Wait for all higher recursive levels to start

1. Pj → Pi: PCSPj
((m, 1), Pi, T ) (n ≥ j > i)

If Pi does not receive 1-level promises from Pn . . . Pi+1 in a timely manner, then Pi

simply quits.

Start recursive level i

2. Pi → Pj : PCSPi
((m, 1), Pj , T ) (i > j ≥ 1)

Wait for recursive level i-1 to finish

3. Pj → Pi: PCSPj
((m, i − 1), Pi, T ) (i > j ≥ 1)

If Pi does not receive (i-1)-level promises from Pi−1 . . . P1 in a timely manner, then
Pi aborts.

Send i-level promises to all lower-numbered signers

4. Pi → Pj : PCSPi
((m, i), Pj , T ) (i > j ≥ 1)

Finish recursive level i when i-level promises are received

5. Pj → Pi: PCSPj
((m, i), Pi, T ) (i > j ≥ 1)

If Pi does not receive i-level promises from Pi−1 . . . P1 in a timely manner, then Pi

recovers.

Complete all higher recursive levels

For a = i + 1 to n, Pi does the following:

6.1. Pi → Pa: PCSPi
((m, a − 1), Pa, T )

6.2. Pj → Pi: PCSPj
((m, a), Pi, T ) (a ≥ j > i)

If Pi does not receive a-level promises from Pa . . . Pi+1 in a timely manner, then

Pi recovers.

6.3. Pi → Pj : PCSPi
((m, a), Pj , T ) (i > j ≥ 1)

6.4. Pj → Pi: PCSPj
((m, a), Pi, T ) (i > j ≥ 1)

If Pi does not receive a-level promises from Pi−1 . . . P1 in a timely manner, then

Pi recovers.

6.5. Pi → Pj : PCSPi
((m, a), Pj , T ) (a ≥ j > i)

Wait for signatures and (n+1)-level promises from higher-numbered signers

7. Pj → Pi: PCSPj
((m, n + 1), Pi, T ), SPj

(m, 1) (n ≥ j > i)

If Pi does not receive signatures and (n+1)-level promises from Pn . . . Pi+1 in a
timely manner, then Pi recovers.

Send signatures and (n+1)-level promises to signers

8. Pi → Pj : PCSPi
((m, n + 1), Pj , T ), SPi

(m, 1) (j �= i)

Wait for signatures from lower-numbered signers

9. Pj → Pi: PCSPj
((m, n + 1), Pi, T ), SPj

(m, 1) (i > j ≥ 1)

If Pi does not receive signatures and (n+1)-level promises from Pi−1 . . . P1 in a
timely manner, then Pi recovers.
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Abort protocol. T maintains two sets, S(m) and F (m), that are used
by T to make decisions when a signer contacts T . These sets are cre-
ated when T is contacted for the first time for m and are initialized
to be empty. The set S(m) contains the indices of all signers that
have contacted T and received an abort token from T in response. The
intuitive meaning of the set F (m) is not clearly stated in (Garay and
MacKenzie, 1999), but it contains some additional information that T
uses in deciding when to overturn an abort decision that T has taken
before.

The details of the abort protocol are given in table 2. Mainly, if T is
contacted with a request to abort, then T checks its database. If this
is the first request or if the protocol has not already been recovered,
T sends back an abort token and updates the sets S(m) and F (m). If
the protocol has already been successfully recovered, T sends back a
signed contract.

Table 2 GM multi-party contract-signing protocol—Abort for Pi

The first time T is contacted for contract m (either abort or recovery), T initializes
S(m) and F (m) to ∅ and validated(m) to false.

1. Pi → T: SPi
(m, Pi, (P1, . . . , Pn), abort)

if not validated(m) then

if S(m) = ∅ then
T stores ST (SPi

(m, Pi, (P1, . . . , Pn), abort));
S(m) = S(m) ∪ {i};

if i is larger than the maximum index in S(m) then

T clears F (m)

2. T → Pi: ST (SPj
(m, Pj , (P1, . . . , Pn), abort), ST (m, S(m), abort))

where ST (SPj
(m, Pj , (P1, . . . , Pn), abort)) corresponds to the stored abort

token

else (validated(m)=true)

3. T → Pi: {SPj
((m, kj))}j∈{1,...,n}\{i}

where kj is the level of the promise from Pj that was converted to a

universally-verifiable signature during the recovery protocol.

Recovery protocol. The details of the recovery protocol are given in
table 3. For Pi to recover, it sends the message

SPi({PCSPj ((m, kj), Pi, T )}j∈{1,...,n}\{i}, SPi((m, 1)))

where

− if j > i, kj is the maximum level of a promise received from Pj on
m,
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− if j < i, kj is the maximum level of promises received from all
signers Pj′ , with j′ < i, i.e., the min-max of the level of promises
from signers with lower index. (E.g., if the maximum level of the
promises received by P4 from P3 and P2 was 6, and the maximum
level received by P4 from P1 was 5, then it would send the 5-level
promises for P1, P2 and P3.)

If T is contacted with a request to recover, then T checks its database.
If this is the first request for m or if the protocol has already been
recovered, T replies with a signed contract which it obtains by convert-
ing the promises into conventional digital signatures. Otherwise, if the
protocol has already been aborted, T must decide whether to maintain
the abort or to overturn it. Overturning of the abort is necessary in
order to maintain fairness. Indeed, consider the scenario in which a
dishonest Pn−1 contacts T with an abort request, receives an abort
token and dishonestly continues the protocol. After the n-levels are
completed, Pn sends its signature to others and waits for signatures
from other signers. If Pn−1 does not send back its signature, then Pn

will be forced to contact T with a request to recover. Now, T must
overturn its previous abort, otherwise Pn will not receive the signature
of Pn−1. The decision whether to overturn is based on the contents of
the sets S(m) and F (m), as described in table 3.

2.2. BW multi-party contract-signing protocol

The protocol allows n (n ≥ 2) participants or signers, say P1, . . . , Pn,
to exchange signatures with the help of a trusted party T on a prea-
greed contract text m. In our description, we suppose n− 1 potentially
dishonest signers. The original protocol is actually parameterized with
respect to a threshold t, the maximum number of possibly dishonest
signers. In our analysis however we assume the worst possible scenario
for an honest signer, namely that all the other signers are dishonest
(i.e., t is n− 1). We assume the same hypotheses on the network as for
the GM protocol.

The protocol consists of two subprotocols: main and recovery. Usu-
ally signers try to achieve the exchange by executing the main subpro-
tocol. They contact T using the recovery subprotocol when they think
something is amiss.

Main protocol. The main protocol for each signer Pi is given in table 4.
The protocol is symmetric for each signer and is composed of n + 1
rounds1. In each round, each signer sends a promise to other signers.

1 In (Baum-Waidner and Waidner, 2000), the protocol has t+ 2 rounds.
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Table 3 GM multi-party contract-signing protocol—Recovery for Pi

The first time T is contacted for contract m (either abort or recovery), T initializes
S(m) and F (m) to ∅ and validated(m) to false.

1. Pi → T: SPi
({PCSPj

((m, kj), Pi, T )}j∈{1,...,n}\{i}, SPi
((m, 1)))

if i ∈ S(m) then

T ignores the message

else if validated(m) then

2. T → Pi: {SPj
((m, kj))}j∈{1,...,n}\{i}

where kj is the level of the promise from Pj that was converted to a

universally-verifiable signature.

else if S(m) = ∅ then

validated(m):=true

3. T → Pi: {SPj
((m, kj))}j∈{1,...,n}\{i}

else (validated(m)=false ∧ S(m) �= ∅)
if i �∈ F (m) then

if for any � ∈ S(m) there is a j ∈ S(m) such that j > k� then

S(m) := S(m) ∪ {i}
let a be the maximum value in S(m)

if a > i then ∀j, such that kj = a − 1 · F (m) := F (m) ∪ {j}
else F (m) := ∅
4.1.1. T →Pi: ST (SPj

(m, Pj , (P1, . . . , Pn), abort), ST (m, S(m), abort))

where ST (SPj
(m, Pj , (P1, . . . , Pn), abort)) corresponds to the

stored abort token

else

validated(m):=true

4.1.2. T → Pi: {SPj
((m, kj))}j∈{1,...,n}\{i}

else (i ∈ F (m))
let a be the maximum value in S(m)

if (∀j, such that i < j ≤ a · kj < a) ∧ (∀j < i · kj ≥ a) then

validated(m):=true

4.2.1. T → Pi: {SPj
((m, kj))}j∈{1,...,n}\{i}

else

S(m) := S(m) ∪ {i}
if a > i then ∀j, kj = a − 1 · F (m) := F (m) ∪ {j}
if a = i then F (m) := ∅
4.2.2. T→Pi: ST (SPj

(m, Pj , (P1, . . . , Pn), abort), ST (m, S(m), abort))

where ST (SPj
(m, Pj , (P1, . . . , Pn), abort)) corresponds to the

stored abort token
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Table 4 BW multi-party contract signing protocol—Main for Pi

r := 1

1. Pi → Pj : m1,i = SPi
(m, 1, prev round ok)(j �= i)

2. Pj → Pi: m1,j = SPj
(m, 1, prev round ok) (j �= i)

if Pi times out then

recovery(1)

else

Pi computes vectors M1,i := (m1,1, . . . , m1,n) and X1,i := M1,i

for r := 2 to n + 1 do
3. Pi → Pj : mr,i = SPi

(Mr−1,i, r, vec ok), SPi
(m, r, prev round ok)(i �= j)

4. Pj → Pi: mr,j = SPj
(Mr−1,j , r, vec ok), SPj

(m, r, prev round ok) (j �= i)

if Pi times out then

recovery(r)

else

Pi computes vectors

Mr,i := (SP1 (m, r, prev round ok), . . . , SPn(m, r, prev round ok))

and

Xr,i := (SP1(Mr−1,i, r, vec ok), . . . , SPn(Mr−1,i, r, vec ok))

The level of the promise is increased in each round, and considered as
a signed contract once the round number equals n + 1. The promise
is implemented using a universally-verifiable digital signature which
includes the history of all previously received promises, through the
vectors M and X, as defined in table 4. If any expected message is not
received, Pi can decide to launch a recovery protocol.

Recovery Protocol The details of the recovery protocol are given in
table 5. If the recovery request is launched in the first round, i.e., Pi did
not receive a message from all the signers, the recovery request consists
of the first level promise of Pi. Otherwise, if r > 1, the recovery request
contains, via the vectorXr−1,i (see the main subprotocol in table 4), the
set of received messages until round r− 1, including the r− 1 promises
from all the other signers.
T maintains a variable, recovered(m), that indicates whether the

given contract has been successfully recovered or not. It also maintains
a set con(m), containing the indices of the signers that contacted T
for m, and a set abort set(m) containing the indices of the signers for
whom T aborted the protocol.
T ignores a recovery request from a signer if the signer has contacted

T in the past. Otherwise, it checks whether the contract has already
been successfully recovered or not. A successful recovery is always main-
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Formal analysis of multi-party contract signing 13

Table 5 BW multi-party contract signing protocol—Recovery for Pi

The first time T is contacted for contract m, T initializes con(m) and abort set(m)
to ∅ and recovered(m) to false.

