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1. Introduction

My research is on symplectic and contact manifolds and Hamiltonian group actions.
A manifold M2n is symplectic if M has a closed, non-degenerate 2-form ω ∈ Ω2(M).
The classical example, which arises quite naturally in physics, is the cotangent bundle
T ∗X of a manifold X. The manifold X can be thought of as the possible positions
of particles in a physical system, and the cotangent bundle T ∗X is the phase space:
all the possible positions and momenta. For any symplectic manifold M let Symp(M)
denote the group of diffeomorphisms ofM that preserve ω. An injective homomorphism
G → Symp(M), from a Lie group G, is a Hamiltonian action if there exists a G-
equivariant function µ : M → g∗, called momentum map, from M to the dual of
the Lie algebra of G, such that for each ξ ∈ g, the component µξ : M → R defined
by µξ(p) = µ(p) (ξ) satisfies dµξ = ιξ(ω). If G = T n, where 2n is the dimension of M ,
then the action is called a toric action. An important class of examples of symplectic
manifolds is given by the orbits of the coadjoint action of a Lie group G on g∗, the dual
of its Lie algebra. Each such orbit O is naturally equipped with the Kostant-Kirillov
symplectic form. The action of G on an orbit O is Hamiltonian, and the momentum
map is just inclusion O ↪→ g∗. For example, when G = U(n) the group of (complex)
unitary matrices, a coadjoint orbit can be identified with the set of Hermitian matrices
with a fixed set of eigenvalues. Apart from few exceptions, the dimension of maximal
torus of G acting effectively on O is smaller than the complex dimension of O, thus its
action is not toric.

A manifold V 2n+1 is called a (co-oriented) contact manifold if it is equipped with
a maximally non-integrable 2n-plane field ξ = ker(α). Non-integrability implies that
α ∧ (dα)n is a nowhere vanishing top-dimensional form. A diffeomorphism φ of V is
called a contactomorphism if it preserves the distribution ξ (does not need to preserve
α). Natural examples are provided by the co-sphere bundles of compact manifolds and
prequantization spaces of symplectic manifolds with integral symplectic form.

2. Current Research

I am currently involved in the following research projects in the topics of symplectic
and contact geometry and topology.
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2.1. Project on non-displaceable Lagrangians and pre-Lagrangians in sym-
plectic and contact toric manifolds. Joint with Aleksandra Marinković (a PhD
student at IST that I am co-advising together with prof. Miguel Abreu).

In symplectic geometry a question of great importance is whether a (Lagrangian)
submanifold is displaceable, that is, if it can be made disjoint from itself by the means
of a Hamiltonian isotopy. Motivated by the search of non-displaceable Lagrangians we
reprove results of Fukaya-Oh-Otha-Ono and Gonzales-Woodward that every symplec-
tic toric manifold (even orbifold) contains a non-displaceable Lagrangian toric fiber,
[MP14s]. The tools we use include symplectic reduction and properties of weighted
projective spaces. On the way we prove that every compact toric symplectic orbifold is
a centered reduction of a product of projective spaces (possibly weighted). This result
is interesting by itself and could potentially have an application also to the construction
of new quasimorphisms (see [B13, Theorem 1.1]).
We have also analyzed displaceability of pre-Lagrangian toric fibers in the contact toric
manifolds. A contact toric manifold is a co-oriented contact manifold (V 2d−1, ξ) with
an effective action of the torus T d, that preserves the contact structure ξ. A subman-
ifold L ⊂ V is a pre-Lagrangian if it is a diffeomorphic image of some Lagrangian

