
Research Statement

David Mart́ınez Torres

I shall be describing my main research line on Global Lie theory, my sec-
ondary research line on foliations and Picard-Lefschetz theory and my other
research interests, this including my publications, work in progress and research
lines to be pursued in the future.

1 Global Lie theory

Lie theory is one of the most fundamental subjects in mathematics. It is deeply
linked to every branch of geometry, for symmetries of geometric structures are
in most cases encoded by Lie groups. Moreover, spaces intimately related to Lie
groups play a prominent role in important areas of geometry: this is the case
for example of symmetric and homogeneous spaces in Riemannian geometry,
coadjoint orbits in symplectic geometry and the coadjoint representation in
Poisson geometry.

My current research addresses global aspects of the relation between sym-
plectic groupoids and Poisson structures and their interaction with various ge-
ometries. This amounts to a very broad generalization of the relation between
the symplectic geometry of the cotangent bundle of a compact Lie groupoid
and the Poisson geometry of its coadjoint representation. A large number of
topics -some of them seemingly unrelated- are coming together in my research,
interacting in a most exciting way, and opening many avenues to be explored.
The list includes:

• Poisson geometry and symplectic lie groupoids.

• Lie groupoids and regular resolutions.

• Integral affine geometry.

• Nielsen realization problem and moduli of K3 surfaces.

• Homotopy theory of diffeomorphism groups of compact coadjoint orbits.

• Chern Weyl theory, equivariant cohomology and Schubert calculus.

1.1 Poisson geometry and Lie groupoids

A Poisson structure on a manifold makes precise the notion of a possibly singular
foliation by symplectic leaves, the latter being the submanifolds to which Hamil-
tonian vector fields are tangent. Poisson geometry is an old subject which goes
back to the discovery of Poisson brackets [52]. It has had a rapid development
in its last decades due to strong connections among others with deformation
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quantization theory [6], singularity theory [56], completely integrable systems
[19] and generalized complex geometry [25]. It is this many links what makes
nowadays Poisson geometry a central subject and what explains why advances
in Poisson geometry are bound to have deep impact in a number of different
areas.

In sharp contrast with symplectic geometry, the flexibility of Poisson struc-
tures prevents the existence of a rich general theory which applies in a satisfac-
tory manner, more so when it comes to global or semi-local questions: invariants
such as Poisson cohomology [55] and the obstruction to the existence of inte-
grable systems realizing regular Poisson manifolds [15] are hardly computable;
semi local normal form theorems only apply in very particular situations [14];
there is no satisfactory deformation theory.

Clarifying the existence of a class of Poisson manifolds rigid enough to pos-
sess a rich general theory is a capital problem. My research is proving that the
class of Poisson manifolds of compact type (henceforth PCMT) solves such fun-
damental question. It is laying both a powerful general theory [10, 11, 12] and
methods to construct PMCT [13]. The novelty and key feature in my approach
is the use of Lie groupoids and a blend of tools coming from integral affine geom-
etry, singularity theory, complex geometry, foliation theory, algebraic topology,
Chern Weyl theory, equivariant cohomology and Schubert calculus.

Lie groupoids -generalizations of Lie groups formalizing the notion of par-
tial symmetry- appear in the picture because a Poisson structure on a manifold
defines a Lie algebroid structure on its cotangent bundle. Not all Lie algebroids
integrate into a Lie groupoid [8, 9]. If the Lie algebroid of a Poisson structure
is integrable, the maximal or canonical integration carries a multiplicative sym-
plectic structure [9]; for example the linear Poisson structure on the dual of the
Lie algebra of a Lie group G is integrable, and its canonical symplectic integra-
tion is (T ∗G, dλ), where G is the 1-connected Lie group integrating the given
Lie algebra, and dλ is the canonical symplectic 2-form on a cotangent bundle.

A PMCT is defined as an integrable Poisson manifold whose canonical Lie
groupoid is compact (and Hausdorff). While the definition of PMCT is simple,
their study falls into the very challenging problem of relating global properties
of Lie groupoids to global properties of their Lie algebroids, an area in which I
have already made contributions [39].

Seen from a different perspective my research addresses foundational ques-
tions for a multiplicative version of symplectic topology: drawing global con-
sequences for a compact Lie groupoid from the existence of a multiplicative
symplectic form (obstructions), and providing explicit constructions of compact
Lie groupoids endowed with multiplicative symplectic structures. These results
and the many tools needed to prove them will have important consequences in
many fields.