1. Pi → T: resolver,i

where

resolver,i =


(1, i, SPi

(m1,i, resolve)) if r = 1
(r, i, SPi

(Xr−1,i, resolve), Xr−1,i, Mr−2,i) otherwise

and
M0,i = nil

if i ∈ con(m) then

T ignores the message

else if recovered(m) then

con(m):=con(m)∪{i}
2. T → Pi: signedr,i

where signedr,i = first signed

else (¬recovered(m))

if r = 1 then
abort set(m):=abort set(m) ∪{(r, i)}
con(m):=con(m)∪{i}
3. T → Pi: abortedr,i

where abortedr,i = ST (m, r, i, aborted)

else (r > 1)
if ∀(s, k) ∈ abort set(m) · s < r − 1 then

if con(m)=∅ then first signed:=(resolver,i, ST (m, r, i, recovered))

recovered(m):=true

con(m):=con(m)∪{i}
4. T → Pi: signedr,i

where signedr,i = first signed

else

abort set(m):=abort set(m) ∪{(r, i)}
con(m):=con(m)∪{i}
5. T → Pi: abortedr,i

where abortedr,i = ST (m, r, i, aborted)

tained. Otherwise, there are two cases. If the recovery request is sent
in the first round, T must abort the protocol, as the request does not
contain a proof that all signers actually started the protocol. If the
recovery request is sent during any later round, say r, then T checks
if all the requests that were aborted previously occurred at least two
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14 Chadha, Kremer and Scedrov

rounds before. If so, T can be sure that all the issued abort tokens
were sent to signers who dishonestly continued the main protocol. This
is because the recovery request contains r − 1 promises from all these
signers, which they are not allowed to send if they contacted T in
round r−2 or before. Hence, the previous abort decision is overturned.
Otherwise, T replies with an abort token.

3. Model

In this section, we discuss modeling of the protocols, and specification of
the desired security properties. We begin by describing a game-variant
of Kripke structures used to model the protocols, and a branching time
temporal logic used to model the desired security guarantees.

3.1. ATS, ATL and Mocha

The desired properties of contract signing are easily described using
games, and hence we chose a game-variant of Kripke structures, al-
ternating transition systems (ATS) (Alur et al., 1997), to model the
protocols. Alternating-time temporal logic (ATL) (Alur et al., 1997), is
used to reason about alternating transition systems. We use ATL to
express the protocol properties of the contract-signing protocols.

Alternating transition systems. Intuitively, an ATS is a Kripke struc-
ture with additional information about players.

Definition 1. An alternating transition system is a 6-tuple

S = 〈Π,Σ, Q,Q0, π, δ〉

with the following components:

− Π is a finite set of propositions.

− Σ is a finite set of players.

− Q is a finite set of states.

− Q0 ⊆ Q is a set of initial states.

− The labeling function π : Q → 2Π maps a state to a set of
propositions.
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Formal analysis of multi-party contract signing 15

− The game transition function δ : Q × Σ → 22Q \ {∅} maps a
state and a player to a nonempty set of choices, where each choice
is a set of possible next states. Furthermore, if Σ = {a1, . . . , an},
then for every state q ∈ Q and each possible Q1, . . . , Qn where
Qi ∈ δ(q, ai), Q1 ∩ . . . ∩Qn is a singleton.

Definition 2. For two states q and q′ and a player a, we say that q′ is
an a-successor of q if there exists a set Q′ ∈ δ(q, a) such that q′ ∈ Q′.

We denote by succ(q, a) the set of a-successors of q.

Definition 3. For two states q and q′, we say that q′ is a successor of
q if for all players a ∈ Σ, we have q′ ∈ succ(q, a).

Thus, q′ is a successor of q if and only if whenever the system S is in
state q, the players in Σ can cooperate so that q′ will be the next state.

Definition 4. A computation of S is an infinite sequence λ = q0q1q2 . . .
of states such that for all positions i ≥ 0, the state qi+1 is a successor
of the state qi.

We refer to a computation starting at state q as a q-computation. For
a computation λ and a position i ≥ 0, we use λ[i], λ[0, i], and λ[i,∞]
to denote the i-th state in λ, the finite prefix q0q1 . . . qi of λ, and the
infinite suffix qiqi+1 . . . of λ, respectively.

Alternating-time temporal logic. The Alternating-time Temporal Logic
(Alur et al., 1997) (ATL for short) is defined with respect to a finite set
Π of propositions and a finite set Σ of players.

Definition 5. Given a finite set Π of propositions, and a finite set Σ
of players, an ATL formula is one of the following:

− p, for propositions p ∈ Π.

− ¬ϕ or ϕ1 ∨ ϕ2, where ϕ, ϕ1, and ϕ2 are ATL formulae.

− 〈〈A〉〉 �ϕ, 〈〈A〉〉�ϕ, or 〈〈A〉〉ϕ1 Uϕ2, where A ⊆ Σ is a set of players,
and ϕ, ϕ1, and ϕ2 are ATL formulae.

The operator 〈〈 〉〉 is a path quantifier, and � (“next”), � (“always”),
and U (“until”) are temporal operators. ATL formulae are interpreted
over the states of a given ATS, say S, that has the same propositions
and players. The labeling of the states of S with propositions is used to
evaluate the atomic formulae of ATL. The logical connectives ¬ and ∨
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16 Chadha, Kremer and Scedrov

have the standard interpretation. To give an idea of how to evaluate a
formula of the form 〈〈A〉〉ψ at a state q of S, consider the following two-
player game between a protagonist and an antagonist starting in q. The
game proceeds in an infinite sequence of steps, and after each step, the
position of the game is a state of S. Consider the game in some position
u. In order to determine the next state, first the protagonist chooses
for every player a ∈ A, a set Qa ∈ δ(u, a). Then, the antagonist chooses
a successor (with respect to definition 3) v of u such that v ∈ ∩a∈AQa,
and the position of the game is updated to v. The protagonist wins
the game if the resulting computation satisfies the subformula ψ, read
as a linear temporal formula whose outermost operator is �, �, or U .
The ATL formula 〈〈A〉〉ψ holds at the state q if the protagonist has a
winning strategy in this game. For those familiar with branching time
temporal logics, the parameterized path quantifier 〈〈A〉〉 can be seen as
a generalization of the path quantifiers of the computation tree logic
(CTL): the existential path quantifier ∃ corresponds to 〈〈Σ〉〉 and the
universal path quantifier ∀ corresponds to 〈〈∅〉〉.

In order to give a formal definition of the semantics of ATL, we first
define the notion of strategies. Please note that in the definition, given
a set Q of states, Q∗ is the set of all finite (possibly empty) sequence
of states in Q. Q+ is the set of all non-empty finite sequence of states.

Definition 6. Consider an ATS S = 〈Π,Σ, Q,Q0, π, δ〉. A strategy for
a player a ∈ Σ is a mapping fa : Q+ → 2Q such that for all λ ∈ Q∗ and
all q ∈ Q, we have fa(λ · q) ∈ δ(q, a).

For a set of players A ⊆ Σ, a strategy function FA = {fa|a ∈ A} is
a set of strategies, one for each player in A.

Thus, the strategy fa maps each finite prefix λ · q of a computation
to a set in δ(q, a) and induces a set of computations that player a
can enforce. The strategy function FA induces a set of computations
that the set of players A can collaboratively enforce. Given a state q,
and a strategy function FA, we define the outcomes of FA from q to
be the set out(q, FA) of all q-computations that the players in A can
enforce by following their strategies in FA. More precisely, we say that
a computation λ = q0, q1, q2, . . . is in out(q, FA) if q0 = q, and for all
positions i ≥ 0, the state qi+1 is a successor of qi satisfying qi+1 ∈⋂

fa∈FA
fa(λ[0, i]).

We are now ready to define the semantics of ATL. We write S, q |= ϕ
(“state q satisfies formula ϕ in the structure S”) to indicate that the
formula ϕ holds at state q of S.

Definition 7. Given an ATS, S = 〈Π,Σ, Q,Q0, π, δ〉, and ATL formu-
lae ϕ, ϕ1 and ϕ2 over propositions in Π and players in Σ. The relation
|= for all q ∈ Q is defined inductively as follows:
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− For p ∈ Π, we have S, q |= p iff p ∈ π(q).

− S, q |= ¬ϕ iff S, q |= ϕ.

− S, q |= ϕ1 ∨ ϕ2 iff S, q |= ϕ1 or S, q |= ϕ2.

− S, q |= 〈〈A〉〉 �ϕ iff there exists a strategy function FA, such that
for all computations λ ∈ out(q, FA), we have S, λ[1] |= ϕ.

− S, q |= 〈〈A〉〉�ϕ iff there exists a strategy function FA, such that
for all computations λ ∈ out(q, FA) and all positions i ≥ 0, we
have S, λ[i] |= ϕ.

− S, q |= 〈〈A〉〉ϕ1 Uϕ2 iff there exists a strategy function FA, such
that for all computations λ ∈ out(q, FA) there exists a position
i ≥ 0 (depending on λ) such that S, λ[i] |= ϕ2 and for all positions
0 ≤ j < i, we have S, λ[j] |= ϕ1.

When S is clear from the context we omit it and write q |= ϕ.
Sometimes we write 〈〈a1, . . . , an〉〉 instead of 〈〈{a1, . . . , an}〉〉. Additional
boolean connectives, ∧,→,↔ are defined from ¬ and ∨ in the usual
manner. As in CTL, we write 〈〈A〉〉�ϕ for 〈〈A〉〉true Uϕ.

Please note that in the special case of ∀�ϕ ≡ 〈〈∅〉〉�ϕ, the definition
of |= tells us that S, q |= ∀�ϕ if and only if for all q-computations λ,
and for all positions i ≥ 0, we have S, λ[i] |= ϕ. Similarly, S, q |= ∃�ϕ
if and only if there is some q-computation λ and some position i ≥ 0,
such that S, λ[i] |= ϕ. As in CTL, we have the duality between ∀� and
∃�: S, q |= ¬∀�ϕ if and only if S, q |= ∃�¬ϕ. Note however that in
ATL S, q |= 〈〈A〉〉�ϕ ⇒ S, q |= ¬〈〈Σ \ A〉〉�¬ϕ and S, q |= 〈〈A〉〉�ϕ ⇒
S, q |= ¬〈〈Σ \ A〉〉�¬ϕ while the converse statements are not true in
general.

We now illustrate the expressive power of ATL. Consider the set of
players Σ = {a, b, c} and the following formulae with their verbal (and
intuitive) reading:

− 〈〈a〉〉�p, player a has a strategy against players b and c to eventually
reach a state where the proposition p is true;

− ¬〈〈b, c〉〉�p, the coalition of players b and c does not have a strategy
against a such that the proposition p remains true forever;

− 〈〈a, b〉〉 �(p∧¬〈〈c〉〉�p), a and b can cooperate so that the next state
satisfies p and from there c does not have a strategy to impose p
forever.
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18 Chadha, Kremer and Scedrov

Those three formulae are a good illustration of the great expressive
power of ATL to express cooperative as well as adversarial behaviors
between players.

We now introduce a proposition stating several facts about ATL.
These facts are merely of technical interest and are introduced because
they will be used in some proofs in section 3.3. While stating the
proposition, we shall use an abbreviation familiar from logic. In order
to say that P is true whenever P1, . . . Pn is true, we shall write:

P1 P2 . . . Pn

P

Proposition 1. For any ATS S and any state q of S we have the
following.