submanifold L̃ ⊂ SV of the symplectization of V under the projection π : SV → V .
Any generic T d-orbit in a toric contact manifold is a pre-Lagrangian. Similarly to the
symplectic case, one can ask whether a given pre-Lagrangian in a contact manifold
can be displaced from itself by the means of a contact isotopy (in contact setting any
contact isotopy is Hamiltonian). If a contact toric manifold admits a monotone quasi-
morphism (i.e. homomorphism, up to a bounded error, to (R,+)) with a vanishing
property, then it contains at least one non-displaceable pre-Lagrangian ([BZ13]), as in
the symplectic case. (One can prove the above statement by repeating the argument of
Entov and Polterovich, [EnP06, Theorem 2.1], from the symplectic setting.) However
this property does not hold for all contact toric manifolds. For example, the standard
contact sphere S2n−1, n ≥ 2, does not admit such a quasimorphism and we proved that
all pre-Lagrangian toric fibers (of the standard toric action) are displaceable, [MP14c].
This seems to be linked to orderability. A contact manifold (V, ξ) is called orderable
if the relation on the universal cover of Cont0(V, ξ) (identity component of the group
of contactomorphisms) introduced by Eliashberg and Polterovich in [ElP00], gives a
genuine partial order. The existence of a monotone quasimorphism with a vanishing
property implies orderability ([BZ13, Theorem 1.28], see also [ElP00, Criterion 1.2.C]).
The existence of a stably non-displaceable pair of a Legendrian and a pre-Lagrangian
implies orderability ([ElP00, Theorem 2.3.A]). The standard sphere S2n−1, as well as
S1 × S2n, are not orderable for n ≥ 2. We managed to displace a large collection
of pre-Lagrangian toric fibers of S1 × S2n and now seek for methods to displace the
remaining fibers.
One can also ask about the existence of a displaceable fiber. In the symplectic toric
case there are always infinitely many toric fibers that can be displaced by McDuff’s
method of probes ([MD11]). In the contact world this is not necessarily true. We prove
that the co-sphere bundles of tori, with the natural contact toric action, have all pre-
Lagrangian toric fibers non-displaceable ([MP14c]). We expect this result to be related
to the freeness of the action. The toric action on co-sphere bundles is free, while in
symplectic setting any Hamiltonian circle action on any compact manifold must have
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fixed points.
We now continue to investigate the connection between displaceability, orderability,
existence of quasi-morphisms, and fillability.

2.2. Constructing a non-linear Maslov index on lens spaces and other contact
toric manifolds. This is a joint project with Sheila Sandon (Univ. de Strasbourg)
and Yael Karshon (Univ. of Toronto).

Givental in [Giv90] constructed a non-linear generalization of the Maslov index for

RP 2n−1 and CP n. This index gives rise to quasimorphisms on C̃ont0(RP 2n−1) and

S̃ymp0(CP n). Quasimorphism is a “homomorphism up to a bounded error” to the
group (R,+). (The groups above are often perfect and do not admit any non-trivial
homomorphism.) Givental used his quasimorphism to give Morse-type lower bounds
for the number of fixed points of a symplectomorphism of CP n, i.e. to prove a version
of the Arnold Conjecture. As observed by Sandon in [S04], this quasimorhpism can
also be used to give Morse-type lower bounds for the number of translated points of
contactomorphisms of RP 2n−1, proving the contact version of the Arnold Conjecture for
RP 2n−1. A point p ∈ V is called a translated point of a contactomorphism Φ of (V, ξ =
kerα) if p and Φ(p) lie on the same Reeb orbit and Φ∗(α)|p = α|p. Contactomorphisms
in Cont0(V, ξ) (i.e. contact isotopic to identity) can easily have no fixed points, but,
it is conjectured, that they must have translated points. From other applications of

quasimorphisms we mention that the existence of a quasimorphism on C̃ont0(RP 2n−1)
proves also that RP 2n−1 is orderable, contains non-displaceable pre-Lagrangian and
has unbounded discriminant metric (defined by Collin and Sandon in [CS12]).

We mimic the construction by Givental of a non-linear Maslov index on the real
projective space (quotient of a sphere by Z2 action) and adapt it to lens spaces (quo-
tients of spheres by Zp action). As such non-linear Maslov index is a quasimorphism,
its existence reproves orderability of lens spaces, gives lower bounds on the number of
translated points of any contactomorphism of lens space (though not as strong as we
expected) and proves unboundness of discriminant metric on lens space. This is a very
recent result and the paper is still in preparation. The difficulty of passing from Z2 to
Zp comes from the fact that H∗(BZp) is not a PID if the prime p > 2 and thus certain
results from [Giv90] do not hold for lens spaces.