1.2 Lie groupoids and regular resolutions

Lie groupoids appear often in classification of geometric structures, when it
is important to know not only when two objects are equivalent, but in how
many ways they are equivalent. The manifold of objects of a Lie groupoid
carries a (possibly singular) characteristic foliation, each leaf being a connected
component of objects in the same equivalent class. It is of great importance
to have as much information as possible on the leaf space of a Lie groupoid.
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Of course, this task is easier if the Lie groupoid is regular, meaning that the
characteristic foliation is a regular foliation.

A proper Lie groupoid is the generalization of a proper group action of a Lie
group on a manifold. Another aspect of my current research is the introduction
for any proper symplectic groupoid G ⇒M of a regular resolution [13]. This is
by definition a proper regular (presymplectic) Lie groupoid mapping onto G ⇒
M diffeomorphically over the regular part, and inducing a homeomorphism of
leaf spaces. In other words, it can be understood as a resolution of singularities of
the leaf space M/G. More generally, in [13] for any proper Lie groupoidH⇒ Y a
canonical partial regular resolution is constructed (a global version of the Weyl’s
covering theorem [18]). This partial resolution induces a homeomorphism of leaf
spaces and has a minimality property, so it should be understood as the proper
Lie groupoid with the least singular characteristic foliation and leaf space Y/H.

Certainly, this construction should become a fundamental tool for the study
of proper Lie groupoids. More specifically, I will be addressing possible ap-
plications to quantization of proper Lie groupoids and complex analogs of the
construction (which should extend the Grothendieck simultaneous resolution).

1.3 Integral affine geometry

An integral affine structure on a manifold is given by an atlas whose changes
of coordinates are integral affine transformations, meaning that the linear part
of the affine transformation must have integer coefficients. After a period of in-
tense activity and important results [21, 22, 23], the interest in (integral) affine
structures receded mostly because of the difficulty in proving the main conjec-
tures in the field, the Auslander and the Markus conjectures on the structure
of the fundamental group and the developing map on an affine manifold.

Any Lagrangian torus fibration induces an integral affine structure on its
base [17]. Integral Poisson structures enter in Poisson geometry in a similar
fashion: If a regular Poisson manifold is integrated by a regular symplectic Lie
groupoid with compact (source) fibers, then its leaf space admits the structure
of an integral affine orbifold [58]. An important consequence of the existence of
the regular resolution [13], is that the leaf space of a Poisson manifold integrated
by a symplectic Lie groupoid with compact fibers is always an integral affine
manifold [11], despite the characteristic foliation being singular.

The role of integral affine geometry is crucial in my study of PMCT, since
it is the unique geometric tool which allows us to go from semilocal to global
considerations [11].

In the other direction, Lie groupoids are the right framework for integral
affine geometry, since they permit to reformulate the whole theory in a global
manner (without choices). I shall be addressing the application of the Lie
groupoid viewpoint to (integral) affine geometry.

1.4 Nielsen realization problem and moduli of K3 surfaces

The Nielsen realization problem in its more general form, asks for when a given
closed manifold F there exists over a given subgroup of the mapping class group
Diff(F)/Diff(F)

0
-or more generally over a subgroup of automorphisms of the

cohomology ring- a right inverse to the map from the group of diffeomorphisms
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to the mapping class group (respectively the group of automorphism of the co-
homology ring). A famous result of Kerchoff [34] states that for a closed surface
any finite group of the mapping class group admits a lift to the group of diffeo-
morphisms. Later, Morita [49] showed that a right inverse does not exist over
the whole mapping class group, since it is obstructed by certain characteristic
classes.

When F is the 4-manifold underlying a K3 surface, a result in the spirit of
Morita [20], asserts that there is no right inverse from the mapping class group
of a K3 surface to the group of diffeomorphisms. Making extensive use of the
refined moduli space of marked K3 surfaces [3], I have constructed right inverses
over subgroups of the group of automorphism of the cohomology ring of a K3
surface [12]. The relation with my research in Poisson geometry, is that those
right inverses give rise to fibrations K3 ↪→ M → B over an integral affine tori
with fiber the K3, and the fibers are nothing but the leaves of the characteristic
foliation of a Poisson structure of compact type that can be constructed on M .