S, q |= ∀�ϕ1 ∧ ∀�ϕ2

S, q |= ∀�(ϕ1 ∧ ϕ2)
(1)

S, q |= 〈〈A〉〉�ϕ1 ∨ 〈〈A〉〉�ϕ2

S, q |= 〈〈A〉〉�(ϕ1 ∨ ϕ2)
(2)

S, q |= ∀�((φ ∧ ϕ1) → ∀�ψ1) S, q |= ∀�((φ ∧ ϕ2) → ∀�ψ2)

S, q |= ∀�((φ ∧ (ϕ1 ∨ ϕ2) → ∀�(ψ1 ∨ ψ2)
(3)

S, q |= ∀�(ϕ1 → ϕ2) S, q |= 〈〈A〉〉�(ϕ1 ∧ ϕ3)

S, q |= 〈〈A〉〉�(ϕ2 ∧ ϕ3)
(4)

S, q |= ∀�(ϕ1 → ∀�ψ1) S, q |= ∀�(ϕ2 → ∀�ψ2)

S, q |= ∀�((ϕ1 ∧ ϕ2) → ∀�(ψ1 ∧ ψ2))
(5)

S, q |= ∀�(ϕ1 → ∀�ϕ1) S, q |= ∀�(ϕ1 → (ϕ2 → ϕ3)) S, q |= ∀�(〈〈A〉〉�ϕ2)

S, q |= ∀�(ϕ1 → 〈〈A〉〉�ϕ3)
(6)

Proof. We shall use the definition of |= to prove the above.

1. We have that S, q |= ∀�ϕ1 ∧ ∀�ϕ2, i.e., S, q |= ∀�ϕ1 and S, q |=
∀�ϕ2. Let λ be an arbitrary q-computation of S, and i ≥ 0 be
an arbitrary position. Since S, q |= ∀�ϕ1, we have S, λ[i] |= ϕ1.
Similarly, we also have S, λ[i] |= ϕ2. Hence, we get S, λ[i] |= ϕ1∧ϕ2.
Since λ is an arbitrary q-computation, and i an arbitrary position,
we get S, q |= ∀�(ϕ1 ∧ ϕ2).

2. We have that S, q |= 〈〈A〉〉�ϕ1 ∨ 〈〈A〉〉�ϕ2, i.e., S, q |= 〈〈A〉〉�ϕ1

or S, q |= 〈〈A〉〉�ϕ2. Suppose S, q |= 〈〈A〉〉�ϕ1. Then there exists a
strategy function FA, such that for all computation λ ∈ out(q, FA),
and for every position i ≥ 0, S, λ[i] |= ϕ1, and hence S, λ[i] |=
ϕ1 ∨ ϕ2. Therefore, we obtain S, q |= 〈〈A〉〉�(ϕ1 ∨ ϕ2) in this case.
Similarly, if S, q |= 〈〈A〉〉�ϕ2, we shall obtain S, q |= 〈〈A〉〉�(ϕ1∨ϕ2).
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3. We have that

S, q |= ∀�((φ ∧ ϕ1) → ∀�ψ1) ∧ ∀�((φ ∧ ϕ2) → ∀�ψ2)
⇒ S, q |= ∀�(((φ ∧ ϕ1) → ∀�ψ1) ∧ ((φ ∧ ϕ2) → ∀�ψ2))

by rule (1)
⇒ S, q |= ∀�(((φ ∧ ϕ1) ∨ (φ ∧ ϕ2)) → (∀�ψ1 ∨ ∀�ψ2))

by the boolean law (p→ q) ∧ (r → s) ⇒ (p ∨ r) → (q ∨ s)
≡ S, q |= ∀�((φ ∧ (ϕ1 ∨ ϕ2)) → (∀�ψ1 ∨ ∀�ψ2))

by the boolean law(p ∧ q) ∨ (p ∧ r) ≡ p ∧ (q ∨ r)
⇒ S, q |= ∀�((φ ∧ (ϕ1 ∨ ϕ2)) → ∀�(ψ1 ∨ ψ2))

by rule (2)

4. We have that S, q |= ∀�(ϕ1 → ϕ2). Hence for every q-computation
λ of S, for every position i ≥ 0, S, λ[i] |= ϕ1 → ϕ2.

Moreover, we also have S, q |= 〈〈A〉〉�(ϕ1 ∧ ϕ3). Therefore, there
is a strategy function FA, such that for all computations λA ∈
out(q, FA), there exists a position j ≥ 0 (depending on λA) with
S, λA[j] |= ϕ1 ∧ ϕ3.

Now pick λ′ ∈ out(q, FA), and fix it. There is some k ≥ 0 such that
S, λ′[k] |= ϕ1 ∧ϕ3. That is S, λ′[k] |= ϕ1 and S, λ′[k] |= ϕ3. We also
have that S, λ′[k] |= ϕ1 → ϕ2. Hence, we get that S, λ′[k] |= ϕ2∧ϕ3.
Since λ′ is an arbitrary computation in out(q, FA), we can conclude
that S, q |= 〈〈A〉〉�(ϕ2 ∧ ϕ3).

5. We have that

S, q |= ∀�(ϕ1 → ∀�ψ1) ∧ ∀�(ϕ2 → ∀�ψ2)
⇒ S, q |= ∀�((ϕ1 → ∀�ψ1) ∧ (ϕ2 → ∀�ψ2))

by rule (1)
⇒ S, q |= ∀�((ϕ1 ∧ ϕ2) → (∀�ψ1 ∧ ∀�ψ2))

by the boolean law (p→ q) ∧ (r → s) ⇒ (p ∧ r) → (q ∧ s)
⇒ S, q |= ∀�((ϕ1 ∧ ϕ2) → ∀�(ψ1 ∧ ψ2))

by rule (1)

6. In order to show that S, q |= ∀�(ϕ1 → 〈〈A〉〉�ϕ3), we need to show
that for all q-computations λ and positions i ≥ 0, if S, λ[i] |= ϕ1,
then S, λ[i] |= 〈〈A〉〉�ϕ3. Pick an arbitrary q-computation λ and fix
it. Also pick an arbitrary position i and fix it. Assume that S, λ[i] |=
ϕ1. We need to show that S, λ[i] |= ∀�〈〈A〉〉�ϕ3. By assumption
we have that S, q |= ∀�(ϕ1 → ∀�ϕ1). Since S, λ[i] |= ϕ1, we get
S, λ[i] |= ∀�ϕ1.

By assumption, we also have S, q |= ∀�〈〈A〉〉�ϕ2. Hence, there
exists a strategy function FA, such that for every computation
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λA ∈ out(λ[i], FA), there exists a position k ≥ 0 (depending on
λA), such that S, λA[k] |= ϕ2. Pick an arbitrary λ′ ∈ out(λ[i], FA)
and fix it. Let l be the position such that S, λ′[l] |= ϕ2.

Note that λ′ is a computation beginning with λ[i]. By the above
paragraph, we have S, λ[i] |= ∀�ϕ1. Therefore, we also obtain that
S, λ′[l] |= ϕ1.

Note that λ′[0] = λ[i]. Consider the q-computation λ1 constructed
by appending the computation λ′ to λ[0..i]. In other words, let

λ1[j] = λ[j] j ≤ i
λ1[j] = λ′[j − i] j ≥ i

λ1 is a q-computation. We have by assumption S, q |= ∀�(ϕ1 →
(ϕ2 → ϕ3)). Hence for each position j ≥ 0, S, λ1[j] |= ϕ1 →
(ϕ2 → ϕ3). In particular, S, λ1[i + l] |= ϕ1 → (ϕ2 → ϕ3). But
λ1[i + l] = λ′[l]. Hence S, λ′[l] |= ϕ1 → (ϕ2 → ϕ3). By the above
two paragraphs S, λ′[l] |= ϕ1 and S, λ′[l] |= ϕ2 . Therefore, we get
S, λ′[l] |= ϕ3.

Therefore, given any computation λA ∈ out(λ[i], FA), there is a
position k such that S, λA[k] |= ϕ3. Hence, we obtain S, λ[i] |=
〈〈A〉〉�ϕ3 as required.

�

Game guarded command language. Instead of modeling protocols di-
rectly with ATS we use a more user-oriented notation: a guarded com-
mand language a la Dijkstra. The details about the syntax and seman-
tics of this language (given in terms of ATS) can be found in (Henzinger
et al., 2000). Intuitively, each player a ∈ Σ disposes of a set of guarded
commands of the form guardξ → updateξ. A computation-step is de-
fined as follows: each player a ∈ Σ chooses one of its commands whose
boolean guard evaluates to true, and the next state is obtained by tak-
ing the conjunction of the effects of each update part of the commands
selected by the players. Given an ATS described in terms of guarded
commands, the finite state tool Mocha automates the model-checking
of ATL formulae over the specified ATS.

3.2. Modeling protocols

Unlike the classical security protocols aiming at secrecy and authenti-
cation, optimistic contract-signing protocols usually consist of subpro-
tocols that can be invoked at specified moments. Running a protocol
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at a time not foreseen by the designer, may have unexpected side-
effects. This may be used by a signer to gain an advantage over other
signers. We believe that such concurrency issues are a major source
of problems. Therefore, and since the high number of messages would
create a serious state explosion, we only analyze the structure of the
protocols and concentrate only on one single protocol instance. We now
discuss our model in detail.

The protocol instance is modeled as an ATS and each protocol par-
ticipant is modeled as a player in the ATS using the above introduced
guarded command language. Besides, the branching aspect, another
notable difference with more classical secrecy and authentication proto-
cols, is that contract-signing protocols must be secure against malicious
signer, rather than an external intruder. In order to model this we
have two processes for each signer, one describing its honest behavior
and the other the dishonest one. Communication is modeled using
shared variables. Each protocol message is modeled using a boolean
variable, initialized to false and set to true when it is sent. Sending
of a message is modeled using guarded commands, where the guard
depends on previously sent out messages. When modeling the honest
behavior of a participant, we ensure that a given message is sent out
only when specified by the protocol. In contrary, the guards are relaxed
in the malicious version of the signer so that each message can be
sent out, as soon as possible, i.e., as soon as all messages needed to
compose the given message are received. We do not explicitly model
any cryptographic primitives, but only the fact that protocol messages
can be sent out of order. Hence, a dishonest signer can send messages
out of order and continue the protocol, even if it is supposed to stop.
We manually decide which messages must be known in order to send
some other message. Moreover, the communication between any two
signers is assumed to be on private channels and we do not model the
possibility to spy other channels. The trusted party is modeled to be
always honest. For each pair of signers Pi and Pj , we use a proposition
Pi.SPj (m) to model that the signer Pi has obtained Pj ’s signature.
Once Pi.SPj (m) is set to true, it never changes it value, i.e., we assume
that Pi continues to hold Pj ’s signature once Pi obtains it. For each
signer Pi, we also use a special proposition Pi stop to model that the
entity Pi has quit the protocol. Once Pi stop has been set to true, Pi

would not be able to change any of its variables as ¬Pi stop is present
in each of its guards.

As an example, consider the short extract of the modeling of the
three-party GM protocol depicted in figure 1. In the extract, the integer
variable Pr i j L models the promises that Pi has sent to Pj, and
Pr i j L = k means that Pi has sent out up to k-level promises to Pj .
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(For efficiency reasons, we use the logarithmic encoding of a ranged
integer variable, rather than having one boolean variable for each level
of promise). In the extract, the first rule of honest P1 says that P1 may
quit the protocol, if it has not contacted the trusted party, and has
neither received nor sent any promises. The corresponding modeling of
dishonest behavior of P1 states that P1 may quit the protocol at any
moment. The second rule of honest P1 gives the exact condition when
the first level promise has to be sent to P2. The corresponding dishonest
rule, merely requires that P1 has not quit the protocol before sending
the promise.