The next step in this project is to generalize the non-linear Maslov index to contact
toric manifolds obtained as prequantizations of symplectic toric manifolds. Givental
in [Giv00] proved a version of the Arnold Conjecture for symplectic toric manifolds,
using their presentation as symplectic reductions of Cd and the technique of gener-
ating functions. He did not construct any quasimorphism but we believe that the
background required for such construction is contained in his work. The situation is
much more complicated than in the case of the projective space. Each Hamiltonian
function on the projective space can be uniquely lifted to an invariant function on a
sphere, and then uniquely extended to an R+ equivariant function on Cn (continuous
on Cn, C∞ on Cn \ {0}). The gain of moving to Cn is that one can use the generating
functions techniques (such functions are guaranteed to exists there). In the case of a
Hamiltonian on a general symplectic toric manifold, there is no unique way of lifting
it to Cn. It is possible to define a lift with a help of a “bump” function, but then one
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needs to incorporate Lagrange multipliers to the whole construction in order to “pick
out” only the relevant data. We are currently working on extracting from ([Giv00]) a
quasimorphism, and generalizing the whole construction to the contact toric manifolds
which are prequantizations of symplectic toric manifolds. Hopefully in the future we
will be able to extend it even further, to all contact toric manifolds.

2.3. Constructing a canonical basis for the equivariant K-Theory ring of
symplectic toric manifolds. This is a joint project with Silvia Sabatini (Univ. of
Cologne).

In the setting of equivariant cohomology of a toric manifold a theorem of Kirwan
guarantees existence of a basis, consisting of Kirwan classes, satisfying certain nice
properties. In general this basis is not unique. Goldin and Tolman showed that when
the moment map for a generic subcircle is index increasing one can make the choice of
the Kirwan classes unique by requiring one extra condition. The Theorem of Kirwan
mentioned above has its analogue in the equivariant K-theory setting: there always
exists a (non-unique) basis for the K-theory ring. Guillemin and Kogan in [GK04]
introduced an invariant called a local index and used it to characterize uniquely one
possible choice of a basis. Their construction works not only for toric manifolds but
also for more general GKM spaces, but it does not give explicit formulas even for
well-understood manifolds. Also, this basis does not include the K-theory class corre-
sponding to the trivial line bundle. We propose a slightly different definition of a local
index (explicit and easy for computational purposes) and use it to uniquely charac-
terize a different choice of a basis. We give explicit formulas for the elements of this
basis in the case when moment map is index increasing and inductive formulas if it
is not. For the projective space the elements of our basis correspond to the products
of prequantization line bundle. We are currently working on generalizing these ideas
to GKM manifolds. We expect that the explicit formulas for our canonical classes in
the GKM case will turn out to be computationally challenging. To make our classes
useful in practice, we probably will need to develop some method of simplifying the
computation. Our hope is to construct such a method by extending the ideas from
the effective algorithm of Sabatini and Tolman, [ST], for calculating a basis for the
equivariant cohomology ring.

2.4. Gromov width of polygon spaces. This is a joint project with Alessia Mandini
(Univ. of Pavia).

Polygon space M(r1, . . . , rn) is the moduli space of polygons in R3 with n edges
(n-gons) of lengths (r1, ..., rn). Under some genericity assumptions on the lengths ri,
the polygon space is a symplectic manifold. In fact it is a symplectic reduction of the
Grassmannian manifold of 2-planes in Cn. Moreover an open dense subset of a (smooth)
polygon space can be equipped, in various ways, with a toric Hamiltonian action (see for
example [NU14] for a nice collection of such actions). Using toric actions we construct
explicit symplectic embeddings of balls and therefore establish lower bounds for the
Gromov width of all smooth spaces of 5- and 6-gons, i.e. the capacity of the biggest ball
that symplectically embeds into the manifold (see Section 3.2 for precise definition).
The fact that the moduli spaces of 5- and 6-gons are often toric Fano, or a blow up of a
toric Fano, allows us to use the results of Lu [Lu06, Theorems 1.2 and 6.2] and establish
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upper bounds for the Gromov width of these spaces, (equal to our lower bounds). This
way we establish the Gromov width of almost all 5-gons and a collection of 6-gons.
With the help of Moser trick we extend our result to cover all smooth spaces of 5-gons.
We are currently searching for tools to extend our result to all 6-gons, and to higher
dimensional polygon spaces.

2.5. Symplectomorphisms among 3-stage Bott towers. This is a joint project
with Susan Tolman (Univ. of Illinois at Urbana-Champaign)

We use the toric degeneration construction of Harada and Kaveh [HK12] to construct
symplectomorphisms between certain 3-stage Bott towers. The goal is to show that
if the cohomology rings over Z, and one simple numerical invariant agree, then the
manifolds are symplectomorphic. It was already proved by S. Choi, M. Masuda and
D. Suh in [CMS10, Theorem 1.3] that they are diffeomorphic.