These families of K3 are very different from the known ones in complex
geometry, since the cohomology class of the real part of the holomorphic sym-
plectic structure varies from fiber to fiber (and the base B is compact). I will be
addressing the existence of other interesting structures in these families, such
as Riemannian metrics or generalized complex structures.

1.5 Homotopy theory of diffeomorphism groups of com-
pact coadjoint orbits

In the theory of PMCT, homogeneous bundles over symplectic manifold are
of great importance, since a semi-local normal form asserts that these spaces
are the building blocks of PMCT [10]. The simplest non-trivial case is that of
homogeneous bundles over the 2-sphere. It is natural to investigate how many
of these building blocks we have. In other words, given G a compact, connected
semisimple Lie group and O a coadjoint orbit, it is important to know whether
for different principal G bundles the associated bundles with fiber O are different
or not. And one can ask whether they are different as Hamiltonian bundles or
just as bundles. Since a principal G bundle over the sphere can be identified
with a homotopy class in π1(G), the question is whether the natural maps

π1(G)→ π1(Ham(O, ωO)), (1)

ωO the Konstant-Kirillov-Souriau symplectic form, and

π1(G)→ π1(Diff(O)), (2)

are injective. The question on the injectivity of (1) was raised by Weinstein [57],
and answered in the positive [50] (see also [7]).

Observe that the analysis of the injectivity of (2) is important in several areas
of mathematics. For Poisson geometry because of the aforementioned study of
building blocks of PMCT. For symplectic geometry because a central problem
in the field is to understand how the group of Hamiltonian diffeomorphism sits
inside other classical groups. For topology because groups of diffeomorphisms of
closed manifold are Hilbert manifolds, and therefore much of their topological
properties are controlled by their homotopy theory.

When G is a classical group I have shown that (2) is injective [46], and I
expect the injectivity to hold for all compact, connected semisimple Lie groups.
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1.6 Chern Weyl theory, equivariant cohomology and Schu-
bert calculus

Perhaps the most classical algebraic invariant to distinguish spaces is cohomol-
ogy (homology). In my research on homogeneous bundles over the 2-sphere,
cohomology with integral coefficients is the tool to distinguish the trivial bun-
dle S2 × O with fiber a coadjoint orbit of a compact, connected, semisimple
Lie groupoid, from the associated bundle Y coming from a twisted principal
G-bundle.

More precisely, the use of Wang long exact sequence exhibits the integral
cohomology ring of Y as an extension of the integral cohomology ring of the
flag variety O by itself, the latter viewed as an H∗(O;Z) module.

Chern-Weyl theory appears when we pass to rational coefficients, since the
Chern-Weyl homomorphism (Borel homomorphism) identifies the rational co-
homology of Y with the rational cohomology of the trivial bundle [27]. Hence
the problem is a fine one, since we must distinguish spaces whose rational co-
homology is identical by carefully comparing their integral cohomology. This
comparison is delicate, since already for flag varieties the Borel homomorphism
cannot quite describe the integral cohomology [5, 54]. Therefore methods from
Schubert calculus are being extended from flag varieties [4] to our more general
setting of homogeneous fibrations over the 2-sphere. Together with localization
techniques in equivariant cohomology, they are the main tools for the delicate
computations we are carrying out [46].

Part of the previous strategy does extend to study the torsion part of
π1(Diff(F )), where F is a closed orientable manifold whose cohomology ring
is concentrated in even dimensions, and satisfies the strong Lefschetz property.
I intend to explore such generalization.

2 Foliations and Picard-Lefschetz theory

There is no Morse theory for foliations. As a result most of the constructions
of differential topology cannot be carried to foliations.

The analog of Morse theory for complex projective manifolds is Picard-
Lefschetz theory. Very much as a Morse function on a compact manifold fur-
nishes a CW complex decomposition of the manifold, a Lefschetz pencil struc-
ture on a projective manifold presents it (possibly after a blow up) as a family
of codimension one subvarieties over the complex projective line.

My research on foliation theory is centered about codimension 1 foliations
(M,F) which admit a closed 2-form making each leaf symplectic, referred to as
2-calibrated foliations. These are in particular Poisson manifolds, but of a very
special kind. A very important feature is that there is a Picard-Lefschetz theory
for them [37] and therefore some constructions of differential topology can be
carried out. The topics which arise in my research on foliations include:

• Approximately holomorphic geometry.