Extract of honest modeling of P1 for the three-party GM protocol:

[] ~P1_stop & ~P1_contacted_T & Pr_1_3_L=0 & Pr_1_2_L=0 &
~( Pr_3_1_L>0 & Pr_2_1_L>0 ) -> P1_stop’:=true

[] ~P1_stop & ~P1_contacted_T & Pr_1_3_L=0 & Pr_1_2_L=0 &
Pr_2_1_L>0 & Pr_3_1_L>0 -> Pr_1_2_L’:=1

The corresponding actions of a dishonest modeling:

[] ~P1_stop -> P1_stop’:=true
[] ~P1_stop & Pr_1_2_L<1 -> Pr_1_2_L’:=1

Figure 1.: Extract of the three-party GM protocol modeling

As we are unable to verify parametric systems with Mocha, we
simplify our task and verify the protocols only for a given number n of
signers. In order to avoid encoding each instance of the protocol using
guarded commands, we have written a dedicated C++ program for
each protocol which takes the number n of signers as a parameter and
generates the protocol specification. Although our model is restricted
with regard to several aspects, the model seems to be of interest as
several unknown anomalies have been revealed.

3.3. Modeling properties

The desired security guarantees are expressed using ATL. In this section
we discuss the modeling of fairness and timeliness. The modeling for
abuse-freeness shall be discussed when we present the analysis of GM in
section 4. Consider an instance of the protocol with n signers, which we
denote as P1, . . . , Pn. In the following, we assume that only one of the
signers, say P1 is honest, and the other dishonest signers are colluding
to cheat the honest signer.

A protocol is fair for an honest Pi, if at the end of the protocol,
either Pi receives signed contracts from all the other signers or it is not
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possible for any other signer to obtain Pi’s signed contract. One possible
ATL formula, henceforth referred to as StratFairi, for modeling this
says that if any signer receives Pi’s signed contract, then Pi has a
strategy to get the signed contracts from other signers:

StratFairi ≡ ∀�((
∨

1≤j �=i≤n

Pj .SPi
(m)) → 〈〈Pi〉〉�(

∧

1≤j �=i≤n

Pi.SPj
(m))) (1)

where Pi.SPj (m) denotes that player Pi received Pj ’s signature on the
contract text m.

It can of course be argued that Pi having a strategy to receive the
signed contracts is not a sound modeling of fairness: Pi may have this
strategy but if it is ignorant or if it mistakenly does not follow this
strategy, then the protocol may end in an unfair state. Therefore one
could require the following stronger property (henceforth referred to
as StrongFairi): in whatever way Pi resolves the remaining choices
specified by the protocol, Pi receives all the signed contract.

StrongFairi ≡ ∀�((
∨

1≤j �=i≤n

Pj .SPi
(m)) → ∀�(

∧

1≤j �=i≤n

Pi.SPj
(m))) (2)

In the same vein, a third weaker formulation (henceforth referred to as
WeakFairi) only requires that there exists a path where Pi receives
the signed contracts.

WeakFairi ≡ ∀�((
∨

1≤j �=i≤n

Pj .SPi
(m)) → ∃�(

∧

1≤j �=i≤n

Pi.SPj
(m))) (3)

We have that

StrongFairi ⇒ StratFairi ⇒ WeakFairi.

In (Chadha et al., 2004a), we concentrated on the last, weakest version
of fairness. As we demonstrated that fairness is violated even in this
weakest version, the other stronger versions are also violated.

One disadvantage with the above formulations of fairness is that
Mocha does not provide counter-examples for arbitrary ATL formu-
lae2. If a violation of fairness is found, we can use weaker formulae to
discover scenarios leading up to the violation. An error trace usually
speeds up the analysis considerably. Since Mocha does provide error
traces for invariant violations, it is interesting to consider yet another
formulation of the fairness property as an invariant. In (Shmatikov and
Mitchell, 2002), invariants have already been used to approximate fair-
ness. The idea is to consider only the states where an honest signer has

2
Mocha does not give counter-examples, because in general, counter-examples

cannot always be expressed as traces, even for CTL.

mpcs.tex; 27/10/2005; 10:09; p.23



24 Chadha, Kremer and Scedrov

stopped the protocol. We know that once it has stopped the protocol,
it cannot receive any new messages. Hence, in any state where Pi has
stopped the protocol (modeled by setting a special proposition Pi.stop
to true), fairness would require Pi to have the complete contract if some
Pj , j = i, has Pi’s contract.

The invariant formulation of fairness for Pi tests only those states
in which Pi has stopped the protocol, and is as follows.

InvFairi ≡ ∀�(Pi.stop→ ((
∨

1≤j �=i≤n

Pj .SPi
(m)) → (

∧

1≤j �=i≤n

Pi.SPj
(m))))

(4)
We denote this formulation of fairness as InvFairi. Indeed, this

formulation of fairness is weaker than the above formulations. In par-
ticular, we show that the formula WeakFairi implies InvFairi. Before
proceeding to the proof, please note that

∨
1≤j �=i≤n Pj .SPi(m) denotes

that at least one signer Pj , j = i, has obtained Pi’s contract. The
formula

∧
1≤j �=i≤n Pi.SPj (m) denotes that Pi has obtained contracts

of all the other signers. Keeping this in mind, we use the following
abbreviations for the rest of the section:

sig releasedi ≡
∨

1≤j �=i≤n Pj.SPi(m)
sig obtainedi ≡

∧
1≤j �=i≤n Pi.SPj (m)

In the proof, we shall also use the additional assumption (see sec-
tion (3.2)) that once Pi stops the protocol, he cannot change his vari-
ables anymore. In particular, if S is the ATS that models the protocol
for signers P1, . . . , Pn and q0 is any arbitrary initial state of S, we shall
assume that for each 1 ≤ i, j ≤ n, i = j:

S, q0 |= ∀�((Pi.stop ∧ ¬Pi.SPj
(m)) → ∀�¬Pi.SPj

(m)) (5)

This assumption can also be easily verified by Mocha, as a sanity check
of the specification. Using the above assumption and proposition 1, we
get the following proposition:

Proposition 2. If S is the ATS that models a contract signing protocol
for signers P1, . . . , Pn and q0 is an arbitrary initial state of S, then for
each 1 ≤ i ≤ n we have

S, q0 |= ∀�((Pi.stop ∧ ¬sig obtainedi) → ∀�¬sig obtainedi) (6)

Proof. For each 1 ≤ j ≤ n, i = j, we have by assumption (5) given
above that

S, q0 |= ∀�((Pi.stop ∧ ¬Pi.SPj (m)) → ∀�¬Pi.SPj (m))
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Hence, by applying rule (3) of proposition 1 n− 2 times, we get

S, q0 |= ∀�((Pi.stop∧(
∨

1≤j �=i≤n

¬Pi.SPj (m))) → ∀�
∨

1≤j �=i≤n

¬Pi.SPj (m))

The result is now obtained by realizing that
∨

1≤j �=i≤n ¬Pi.SPj (m) ≡
¬∧

1≤j �=i≤n Pi.SPj (m) ≡ ¬sig obtainedi. �

We are ready to prove that fairness in terms of the invariants is
weaker than other formulations:

Theorem 1. Let S be an ATS that models a contract-signing protocol
for signers P1, . . . , Pn and q0 be an arbitrary initial state of S. If S, qo |=
WeakFairi, then S, qo |= InvFairi.

Proof. We shall prove the theorem by contraposition. Assume that
S, qo |= InvFairi. We shall show that S, qo |= WeakFairi. Note
that S, qo |= InvFairi if and only if S, qo |= ¬InvFairi, and S, qo |=
WeakFairi if and only if S, qo |= ¬WeakFairi. Using the abbrevia-
tions sig releasedi and sig obtainedi, we have

WeakFairi ≡ ∀�(sig releasedi → ∃�sig obtainedi)
InvFairi ≡ ∀�(Pi.stop→ (sig releasedi → sig obtainedi))

≡ ∀�((Pi.stop ∧ sig releasedi) → sig obtainedi)

The last equivalence follows from the boolean law p → (q → r) ≡
(p ∧ q) → r. Hence, we have

¬InvFairi ≡ ¬(∀�((Pi.stop ∧ sig releasedi) → sig obtainedi))
≡ ∃�¬((Pi.stop ∧ sig releasedi) → sig obtainedi))
≡ ∃�(Pi.stop ∧ sig releasedi ∧ ¬sig obtainedi)
≡ ∃�((Pi.stop ∧ ¬sig obtainedi) ∧ sig releasedi)

The second equivalence follows from the duality of ∀� and ∃� (¬∀�ϕ ≡
∃�¬ϕ). The third equivalence follows from the boolean law ¬(p →
q) ≡ (p ∧ ¬q). The last equivalence is just a rearrangement of for-
mulas using commutativity of conjunction. Intuitively, the resulting
formula for ¬InvFairi says that a protocol is not fair for the signer
Pi, if there is a state in which some signer Pj , j = i, has Pi’s contract
(sig releasedi) and Pi has stopped (Pi.stop) the protocol without Pi

having the completed contract (sig obtainedi).
Now, by proposition 2, we have

S, qo |= ∀�((Pi.stop ∧ ¬sig obtainedi) → ∀�¬sig obtainedi).
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Also

S, q0 |= ¬InvFairi ≡ ∃�((Pi.stop ∧ ¬sig obtainedi) ∧ sig releasedi).

Therefore by rule (4) of proposition 1 (with A = Σ), we obtain

S, q0 |= ∃�(∀�¬sig obtainedi ∧ sig releasedi)
≡ ∃�(¬(∃�sig obtainedi) ∧ sig releasedi)
≡ ∃�¬(sig releasedi → ∃�sig obtainedi)
≡ ¬∀�(sig releasedi → ∃�sig obtainedi)
≡ ¬(WeakFairi)

The first equivalence above follows from duality of ∀� and ∃�.
The second equivalence is a consequence of the boolean law ¬q ∧ p ≡
¬(p → q). The third equivalence is again a consequence of the duality
of ∀� and ∃�, and the last equivalence is the definition of the formula
WeakFairi. Therefore, we have S, q0 |= ¬WeakFairi as required. �

We can also show by example that the fairness in terms of invariant
is strictly weaker than any of the above formulations. Consider the
following naive two-party protocol where P1 and P2 directly exchange
their signatures on the contractual text.

1. P1 → P2 : SP1(m)
2. P2 → P1 : SP2(m)

Assuming that the protocol specifies that P1 can only stop after it
receives P2’s signature on the contract, the protocol would not violate
the invariant InvFairi. This is simply because P1 will not stop until
it has received P2’s contract. On the other hand, the protocol would
violate all the other formulations of fairness. In order to see this consider
the scenario in which a dishonest P2 quits the protocol after receiving
P1’s contract and without sending P2’s contract. So P1 will be stuck
forever waiting for P2’s contract, and would have no further possible
moves. It can be easily seen that this scenario violates WeakFairi: P2

has P1’s signature, but P1 cannot get P2’s signature.
Contract-signing protocols are often designed to prevent situations

in which signers are waiting indefinitely. Informally, a protocol is said
to be timely if it is always possible for each signer to have some recourse
to prevent unbounded waiting. One possible formulation of timeliness,
henceforth referred to as WeakTimelyi, is that a protocol is timely
for a signer Pi, if for each reachable state there is a path in which Pi

has terminated:

WeakTimelyi ≡ ∀�(∃�Pi.stop)

mpcs.tex; 27/10/2005; 10:09; p.26



Formal analysis of multi-party contract signing 27

The naive protocol above does not respect this property for P1. As
explained before, a dishonest P2 could stop after having received the
P1’s contract. In all paths from this state, P1 will be stuck and cannot
stop.