3. Research contained in PhD thesis

3.1. Equivariant Cohomology. One of the fundamental invariants for manifolds
with group actions is the equivariant cohomology ring, H∗T (M). In the case of Hamil-
tonian torus actions, this invariant can be presented in two different ways. One is as a
subring of H∗T (MT ), namely the image of an injective map H∗T (M)→ H∗T (MT ) induced
by the inclusion of the fixed points ([Ki84]). If there are d isolated fixed points then
H∗T (MT ;R) = ⊕dj=1R[x1, . . . , xn], where n is the dimension of the torus acting, thus
H∗T (M) is a subring of a well-understood ring. This description is especially nice for
GKM actions ([GKM98]). Another presentation is also provided by Kirwan who, us-
ing Morse theory for the components of the momentum map, constructed equivariant
cohomology classes forming a basis for the integral equivariant cohomology ring of M .

I used the Kirwan’s generating classes to give necessary and sufficient conditions for
f = (f1, . . . , fd) ∈ ⊕dj=1Q[x1, . . . , xn] = H∗T (MT ;Q) to be in the image of the inclusion

H∗T (M ;Q) ↪→ H∗T (MT ;Q), i.e. to represent an equivariant cohomology class of M
([P14]). In the case of circle actions, this result is also valid for integral coefficients.

This algorithm is extremely useful if we are given a GKM action of a torus T and
a subtorus K ↪→ T which acts not in a GKM fashion. The relations describing the
image of H∗T (M) in H∗T (MT ) (i.e. the GKM relations) will not induce all the relations
needed to describe the image of H∗K(M) in H∗K(MK). On the other hand, necessary
and sufficient conditions for f to be in H∗K(M) coming from my algorithm can be easily
obtained from conditions for H∗T (M).

3.2. Gromov width of coadjoint orbits. The Gromov width of (M,ω) is defined
to be the supremum of the set of a’s such that a ball of capacity a:

B2n
a =

{
z ∈ Cn

∣∣∣ π n∑
i=1

|zi|2 < a
}

can be symplectically embedded in (M2n, ω).

Existence of Hamiltonian (not necessarily toric) torus action on M allows one to
construct explicitly symplectic embeddings balls (use the flow of vector fields induced
by the action; [KT05]). This use of equivariant techniques leads to establishing lower



6 MILENA PABINIAK

bounds on the Gromov width. Holomorphic techniques provide upper bounds. In my
thesis, I studied the Gelfand-Tsetlin integrable system and the toric action it induces
on the open dense subset of the coadjoint orbits ([GS83],[K00]). I proved a lower bound
for the Gromov width for regular coadjoint orbits of U(m) and of SO(m) which is equal
to the conjectured Gromov width. Later I extended this result to almost all coadjoint
orbits of U(m) or SO(m).

Theorem 3.1. [P14] Let G be U(m) or SO(m) with the maximal torus T . Let Oλ ⊂ g∗

be an orbit of the coadjoint G action through a point λ in the positive Weyl chamber.
Then the Gromov width of Oλ is at least the minimum

min{ |〈α∨, λ〉| ; α∨ a coroot}
for any λ in U(m) case, and for “almost all” λ in the SO(m) case (see [P14] for precise
formulation.)

This particular lower bound is important for the following reasons:
- The above value is the Gromov width of complex Grassmannians ([KT05]).
- The above value is an upper bound for Gromov width of regular, indecomposable
coadjoint orbits of other simple compact Lie groups (Zoghi [Z10]).
- The above result of Zoghi was recently generalized by Caviedes to cover all coadjoint
orbits of any compact Lie group ([C14]). Therefore
- The Gromov width of all U(m) and almost all SO(m) coadjoint orbits is exactly
equal to the above value.

The result for SO(2m + 1) orbits is especially important. Applying the method of
Karshon and Tolman, [KT05], to the standard, not toric, action of the maximal torus
of SO(2m + 1) gives a lower bound that is smaller than the one claimed in Theorem
3.1. (This is related to the fact that the root system for SO(2m + 1) is non-simply
laced.)
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