• Gluing techniques for Poisson and related structures.

General codimension one foliations do not posses “submanifolds”, these
defined as submanifolds inheriting a codimension one foliation (transverse to
the foliation). Picard-Lefschetz theory provides submanifolds for our class of
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2-calibrated foliations, and most surprisingly these submanifolds capture the
topology of the leaf space (M,F) [37].

The leaf space of a foliation (M,F) is the leaf space of its holonomy groupoid
[48]. My current research [44] aims at proving that the submanifolds provided
by Picard-Lefschetz theory capture not just the leaf space of (M,F), but the
transverse geometry of the foliation. In other words, the injection of the subman-
ifold in M should provide an essential equivalence between the corresponding
holonomy groupoids.

2.1 Approximately holomorphic geometry for symplectic
and related structures

In recent years there has been an enormous success in the study of closed sym-
plectic manifolds using approximately holomorphic methods. These methods
-introduced by S. Donaldson in 1996 [16]- amount to treating symplectic man-
ifolds as generalizations of Kähler manifolds. It is convenient to think of a
symplectic manifold -once a compatible almost complex structure J has been
fixed- as a Kähler manifold (X, J, ω) for which the integrability condition for
J has been dropped. Assuming [ω] to be an integral class, and very much as
in a Hodge manifold, there is an associated very ample complex line bundle.
Of course in general there will not be J-holomorphic sections, but nevertheless
it is possible to find sequences of sections which asymptotically behave as J-
holomorphic ones. Moreover, among them it is possible to find linear systems
with suitable genericity conditions. In particular one can construct sections
transverse to the zero section to produce symplectic submanifolds, rank one
generic linear systems to introduce an analog of Picard-Lefschetz theory, etc.

I have done research to extend approximately holomorphic theory to odd
dimensional versions of symplectic geometry: these include contact structures,
the codimension one foliations referred to in the previous section, and more
generally manifolds with a closed 2-forms and a codimension one distribution
which is symplectic with respect to the 2-form (“2-calibrated structures”).

My work in approximately holomorphic geometry includes: A proof of the
existence of contact submanifolds of closed contact manifolds [32], a general-
ization of the famous Giroux’ open book decompositions in contact geometry
to 2-calibrated structures [35], a construction of contact embeddings of closed
contact manifolds endowed Giroux’ open book decompositions, in standard con-
tact spheres endowed with the standard linear open book decompositions [41],
an extension of Picard-Lefschetz theory and the construction of generic linear
systems of any rank to 2-calibrated manifolds [30, 31, 38] and the construction
of generic linear systems for projective CR manifolds (CR manifolds embedded
in complex projective space) of hypersurface type [40].

2.2 Gluing techniques for Poisson and related structures

In manifold theory one can produce a new manifold by giving two manifolds
with boundary, and an isotopy class of diffeomorphisms of the boundary. Surg-
eries are instances of this construction: one starts with an n-manifold and an
embedded (k-1)-sphere with framed trivial normal bundle. A small tubular
neighborhood of the sphere is drilled out to produce a manifold with boundary.
The second manifold is the k-handle Dk ×Dn−k; the gluing map between the
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boundaries is determined by the chosen framing [24]. These gluing procedures,
most notably surgeries, have been shown to be extremely useful to describe the
topology of higher dimensional manifolds, i.e those with dimensions bigger or
equal than five.

For a given geometric structure without local invariants it is a relevant prob-
lem to explore which gluing constructions are compatible with it. The absence
of local invariants is often reflected in the large size of the group of symmetries
of the structure, and in the existence of normal forms around certain kinds of
submanifolds. Therefore one may be able to isotope the gluing diffeomorphism
into morphisms of the structure. The consequence is that new manifolds carry-
ing such type of structure can be produced, and in some situations with control
over some of their topological invariants.

I have adapted to Poisson geometry Gompf’s normal connected sum of sym-
plectic manifolds [29], proving in particular that any finitely presented group
is the fundamental group of a 5-dimensional regular Poisson manifold with 4-
dimensional symplectic leaves. I have also introduced a couple of surgeries for
2-calibrated foliations to show that this class of foliations is large enough. The
surgeries are an analog of the normal connected sum and a Lagrangian or gen-
eralized Dehn surgery, the latter very much related to the monodromies around
critical points arising from Picard-Lefschetz theory [37].