A stronger formulation of timeliness could require that in every
possible state, Pi should have a strategy to get to a state in which
it has stopped executing the protocol:

StratTimelyi ≡ ∀�(〈〈Pi〉〉�Pi.stop)

Theorem 1 showed that the formulation of fairness in terms of invari-
ant is weaker than any of the other formulations of fairness. In presence
of timeliness, however, we can show that the formulation of fairness
in terms of invariants coincides with other formulations of fairness.
In particular, we shall show in Theorem 2 that if a protocol satisfies
WeakTimelyi then it satisfies the formula WeakFairi if and only
if it satisfies InvFairi. In Theorem 3, we will show that if a protocol
satisfies StratTimelyi then it satisfies StratFairi if and only if it
satisfies InvFairi.

In the proofs, we shall also use the additional assumption (see sec-
tion (3.2)) that once Pi obtains signature of Pj , then it continues to
hold that signature. If S is the ATS that models the protocol for signers
P1, . . . , Pn and q0 is any arbitrary initial state of S, we shall assume
that for each 1 ≤ i, j ≤ n, i = j:

S, q0 |= ∀�(Pi.SPj
(m) → ∀�Pi.SPj

(m)) (7)

Once again, this assumption can also be easily verified by Mocha, as
a sanity check of the specification. Using the above assumption and
proposition 1, we get the following proposition:

Proposition 3. If S is the ATS that models a contract signing protocol
for signers P1, . . . , Pn and q0 is an arbitrary initial state of S, then for
each 1 ≤ i ≤ n we have

S, q0 |= ∀�(sig releasedi → ∀�sig releasedi) (8)

Proof. For each 1 ≤ j ≤ n, i = j, we have by the assumption above:

S, q0 |= ∀�(Pj .SPi(m) → ∀�Pj .SPi(m))

Hence, by applying rule (5) of proposition 1 n− 2 times, we get

S, q0 |= ∀�(
∧

1≤j �=i≤n Pj.SPi(m) → ∀�
∧

1≤j �=i≤n Pj .SPi(m))

Since sig releasedi ≡ ∧
1≤j �=i≤n Pj .SPi(m), we obtain the desired re-

sult. �
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Theorem 2. Let S be an ATS that models a contract-signing pro-
tocol for signers P1, . . . , Pn and q0 be an arbitrary initial state of S.
If S, qo |= WeakTimelyi, then S, qo |= WeakFairi if and only if
S, qo |= InvFairi.

Proof. The ⇒ direction of the proof follows directly from theorem 1
and does not require timeliness. For the ⇐ direction, we need to prove
that

S, qo |= (WeakTimelyi ∧ InvFairi) ⇒ S, q0 |= WeakFairi

We have that

WeakTimelyi ∧ InvFairi

≡ ∀�(∃�Pi.stop) ∧ ∀�(Pi.stop→ (sig releasedi → sig obtainedi))
≡ ∀�(∃�Pi.stop) ∧ ∀�(sig releasedi → (Pi.stop→ sig obtainedi))

The latter equivalence is obtained from the boolean law p→ (q → r) ≡
q → (p→ r).

We have also proved above in proposition 3 that

S, q0 |= ∀�(sig releasedi → ∀�sig releasedi).

Hence, we obtain as a result of rule (6) of proposition 1 (with A = Σ)
that if S, q0 |= (WeakTimelyi ∧ InvFairi), then

S, q0 |= ∀�(sig releasedi → ∃�sig obtainedi) ≡ WeakFairi

Hence we have the desired result. �

Theorem 3. Let S be an ATS that models a contract-signing pro-
tocol for signers P1, . . . , Pn and q0 be an arbitrary initial state of S.
If S, qo |= StratTimelyi, then S, qo |= StratFairi if and only if
S, qo |= InvFairi.

Proof. As in the previous proof, the ⇒ direction of the proof follows
directly from theorem 1 and does not require timeliness. For the ⇐
direction, we need to prove that

S, qo |= (StratTimelyi ∧ InvFairi) ⇒ S, q0 |= StratFairi

We have that

StratTimelyi ∧ InvFairi

≡ ∀�(〈〈Pi〉〉�Pi.stop) ∧ ∀�(Pi.stop→ (sig releasedi → sig obtainedi))
≡ ∀�(〈〈Pi〉〉�Pi.stop) ∧ ∀�(sig releasedi → (Pi.stop→ sig obtainedi))

mpcs.tex; 27/10/2005; 10:09; p.28



Formal analysis of multi-party contract signing 29

The latter equivalence is obtained from the boolean law p→ (q → r) ≡
q → (p→ r).

We have also proved above in proposition 3 that

S, q0 |= ∀�(sig releasedi → ∀�sig releasedi).

Hence, we obtain as a result of rule (6) of proposition 1 that if S, q0 |=
(StratTimelyi ∧ InvFairi), then

S, q0 |= ∀�(sig releasedi → 〈〈Pi〉〉�sig obtainedi) ≡ StratFairi

Hence we have the desired result. �

Note that the formula StratTimelyi is a stronger condition than
WeakTimelyi, i.e., if a protocol satisfies StratTimelyi then it will
also satisfy WeakTimelyi. Using theorems 2 and 3, we therefore ob-
tain that if a protocol satisfies timeliness in terms of strategy, then
the three forms of fairness StratFairi, WeakFairi and InvFairi are
all equivalent. In our analysis, both the protocols that we analyzed
did indeed satisfy StratTimelyi. We then proceeded to check if the
protocols satisfied InvFairi. As we just noted above, this is equivalent
to checking if the protocols satisfied StratFairi and WeakFairi.

Please note that just as we had another version of fairness, i.e.,
StrongFairi, we could posit a stronger version of timeliness: in what-
ever state, every execution finally leads to a state of the protocol, where
an honest signer Pi has quit the protocol. Just as in Theorems 2 and
3, we could then show that if a protocol satisfies this strong version
of timeliness, then a protocol satisfies StrongFairi if and only if it
satisfies InvFairi. In our model, however, an honest signer does not
satisfy this strong version of timeliness. This is because in our model
we allow an honest signer to idle in every possible state. For the same
reason, StrongFairi does not hold in our model. We shall not consider
these versions of fairness and timeliness in our analysis. We are now
ready to present the results of analysis.

4. Analysis

We now discuss the results of our analysis of the two protocols. Our
analysis did not reveal any anomalies in the BW protocol, and hence
shall discuss this protocol briefly.
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4.1. Analysis of the BW protocol

We have verified the BW protocol with two and up to five signers for
timeliness and fairness. The model-checker Mocha did not detect any
flaw in these cases. The protocol is not intended to be abuse-free, and
hence we did not study the protocol for this property. In our opinion,
we found that the design of the BW protocol is much simpler than
the GM protocol. The decision to overturn an abort is based on the
following argument: T overturns only if it can infer that no previous
abort reply has been sent to a potentially honest principal. This seems
to ensure the robustness of the protocol. Note that we only analyzed
the structure of the protocol. Hence, our results only prove that the
protocol is correct in the given model.

4.2. Analysis of the GM protocol

We now report in more detail on our analysis of the GM contract-
signing protocol. The protocol has several peculiarities. The most no-
table one is that the protocol changes with the number of signers, e.g.,
the protocol specification of P1 differs when the value of n changes. The
number of protocol messages increases considerably with the number
of signers. For instance, if we have n = 3, the main protocol has 20
messages and there are 14 different recovery requests. When n = 4, the
corresponding numbers are 41 and 36. Moreover, the protocol is not
symmetric for the signers: the protocol specification for Pi is different
from that for Pj , for all i = j. For instance, when n = 4, P1 can launch
18 different recovery requests and P4 only 2.

As mentioned in section 3, we have written a dedicated C++ pro-
gram that takes the number of signers, n, as a parameter and generates
the protocol specification. Our analysis revealed problems with fairness,
when n is 4. Although, we did not discover any fairness problems when
n = 3, we did find an amusing problem with abuse-freeness. We did
not discover any problems with timeliness in the protocol. All these
anomalies are novel and the protocol was believed to be secure since it
was first published. We discuss our results in detail. The source codes of
our analysis of both protocols are also available at the following website
http://www.lsv.ens-cachan.fr/∼kremer/MPCS/.

Fairness. We analyzed the GM protocol for 3 and 4 signers, for both
fairness and timeliness. Our analysis did not reveal any flaws in time-
liness. As discussed in section 3, in presence of timeliness fairness can
be expressed as an invariant. The advantage of invariant checking is
that Mocha outputs an error-trace whenever an invariant is violated.
Moreover, invariant checking is more efficient.
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We did not discover any problems with fairness when n = 3. The
formulas representing fairness for P1, P2 and P3, introduced in section 3,
are validated by Mocha. However, as we use a restricted model and
consider single runs, we can only conclude that the protocol does not
present any structural weakness for n = 3. Indeed, if we relax the as-
sumption of the private channels, the anomaly presented by Shmatikov
and Mitchell in (Shmatikov and Mitchell, 2002) on the two-party GJM
protocol can be adapted to the multi-party version. In this scenario, a
malicious signer eavesdrops on the channel between the honest signer
and T , and succeeds in compromising fairness. With our present model-
ing, we do not find such flaws, as this requires to eavesdrop channels and
to decompose messages. The fix proposed by Shmatikov and Mitchell
applies to the multi-party protocol too. However, we should emphasize
that the authors of the GM protocol require the channels to T to be
private and hence this scenario does not represent a valid attack on the
protocol.

We discovered several scenarios that compromised fairness when
n = 4. The first scenario was discovered by hand, when we found an
error in the proof of correctness given in the original paper (Garay and
MacKenzie, 1999). A detailed analysis using Mocha detected seven
other scenarios. An analysis of these revealed that the proof also did
not cover a case. In each scenario, an honest signer is cheated by the
coalition of three malicious signers. These scenarios follow the general
outline:

1. A dishonest signer contacts the trusted party, T , at the beginning
of the protocol, gets an abort token, and dishonestly continues
participating in the main protocol.

2. A second dishonest signer tries to recover at some later point. It
does not succeed, but manages to put the honest signer in the list
Fm. It dishonestly continues the main protocol.

3. The honest signer is forced to recover, but is not successful in
getting the abort decision overturned since it is in the list Fm.

4. The third dishonest signer contacts T and manages to overturn the
decision. Hence, while the honest signer does not get any signed
contract, the honest signer’s contract is obtained.

We only describe one of these scenarios in detail. The other attack
scenarios can be found in Appendix A. In this scenario, P1, P3 and P4

collude to cheat P2. The scenario proceeds as follows:
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− At the beginning of the protocol, P3 aborts the protocol and T
updates Sm = {3}. However, unlike specified by the protocol,
dishonest P3 continues the main protocol execution.

− As soon as P1 receives the second level promise from P2, it asks T
to recover by sending

SP1({PCSP2((m, 2), P1, T ), PCSP3((m, 1), P1, T ),
PCSP4((m, 1), P1, T )}, SP1((m, 1))).

T refuses this request, answers with an abort message and updates
Sm = {1, 3} and Fm = {2}. As P3 did before, P1 also continues
the protocol.

− The main protocol is executed normally until signer P2 reaches
point 6.2. (see table 1) of the protocol with a = 4. At that point
P2 has sent out the set of message

{PCSP2((m, 1), P1, T ), PCSP2((m, 2), P1, T ),
PCSP2((m, 2), P3, T ), PCSP2((m, 3), P1, T ),
PCSP2((m, 3), P3, T ), PCSP2((m, 3), P4, T )}

and has received the set of messages

{PCSP4((m, 1), P2, T ), PCSP3((m, 1), P2, T ),
PCSP1((m, 1), P2, T ), PCSP1((m, 2), P2, T ),
PCSP3((m, 3), P2, T ), PCSP1((m, 3), P2, T )}.

P2 is at position 6.2. with a = 4 and is waiting for 4-level promises
from P3 and P4. P3 and P4 do not reply and P2 is forced to send
the following recovery request to T .

SP2({PCSP1((m, 3), P2, T ), PCSP3((m, 3), P2, T ),
PCSP4((m, 1), P2, T )}, SP2((m, 1)))

P2 is in Fm, the tests in the protocol description (see table 3)
indicate that T refuses the request, updates Sm = {1, 2, 3} and
replies with an abort message. Fm remains unchanged.

− P4 launches a resolve request, sending

SP4({PCSP1((m, 3), P4, T ), PCSP2((m, 3), P4, T ),
PCSP3((m, 3), P4, T )}, SP4((m, 1))).

This request overturns the previous aborts, and hence violates
fairness as T sends the signed contract back to P4.
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Such attacks are detected by Mocha when checking the invariant
representing fairness. A “cleaned up”3 version of a sample error trace
illustrating an attack compromising fairness for P3 is shown in figure 2.

We also discovered that the protocol is unfair for signers P1, P2 and
P3 when n = 4. We give the other attacks in Appendix A. We did not
find any scenario that compromised fairness for P4. This is probably
because the tests indicate that P4 can never be added to Fm, when
n = 4.

Threshold security. Our analysis revealed that the protocol is flawed
for n = 4 signers when we have n − 1 = 3 dishonest parties. An
interesting line of investigation is the threshold of the protocol security,
i.e., how many dishonest signers are required to break fairness. While
allowing only 1 malicious signer, Mocha did not detect any anomaly
when n is 4. However, Mocha showed a peculiar scenario when we
considered two dishonest signers when n = 4. In fact, the dishonest
signers may bring the protocol to a state, where one of the honest
signer is fooled, while the other honest signer obtains all other signa-
tures. The amusing part of this scenario is that the dishonest signers
themselves do not obtain all signatures, i.e., they can only decide to
give an advantage to one of the participants while fooling the other
one. This protocol execution should be considered as unfair, even if the
dishonest signers do not obtain a direct advantage. They choose to give
an advantage to one of the two honest participants. We believe that this
gives an interesting insight into fairness, which cannot be observed in
a two-party protocol. We describe one of these attacks in Appendix B.

Correcting the Garay-MacKenzie Protocol. In order to restore fairness
in the Garay-MacKenzie protocol, we had to do major revisions in the
recovery protocol. We were unsuccessful to restore fairness with minor
changes, and we believe that this is because the meaning of the list
F (m) is not clear in the protocol. The central idea behind the revision
is that T , when presented with a recovery request, overturns its abort
decision if and only if T can infer dishonesty on the part of each of the
signer that contacted T in the past. This is also the main idea behind
the recovery protocol in (Baum-Waidner and Waidner, 2000).

The main protocol remains the same. Major changes are in the re-
covery protocol. The recovery messages are designed so that T can infer

3 An error-trace shows a sequence of states, each described by the valuation of
the variables; we used a script which transforms the output into a more readable
form, showing only the variables which have changed with respect to the previous
state.
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T_Abort_Send_P1=0 T_Abort_Send_P2=0 T_Abort_Send_P3=0

T_Abort_Send_P4=0 T_F1=0 T_F2=0 T_F3=0 T_F4=0 T_Recovery_Send_P1=0

T_Recovery_Send_P2=0 T_Recovery_Send_P3=0 T_Recovery_Send_P4=0

T_Respond1=0 T_Respond2=0 T_Respond3=0 T_Respond4=0 T_S1=0 T_S2=0

T_S3=0 T_S4=0 T_Validated=0 P3_AbortToken=0 P3_Abort_Send=0

P3_Recovery_1_2_2=0 P3_Recovery_1_3_3=0 P3_Recovery_4_3_3=0

P3_Recovery_4_4_4=0 P3_Recovery_5_4_4=0 P3_S1=0 P3_S2=0 P3_S4=0

P3_contacted_T=0 P3_stop=0 Pr_3_1_L=0 Pr_3_2_L=0 Pr_3_4_L=0

P2_AbortToken=0 P2_Abort_Send=0 P2_Recovery_1_1_1=0

P2_Recovery_1_1_2=0 P2_Recovery_1_3_2=0 P2_Recovery_1_3_3=0

P2_Recovery_1_4_3=0 P2_Recovery_4_3_3=0 P2_Recovery_4_4_3=0

P2_Recovery_4_4_4=0 P2_Recovery_4_5_4=0 P2_Recovery_5_4_4=0

P2_Recovery_5_5_4=0 P2_S1=0 P2_S3=0 P2_S4=0 P2_contacted_T=0 P2_stop=0

Pr_2_1_L=0 Pr_2_3_L=0 Pr_2_4_L=0 P4_AbortToken=0 P4_Abort_Send=0

P4_Recovery_3_3_3=0 P4_Recovery_4_4_4=0 P4_S1=0 P4_S2=0 P4_S3=0

P4_contacted_T=0 P4_stop=0 Pr_4_1_L=0 Pr_4_2_L=0 Pr_4_3_L=0

P1_AbortToken=0 P1_Recovery_1_1_1=0 P1_Recovery_1_1_2=0

P1_Recovery_1_1_3=0 P1_Recovery_1_3_2=0 P1_Recovery_1_3_3=0

P1_Recovery_1_3_4=0 P1_Recovery_1_4_3=0 P1_Recovery_1_4_4=0

P1_Recovery_4_3_3=0 P1_Recovery_4_3_4=0 P1_Recovery_4_4_3=0

P1_Recovery_4_4_4=0 P1_Recovery_4_4_5=0 P1_Recovery_4_5_4=0

P1_Recovery_4_5_5=0 P1_Recovery_5_4_4=0 P1_Recovery_5_4_5=0

P1_Recovery_5_5_4=0 P1_S2=0 P1_S3=0 P1_S4=0 P1_contacted_T=0 P1_stop=0

Pr_1_2_L=0 Pr_1_3_L=0 Pr_1_4_L=0

Pr_4_3_L=1

Pr_3_1_L=1 Pr_3_2_L=1 Pr_2_3_L=2 Pr_1_3_L=2

Pr_3_1_L=3 Pr_3_2_L=3 Pr_2_3_L=3 Pr_4_3_L=4 Pr_1_3_L=3

Pr_3_4_L=3 Pr_4_2_L=1 Pr_1_3_L=4

Pr_3_1_L=4 Pr_3_2_L=4 Pr_2_3_L=4 P4_Abort_Send=1 Pr_1_2_L=2

T_Abort_Send_P4=1 T_Respond4=1 T_S4=1 Pr_3_4_L=4 P2_Recovery_1_3_2=1

T_Abort_Send_P2=1 T_F3=1 T_Respond2=1 T_S2=1 P3_Recovery_4_4_4=1

P3_contacted_T=1 Pr_2_1_L=4 Pr_4_1_L=4

T_Abort_Send_P3=1 T_Respond3=1 T_S3=1 P1_Recovery_4_4_4=1

T_Recovery_Send_P1=1 T_Respond1=1 T_Validated=1 P3_AbortToken=1

P3_stop=1

P1_S2=1 P1_S3=1 P1_S4=1

Figure 2.: Counter-example of fairness for P3

mpcs.tex; 27/10/2005; 10:09; p.34



Formal analysis of multi-party contract signing 35

Table 6 Revised GM multi-party contract-signing protocol—Abort for Pi

The first time T is contacted for contract m (either abort or recovery), T initializes
F (m) to ∅ and validated(m) to false.

1. Pi → T: SPi
(m, Pi, (P1, . . . , Pn), abort)

if not validated(m) then

S(m) = S(m) ∪ {i}
if S(m) = ∅ then T stores ST (SPi

(m, Pi, (P1, . . . , Pn), abort))

2. T→Pi: ST (SPj
(m, Pj , (P1, . . . , Pn), abort), ST (m, S(m), abort))

else (validated(m)=true)

3. T→Pi: {SPj
((m, kj))}j∈{1,...,n}\{i}

where kj is the level of the promise from Pj that was converted to a

universally-verifiable signature during the recovery protocol.

the promises that an honest signer would have sent when it launched
the recovery protocol (note that a signer may have dishonestly sent
other promises). For Pi to recover, it sends the message

SPi({PCSPj ((m, kj), Pi, T )}j∈{1,...,n}\{i}, SPi((m, 1)))

where kj is computed as following:

1. If Pi runs the resolve protocol in step 5 of the main protocol (see
table 1), then kj = 1 for j > i and kj = i− 1 for j < i.

2. In step 6.2 of the main protocol, kj = a− 1 for 1 < j ≤ a− 1, j = i
and kj = 1 for j > a− 1.

3. In step 6.4 of the main protocol, kj = a − 1 for j < i, kj = a for
i < j ≤ a and kj = 1 for j > a.

4. In step 7 of the main protocol, kj = n for all j.

5. In step 9 of the main protocol, kj = n for all j < i and kj = n+ 1
for all j > i.

kj may alternately be computed as:

− If j < i, kj is the maximum level of promises received from all
signers Pj′ , with j′ < i, i.e. the min-max of the promises from
signers with lower index. (For example, if the maximum level of the
promises received by P4 from P3 and P2 was 6, and the maximum
level received by P4 from P1 was 5, then kj = 5 for 1 ≤ j ≤ 3.)

− Let l be the maximum value l′ such that Pi has l′ level promises
from Pj for all i ≤ j ≤ l′. If no such l′ exists then let l be 0. If
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Table 7 Revised GM multi-party contract-signing protocol—Recovery

The first time T is contacted for contract m (either abort or recovery), T initializes
F (m) to ∅ and validated(m) to false.

1. Pi → T: SPi
({PCSPj

((m, kj), Pi, T )}j∈{1,...,n}\{i}, SPi
((m, 1)))

if i ∈ S(m) then

T ignores the message

else if validated(m) then

2. T → Pi: {SPj
((m, kj))}j∈{1,...,n}\{i}

where kj is the level of the promise from Pj that was converted to a

universally-verifiable signature.

else if S(m) = ∅ then

validated(m):=true

3. T → Pi: {SPj
((m, kj))}j∈{1,...,n}\{i}

else (validated(m)=false ∧ S(m) �= ∅)
a) If there is some p < i in S(m) such that kp ≤ hp(m), or if there is some p > i

in S(m) such that kp ≤ lp(m), then T sends back the stored abort

ST (SPj
(m, Pj , (P1, . . . , Pn), abort)) to Pi. T adds i to S(m), and computes

hi(m) and li(m) as follows
(hi(m), li(m))= (ki+1, 0), if i = 1 (intuitively, P1 has con-

tacted T in either step 6.2 of the
main protocol with a = ki+1 + 1 or
in step 7 of the main protocol),

= (0, i), if 1 < i and ki−1 = i−1 (intuitively,
Pi has contacted T in step 5 of the
main protocol),

= (ki−1, ki−1), if 1 < i < n, i ≤ ki−1 ≤ n and
ki+1 ≤ ki−1 (intuitively, Pi has
contacted T in step 6.2 of the main
protocol with a = ki−1 + 1),

= (ki−1, ki−1 + 1),if 1 < i < n, i ≤ ki−1 < n and
ki+1 > ki−1 (intuitively, Pi has
contacted T in step 6.4 of the main
protocol with a = ki−1 + 1),

= (n, n), if 1 < i < n and ki−1 = ki+1 = n.
(intuitively, Pi has contacted T in
step 7 of the main protocol).