Very recently, the 5-sphere has been shown to admit a regular Poisson struc-
ture with 4-dimensional symplectic leaves [47], and with characteristic foliation
one of Lawson’s foliations. This constructions raises very natural questions
which I plan to explore. Namely, whether there is an alternative construction
of such Poisson structure using the surgeries the generalized Dehn surgery in-
troduced in [37], and how to generalize the construction to higher dimensional
spheres.

Another aspect of generalized Dehn surgery which I will be exploring, is
its use to build new examples of 4-dimensional b-symplectic with prescribed
hypersurface of non-symplectic points [26].

3 Other research interest

Apart from my main and secondary research lines, I have conducted research in
the following fields:

3.1 Symplectic and locally conformal symplectic geometry

A question I have been interested in is momentum maps for Hamiltonian actions.
In [33], I showed that for a closed symplectic manifold whose symplectic form
is integral, all integrable Hamiltonian systems with compact symmetry group
exhibit asymptotically polynomial integrability. That is, the momentum map
can be uniformly approximated by polynomials.

Very important symplectic manifolds are constructed by infinite dimensional
symplectic reduction. The first example is the space of flat connections on
G-bundles over Riemann surfaces [1]; another important example, closer my
research, is the construction of symplectic groupoids of integrable Poisson man-
ifolds [9]. More generally, there is a whole philosophy advocating the use of
“standard” constructions in symplectic and Riemannian geometry, to approach
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very important and difficult problems in Kahler geometry. In [42], I noticed
that a very simple construction in symplectic geometry, namely that around a
fixed point of a Hamiltonian action the linearized action is Hamiltonian with
momentum map the quadratic expansion of the momentum map for the action,
extends to the Frechet setting. In this way, and using work on the symplectic ge-
ometry of non-linear Grassmannian of symplectic submanifolds of a symplectic
manifold [28], I gave a conceptual explanation of a well known momentum map
for the action of the Lie algebra of Hamiltonian vector fields of a closed integral
symplectic manifold on the space of sections of its prequantum line bundle.

A locally conformal symplectic structure on a manifold is given by a non-
degenerate 2-form which locally is conformal to a closed 2-form. These struc-
tures were first introduced in the complex setting, since there were non-Kahler
surfaces such as the Hopf manifolds, which had natural Hermitian metrics lo-
cally conformal to Kahler ones. A fundamental result in symplectic geometry
is the theorem of Tischler and Gromov on the existence of symplectic embed-
dings of integral closed symplectic manifolds on projective space (the analog of
Kodaira’s embedding theorem). In [45], I have proved an analog in the locally
conformal setting of Tischler and Gromov embedding theorem. Using the ap-
propriate version of Moser’s theorem [2], I have related my construction with
work of Ornea and Verbitsky on embeddings of an appropriate class of locally
conformal Kahler manifolds on linear Hopf manifolds [51].

3.2 Non-degenerate vector fields of top degree

On a compact manifold volume forms are classified by their total volume. Du-
ally, a similar classification holds for no-where vanishing top degree multivector
fields. The next interesting class of top degree multivector fields are those van-
ishing transversely. In dimension two, this is the class of topologically stable
Poisson structures introduced and classified in [53]. In [36] I extended the results
in [53] and classified multivector fields vanishing transversely.

3.3 Convexity in complex geometry

Convexity of a bounded domain Ω of Euclidean space is an affine notion, and two
approaches are possible: a global or synthetic one in which the intersection of Ω
with any affine line is asked to be either empty of connected, and an infinitesimal
or analytical one which assumes ∂Ω to be a C2-hypersurface, and requires its
Euclidean shape operator to be definite positive at every point. Convexity can
be generalized to the complex setting in two different ways, according to whether
we want it to be a complex analytic or a complex affine property. In the first
case the appropriate notion is that of (Levi) pseudoconvexity. In the second case
the correct notion is C-convexity: a bounded connected open subset Ω ⊂ CN is
C-convex if the intersection of Ω with any complex affine line is either empty
or 1-connected; the infinitesimal approach asks the restriction of the Euclidean
shape operator to the subspace of complex tangencies J(Tx∂Ω) ∩ Tx∂Ω to be
positive definite. The novelty in [43] is the study of strict C-convex domains
using the differential geometry of the complex Gauss map, rather than the
classical methods of 1-variable complex analysis (Riemann mapping theorem).
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