= (n + 1, n + 1), if 1 < i < n, ki−1 = n and ki+1 =
n + 1. (intuitively, Pi has contacted
T in step 9 of the protocol).

= (0, n + 1), if i = n and ki−1 = n. (intuitively,
Pn has contacted T in step 9 of the
main protocol).

b) Otherwise, T sends {SPj
((m, kj))}j∈{1,...,n}\{i} to Pi, stores all the

signatures, and sets validated(m) to true.
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l = 0, then let kj = 1 for all j > i. If l = 0, then let kj = l for all
i ≤ j ≤ l and kj = 1 for all j > l. (For example, if P2 has received
level 1 promise from P6, level 5 and 1 promises from P5, level 5,
4 and 1 promises from P4, and level 4, 3 and 1 promises from P3

then k6 = 1, k5 = 1, k4 = 4, k3 = 4.)

T maintains the set S(m) of indices of signers that contacted T in
the past and received an abort token. For each signer Pi in the set S(m),
T also maintains two integer variables hi(m) and li(m). Intuitively, hi

is the highest level promise an honest Pi could have sent to any higher
indexed signer before it contacted T . li is the highest level promise an
honest Pi could have sent to a lower indexed signer before it contacted
T . The protocol for T works as follows:

− If T ever replies with a signed contract for m, then T responds
with the contract for any further request.

− If the first request to T is a resolve request, then T sends back a
signed contract.

− If the first request is an abort request, then T aborts the contract.
T may overturn this decision in the future if it can deduce that
all the signers in S(m) have behaved dishonestly. T deduces that
a signer Pi in S(m) is dishonest when contacted by Pj if

1. j > i and Pj presents to T a k-level promise from Pi such that
k > hi(m), or

2. j < i and Pj presents to T a k-level promise from Pi such that
k > li(m).

We describe the abort and recovery protocols in detail in table 6,
respectively 7.

We analyzed the revised protocol for both 3 and 4 signers and
Mocha did not detect any errors in the revised protocol. Please note
that this should not be construed as proof of correctness since we are
using a restricted communication model and are modeling a single run.

Abuse-freeness. We now describe the anomaly that we discovered for
n = 3 signers in the GM protocol. The anomaly exploits the fact that
when T replies with an abort decision, it also signs the list S(m) of the
signers who have received an abort from T . Recall that an optimistic
signer (Chadha et al., 2003) is one that prefers to wait for “some time”
before contacting the trusted party. Following (Chadha et al., 2003),
we say that a protocol is abuse-free for a signer Pi if the protocol does
not provide provable advantage to the remaining signers. A coalition of
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signers is said to have provable advantage against Pi at a point in the
protocol if (i) they have a strategy to abort the contract against an
optimistic Pi, (ii) they have a strategy to get optimistic Pi’s contract,
and (iii) they can prove to an outside challenger, Charlie, that Pi is
participating in the protocol.

Now consider the protocol instance with three signers P1, P2 and
P3. Assume that P3 is optimistic and P1 and P2 are colluding to cheat
P3. P3 starts the protocol by sending its level 1 promises to P1 and
P2, and, being optimistic, waits for level 2 promises from them. P2 on
receiving this sends its level 1 promise to P1, and then sends an abort
request to T which aborts the protocol. Now, P1 has received level 1
promises from P2 and P3. Using these first level promises, P1 sends a
recovery request to T . Note that, in the protocol, P1 is never allowed to
abort and T would not accept an abort request from P1. P1’s recovery
request is refused and T sends

ST (SP2(m,P2, (P1, P2, P3), abort))

and
ST (m,S(m) = {1, 2}, abort)

At this point, we make the following observations:

− the abort reply contains the set S(m) = {1, 2} and is different
from the one P2 received,

− if P1 receives an abort reply from T , it is always the answer to a
recovery request,

− a recovery request always includes a promise from each signer
which is verified by T .

From these remarks, we can conclude that if P1 shows the abort reply to
Charlie, then Charlie will be convinced that P3 has started the protocol
even though Charlie is unable to verify the PCS from P3. In other
words, we can say that T has verified the PCS for Charlie. Also note
that at this point P1 and P2 can force the exchange to abort by simply
quitting the protocol: P3 has no promises from P1 and P2. P1 and P2 can
also force a successful completion of the contract exchange by simply
(dishonestly) engaging P3 in the main protocol. Hence the protocol is
not abuse-free for P3.

This vulnerability can be easily addressed by excluding the set S(m)
from the abort reply. In this case, the abort messages from P3 and P2 are
exactly similar and can be obtained by P2 without P3’s participation.
Hence, an abort reply does not prove P3’s participation in the proto-
col. This rather amusing scenario illustrates that sometimes additional
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information may be harmful. While explicitness is often considered a
good engineering practice (and we do not attempt to criticize such
thumb rules), care should be taken when applying these principles. In
personal communication with the authors of the protocol, they propose
a different fix in letting P1 abort the protocol rather than just quitting.
If P1 is allowed to abort the protocol, T ’s abort reply does not imply
anymore that P3 is participating: in contrast to the recovery request,
when sending and abort request, T does not have to verify a PCS
generated by P3.

Abuse-freeness for P3 is naturally expressed in ATL as follows:

¬∃�(T. send(abort) to P1∧
〈〈P1, P2〉〉�(¬P3.SP1(m) ∨ ¬P3.SP2(m))∧
〈〈P1, P2〉〉�(P3.stop→ (P1.SP3(m) ∧ P2.SP3(m)))

)

The boolean variable T. send(abort) to P1 is set to true when P1

receives the the abort token ST (SP2(m,P2, (P1, P2, P3), abort)) with
S(m) = {1, 2}. As discussed before, this serves as a proof of P3’s
participation. The variables Pi.SPj (m) reflect that player i has received
player j’s signature on the contract. More precisely, the formula requires
that it is not possible to reach a point where

1. P1 and P2 can prove to Charlie that the protocol was started by
P3 ( T. send(abort) to P1 is true),

2. P1 and P2 have a strategy to choose an unsuccessful outcome, i.e.,
P3 cannot get some signer’s contract (〈〈P1, P2〉〉�(¬P3.SP1(m) ∨
¬P3.SP2(m)) is true), and

3. P1 and P2 have a strategy to choose a successful outcome, i.e.,
when honest P3 stops, the dishonest players must have obtained
P3’s contract ( 〈〈P1, P2〉〉�(P3.stop → (P1.SP3(m) ∧ P2.SP3(m)) is
true).

The requirement of P3 stopping in condition 3 is to prevent it from
idling forever. Even though as discussed before, the protocol is not
abuse-free if P3 is optimistic, the above formula is validated if P3 is
honest. An honest P3 may contact T non-deterministically as permitted
by the protocol. Indeed, in the scenario discussed above, an honest P3

could prevent P1 and P2 from getting P3’s signature if it contacts T .
Therefore, in order to capture the scenario described above, we needed
to model optimistic signers.

Following (Chadha et al., 2003), we implement an optimistic signer
by adding signals that the signer uses to decide when to quit waiting
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for messages from other signers and contact T . P3 uses 3 signals for
this: one to decide when to ask T to abort and 2 to decide when to
contact T for the two recovery protocols that P3 can launch. These
signals are controlled by a new player, P3TimeOuts, that is added to
the model.

The decision to abort is modeled by 2 boolean variables:

setT imeOutAbort and expiredT imeOutAbort.

While P3 changes the value of the variable setT imeOutAbort, the
variable expiredT imeOutAbort is changed by P3TimeOuts. When P3

sends level 1 promise to P1 and P2, it sets the value of setT imeOutAbort
to true, and then waits for level 2 promises from them. P3TimeOuts
may set expiredT imeOutAbort to true once setT imeOutAbort is set to
true by P3. If the promises arrive before expiredT imeOutAbort is true,
then P3 continues with the main protocol, otherwise P3 may contact
T with an abort request. The decision to send recovery requests are
modeled similarly.

Following (Chadha et al., 2003), abuse-freeness is modeled by having
a coalition of P3TimeOuts, P1 and P2. This coalition can choose a
sufficiently ”long time” to keep P3 from contacting T , while allowing
P1 and P2 to schedule its messages in order to get the desired result.
Abuse-freeness can then be expressed as

¬∃�(T. send(abort) to P1∧
〈〈P1, P2, P3TimeOuts〉〉�(¬P3.SP1(m) ∨ ¬P3.SP2(m))∧
〈〈P1, P2, P3TimeOuts〉〉�(P3.stop→ (P1.SP3(m) ∧ P2.SP3(m)))

)

Please note that even an optimistic P3 should eventually be allowed
to contact T , otherwise P3 may be stuck forever. Hence, P3TimeOuts
must eventually set expiredT imeOutAbort and other signals to true.
Ideally, this should be set non-deterministically. However, ensuring that
a variable changes its value in Mocha slows down verification consid-
erably. In order to make the verification feasible, we put a maximum
limit, tick, on the number of computation steps after which the value
must change, and vary this limit manually. Please note that the signals
may change before this limit is reached. This modeling is sound in
the sense that if the formula is violated for some value of tick then
abuse-freeness must be violated: P3 just needs to wait for sufficiently
”long time” to allow P1 and P2 to schedule its messages. Indeed, the
above property is violated when tick is set to 3 giving us the attack on
abuse-freeness. As expected, if we drop the player P3TimeOuts in the
formula, then the property is not violated: P1 and P2 are not able to
schedule their messages ahead of P3.
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However, if P3 is not optimistic, the above given formulation of
abuse-freeness is not violated. In a non-optimistic setting, the vul-
nerability can be detected by weakening the third requirement of the
formula in order to say that there is a trace in which P3 does not
contact T , and P1 and P2 get P3’s signed contract. The ATL formula
which captures this is

¬∃�(T. send(abort) to P1∧
〈〈P1, P2〉〉�(¬P3.SP1(m) ∨ ¬P3.SP2(m))∧
∃�(P3.stop→ (P1.SP3(m) ∧ P2.SP3(m)))

)

This property is violated even in the original non-optimistic model.
Mocha also detected the violation of a stronger version of abuse-
freeness proposed in (Kremer and Raskin, 2002). This formulation re-
quires that as soon as P2 and P3 can prove to Charlie that P1 started the
protocol, then they may not achieve an unsuccessful outcome anymore.

5. Conclusions and Future Work

We have studied two multi-party contract-signing protocols (Garay and
MacKenzie, 1999; Baum-Waidner and Waidner, 2000) using a finite-
state tool, Mocha, that allows specification of properties in a branching-
time temporal logic with game semantics. In order to make this analysis
feasible, we model single runs and assume a restricted communication
model. Our analysis did not find any errors in the BW protocol (Baum-
Waidner and Waidner, 2000). We did encounter problems with fairness
in the case of four signers in the GM protocol (Garay and MacKenzie,
1999). It appears that fairness cannot be restored without completely
rewriting the subprotocols. The revised subprotocols are inspired by the
BW protocol. We also discovered a rather amusing problem with abuse-
freeness in the GM protocol with three signers that occurs because
abort messages from the trusted party reveal who have contacted it in
the past. This problem is easily addressed by ensuring that the trusted
party does not send this extra information. We had to implement opti-
mistic signers to demonstrate this problem using Mocha. Overturning
of abort decisions were important features of multi-party contract-
signing that were not present in 2-party protocols. In particular, T ’s
decision when to overturn was at the origin of the flaws in the GM
protocol. However, it remains to be investigated formally whether this
is a necessary feature to maintain fairness, i.e., whether in any contract-
signing protocol for n ≥ 3 signers there are scenarios in which T must
overturn the abort decision.
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We modeled single runs, and used a restricted communication and
cryptographic model for our analysis. Previous work on two-party con-
tract signing protocols has shown that they are prone to error in a
more general setting. For example, in (Chadha et al., 2001; Gürgens
and Rudolph, 2003), the authors exhibit problems with fairness when
multiple sessions are involved, and in (Backes et al., 2003), the authors
exhibit errors when black-box cryptography is replaced by provably
secure cryptographic signature schemes. We plan to verify the pro-
tocols without fixing the number of signers. One major challenge in
such a parametric verification is that the protocol descriptions change
fundamentally with the number of signers in that the protocol for n
signers is not merely putting n identical processes in parallel. We hope
to prove the correctness of these protocols in a more general setting
which accounts for cryptography, multiple concurrent sessions, and re-
laxes the communication model. We plan to use theorem-provers such
as Isabelle (Nipkow et al., 2002) and PVS (Crow et al., 1995) to achieve
this. Proofs might also involve, at least partially, abstraction techniques
such as those used by Das and Dill (Das and Dill, 2001) in their work.

Subsequent to our work, independent work by A. Mukhamedov and
M. Ryan (Mukhamedov and Ryan, 2005) has found that fairness fails
even for the revised protocol for 5 signers (which does not contradict
any of our results). Moreover, they have an informal argument to show
that no resolve protocol can fix the problem.
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Appendix

A. Attacks on the GM protocol

We now briefly sketch each of the attack scenarios we discovered on the
GM protocol.

Attacks against P1. In a first attack against P1, P4 succeeds in getting
P1’s signature on the contract, while P1 does not get P4’s signature.

1. At the beginning P3 aborts, but continues the protocol. We have
that Sm = {3} and Fm = ∅.

2. As soon as possible, P2 recovers by sending

SP2({PCSP1((m, 2), P2, T ), PCSP3((m, 1), P2, T ),
PCSP4((m, 1), P2, T )}, SP2((m, 1)))

but receives an abort reply from T. We have that Sm = {3, 2} and
Fm = {1}.

3. P1 is forced to recover by sending

SP1({PCSP2((m, 3), P1, T ), PCSP3((m, 3), P1, T ),
PCSP4((m, 1), P1, T )}, SP1((m, 1)))

but receives an abort reply from T. We have that Sm = {3, 2, 1}
and Fm = {1}.

4. P4 recovers by sending

SP4({PCSP1((m, 3), P4, T ), PCSP2((m, 3), P4, T ),
PCSP3((m, 3), P4, T )}, SP4((m, 1)))

and succeeds in overturning the abort decision.

In a second attack against P1, it is P2 who succeeds in receiving P1’s
signature. Note that the attack is rather different from the previous one,
as P3 is added to Fm in this attack.

1. At the beginning P4 aborts, but continues the protocol. We have
that Sm = {4} and Fm = ∅.

2. As soon as possible, P2 recovers by sending

SP2({PCSP1((m, 3), P2, T ), PCSP3((m, 3), P2, T ),
PCSP4((m, 1), P2, T )}, SP2((m, 1)))

but receives an abort reply from T. We have that Sm = {4, 2} and
Fm = {3, 1}.
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3. P1 is forced to recover by sending

SP1({PCSP2((m, 4), P1, T ), PCSP3((m, 4), P1, T ),
PCSP4((m, 4), P1, T )}, SP1((m, 1)))

but receives an abort reply from T. We have that Sm = {4, 2, 1}
and Fm = {3, 1}.

4. P3 recovers by sending

SP3({PCSP1((m, 4), P3, T ), PCSP2((m, 4), P3, T ),
PCSP4((m, 5), P3, T )}, SP3((m, 1)))

and succeeds in overturning the abort decision.

There exists also a third attack against P1. This time, it is P2 who
succeeds in getting P1’s signature.

1. At the beginning P4 aborts, but continues the protocol. We have
that Sm = {4} and Fm = ∅.

2. As soon as possible, P3 recovers by sending

SP3({PCSP1((m, 3), P3, T ), PCSP2((m, 3), P3, T ),
PCSP4((m, 3), P3, T )}, SP3((m, 1)))

but receives an abort reply from T. We have that Sm = {4, 3} and
Fm = {2, 1}.

3. P1 is forced to recover by sending

SP1({PCSP2((m, 4), P1, T ), PCSP3((m, 4), P1, T ),
PCSP4((m, 4), P1, T )}, SP1((m, 1)))

but receives an abort reply from T. We have that Sm = {4, 3, 1}
and Fm = {2, 1}.

4. P2 recovers by sending

SP2({PCSP1((m, 4), P2, T ), PCSP3((m, 5), P2, T ),
PCSP4((m, 5), P2, T )}, SP2((m, 1)))

and succeeds in overturning the abort decision.

Attacks against P2. In addition to the attack on P2 which we described
in details above, there exists an attack where P3 receives P2’s signature
on the contract.

mpcs.tex; 27/10/2005; 10:09; p.45



46 Chadha, Kremer and Scedrov

1. At the beginning P4 aborts, but continues the protocol. We have
that Sm = {4} and Fm = ∅.

2. As soon as possible, P1 recovers by sending

SP1({PCSP2((m, 2), P1, T ), PCSP3((m, 3), P1, T ),
PCSP4((m, 1), P1, T )}, SP1((m, 1)))

but receives an abort reply from T. We have that Sm = {4, 1} and
Fm = {2}.

3. P2 is forced to recover by sending

SP2({PCSP1((m, 4), P2, T ), PCSP3((m, 4), P2, T ),
PCSP4((m, 4), P2, T )}, SP2((m, 1)))

but receives an abort reply from T. We have that Sm = {4, 2, 1}
and Fm = {2}.

4. P3 recovers by sending

SP3({PCSP1((m, 4), P3, T ), PCSP2((m, 4), P3, T ),
PCSP4((m, 4), P3, T )}, SP3((m, 1)))

and succeeds in overturning the abort decision.

There exists a third attack against P2. This attack is similar to the
previous one, in the sense that it is P3 who obtains P2’s signature.
However, the “attack technique” slightly differs, since here P3 is in Fm,
while this is not the case in the previous attack.

1. At the beginning P4 aborts, but continues the protocol. We have
that Sm = {4} and Fm = ∅.

2. As soon as possible, P1 recovers by sending

SP1({PCSP2((m, 3), P1, T ), PCSP3((m, 3), P1, T ),
PCSP4((m, 1), P1, T )}, SP1((m, 1)))

but receives an abort reply from T. We have that Sm = {4, 1} and
Fm = {3, 2}.

3. P2 is forced to recover by sending

SP2({PCSP1((m, 4), P2, T ), PCSP3((m, 4), P2, T ),
PCSP4((m, 4), P2, T )}, SP2((m, 1)))

but receives an abort reply from T. We have that Sm = {4, 2, 1}
and Fm = {3, 2}.
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4. P3 recovers by sending

SP3({PCSP1((m, 4), P3, T ), PCSP2((m, 4), P3, T ),
PCSP4((m, 5), P3, T )}, SP3((m, 1)))

and succeeds in overturning the abort decision.

Attacks against P3. We also discovered two attacks against P3. In the
first attack, P2 is able to obtain P3’s signature on the contract test.

1. At the beginning P4 aborts, but continues the protocol. We have
that Sm = {4} and Fm = ∅.

2. As soon as possible, P1 recovers by sending

SP1({PCSP2((m, 2), P1, T ), PCSP3((m, 3), P1, T ),
PCSP4((m, 1), P1, T )}, SP1((m, 1)))

but receives an abort reply from T. We have that Sm = {4, 1} and
Fm = {3}.

3. P3 is forced to recover by sending

SP3({PCSP1((m, 4), P3, T ), PCSP2((m, 4), P3, T ),
PCSP4((m, 4), P3, T )}, SP3((m, 1)))

but receives an abort reply from T. We have that Sm = {4, 3, 1}
and Fm = {3, 2}.

4. P2 recovers by sending

SP2({PCSP1((m, 4), P2, T ), PCSP3((m, 4), P2, T ),
PCSP4((m, 4), P2, T )}, SP2((m, 1)))

and succeeds in overturning the abort decision.

In the second attack on P3, it is P1 who succeeds in overturning the
abort decision and getting P3’s signed contract.

1. At the beginning P4 aborts, but continues the protocol. We have
that Sm = {4} and Fm = ∅.

2. As soon as possible, P2 recovers by sending

SP2({PCSP1((m, 2), P2, T ), PCSP3((m, 3), P2, T ),
PCSP4((m, 1), P2, T )}, SP2((m, 1)))

but receives an abort reply from T. We have that Sm = {4, 2} and
Fm = {3}.
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3. P3 is forced to recover by sending

SP3({PCSP1((m, 4), P3, T ), PCSP2((m, 4), P3, T ),
PCSP4((m, 4), P3, T )}, SP3((m, 1)))

but receives an abort reply from T. We have that Sm = {4, 3, 1}
and Fm = {3}.

4. P1 recovers by sending

SP1({PCSP2((m, 4), P1, T ), PCSP3((m, 4), P1, T ),
PCSP4((m, 4), P1, T )}, SP1((m, 1)))

and succeeds in overturning the abort decision.

B. A peculiar attack against the GM protocol

We here briefly sketch one of the “peculiar” attacks against the GM
protocol in the case we have two dishonest participants out of four.
The particularity of the attack is that the dishonest participants do
not gain any advantage. They bring the protocol into a state where
one of the two honest parties ends up with the signatures while all the
other participants are unable to get all signatures. Moreover, Mocha

does not find any attack for this threshold where one of the dishonest
parties gains the advantage.

We illustrate the attack where P1 and P4 are honest and P1 will be
flawed.

1. At the beginning P3 aborts, but continues the protocol. We have
that Sm = {3} and Fm = ∅.

2. As soon as possible, dishonest P2 recovers by sending

SP2({PCSP1((m, 2), P2, T ), PCSP3((m, 1), P2, T ),
PCSP4((m, 1), P2, T )}, SP2((m, 1)))

but receives an abort reply from T. We have that Sm = {3, 2} and
Fm = {1}.

3. Honest P1 is forced to recover by sending

SP1({PCSP2((m, 3), P1, T ), PCSP3((m, 3), P1, T ),
PCSP4((m, 1), P1, T )}, SP1((m, 1)))

but receives an abort reply from T. We have that Sm = {3, 2, 1}
and Fm = {1}.
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4. Honest P4 is forced to recover by sending

SP4({PCSP1((m, 3), P4, T ), PCSP2((m, 3), P4, T ),
PCSP3((m, 3), P4, T )}, SP4((m, 1)))

and overturns the abort decision.
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