GEOMETRIA SIMPLÉCTICA

EXAME

6 DE JUNHO DE 2008

INSTRUCÕES:

- * Entregar até às 16h do dia 11 de Junho 2008 no meu gabinete.
- * As respostas são individuais, podendo apenas consultar apontamentos pessoais ou livros.
- * Apresente todos os cálculos e justificações relevantes.
- * Excepto quando especificado, todas as variedades, aplicações, funções, fluxos, campos vectoriais, formas, etc. são consideradas diferenciáveis.

Isotopias e campos vectoriais simplécticos

1. Seja (M,ω) uma variedade simpléctica e $\{\psi_t\}_{t\in[0,1]}$ uma isotopia de simplectomofismos de M gerada por uma família de campos vectoriais simplécticos $X_t:M\to TM$, i.e. $\frac{d\psi_t}{dt}=X_t\circ\psi_t$ com $d(\iota(X_t)\omega)=0$. Então o **fluxo** de $\{\psi_t\}$ é definido por

$$\mathsf{Flux}(\{\psi_t\}) := \int_0^1 [\iota(X_t)\omega] dt \in H^1(M,\mathbb{R}).$$

(a) Seja $\gamma:S^1\to M$ uma curva fechada arbitrária e considere a aplicação $\beta:[0,1]\times S^1\to M$ definida por $\beta(t,s)=\psi_t(\gamma(s))$ (i.e. $\gamma_t(s):=\beta(t,s)$ é a imagem de γ por ψ_t). Mostre que

(1)
$$(\operatorname{Flux}(\{\psi_t\})([\gamma]) = \int \int_{[0,1]\times S^1} \beta^* \omega.$$

Nota: Note que o lado direito desta fórmula é a área simpléctica descrita pela família de curvas fechadas γ_t , pelo que (1) implica que esta área apenas depende da classe de homologia $[\gamma]$.

(b) Considere o simplectomorfismo de $(T^*S^1, \omega_{\mathsf{can}})$ dado por uma translacção ao longo das fibras

$$\psi(x,\xi^*) = (x,\xi^* + k)$$

com $(x,\xi^*)\in T^*S^1\cong S^1\times\mathbb{R}$ e $k\in\mathbb{R}$ fixo. Mostre que não existe nenhuma família de campos vectoriais X_t em T^*S^1 que gere uma isotopia Hamiltoniana i.e. uma família ψ_t de simplectomorfismos de T^*S^1 tal que $\psi_0=\operatorname{id}$, $\psi=\psi_1$ e $\iota(X_t)\omega=dH_t$ para uma família de funções $H_t:M\to\mathbb{R}$.

- 2. Seja (M, ω) uma veriedade simpléctica compacta e $\{\Sigma_t\}_{t\in[0,1]}$ uma família suave de subvariedades simplécticas compactas de M.
 - (a) Assumindo o resultado clássico de que existe uma isotopia de difeomorfismos $\psi_t: M \to M$ tal que $\psi_t(\Sigma_0) = \Sigma_t$ e considerando as formas $\omega_t = \psi_t^* \omega$, mostre

que existe uma família de campos vectoriais X_t tal que

$$d(\iota(X_t)\omega_t) = -\frac{d\omega_t}{dt}.$$

- (b) Considere o fibrado $(T\Sigma_0)^\omega\subset (TM)|_{\Sigma_0}$ cuja fibra em $p\in \Sigma_0$ é $(T_p\Sigma_0)^\omega$ (i.e. o espaço ortogonal simpléctico de $T_p\Sigma_0$. Mostre que um campo vectorial X é tangente a Σ_0 se e só se, para todo o $p\in \Sigma_0$, a restrição da forma-1 $\iota(X)\omega$ a $(T\Sigma_0)^\omega$ é zero.
- (c) Assuma que, dada uma família de formas-1 $\alpha_t \in \Omega^1(M)$, existe uma família de funções diferenciáveis $f_t: M \to \mathbb{R}$, que depende suavemente de t, tal que, para todo o $p \in \Sigma_0$, a restrição de df_t a $(T\Sigma_0)^\omega$ é igual à restrição de α_t . Mostre que os campos vectoriais de (a) podem ser escolhidos tangentes a Σ_0 .
- (d) Mostre que existe uma isotopia ϕ_t de simplectomorfismos de M tal que $\phi_t(\Sigma_0) = \Sigma_t$.

Estruturas quase complexas

3. Seja (M,ω) uma variedade simpléctica, J uma estrutura quase complexa compatível e g a métrica Riemanniana correspondente (i.e. $g(\cdot,\cdot)=\omega(\cdot,J\cdot)$). Sejam N e N' duas subvariedades compactas de dimensão 2 de M, fechadas, orientadas e tal que

$$\int_{N} \omega = \int_{N'} \omega.$$

Assumindo que $J(TN) \subset TN$ (i.e. que N é uma subvariedade quase complexa de M) e que a orientação de N coincide com a orientação induzida por J, mostre que

$$\mathsf{Vol}_g(N) \leq \mathsf{Vol}_g(N').$$

Sugestão: Compare as restrições de ω a Σ' e a Σ com o respectivos elementos de volume induzidos por g.

Nota: Note que este exercício prova que as subvariedades quase-complexas de dimensão 2 de M minimizam o volume na sua classe de homologia.

4. Seja (M,ω) uma variedade simpléctica, J uma estrutura quase complexa compatível e g a métrica Riemanniana associada a ω e a J. Dada uma função $H:M\to\mathbb{R}$, sejam X_H e gradH o campo vectorial Hamiltoniano associado a H e o gradiente Riemanniano de H i.e.

$$\omega(X_H,\cdot)=dH(\cdot)=g(\mathrm{grad}H,\cdot).$$

Mostre que

$$\operatorname{grad}(H) = JX_H \quad \text{e} \quad \iota(\operatorname{grad} H)\omega = i(\overline{\partial} - \partial)H.$$

5. Seja (M,J) uma variedade complexa e $f:M\to\mathbb{R}$ uma função estritamente plurisubharmónica, i.e. uma função para a qual a forma $\omega_f=\frac{i}{2}\partial\overline{\partial}f$ de tipo (1,1) é simpléctica e compatível com J em M. Seja gradf o gradiente de f definido em

relação à métrica Riemanniana em M dada por $g(\cdot, \cdot) = \omega_f(\cdot, J \cdot)$. Supondo que existe, mostre que o fluxo a 1-parâmetro ϕ_t , $t \in \mathbb{R}$, de grad f satisfaz

$$\phi_t^* \omega_f = e^{4t} \omega_f.$$

Acções Hamiltonianas em variedades simplécticas

- 6. Seja G=SO(3) e considere a identificação usual de \mathfrak{g} e \mathfrak{g}^* com \mathbb{R}^3 . Relembre que, com esta identificação, a acção coadjunta de G é a acção usual de SO(3) em R^3 por rotações e que então as orbitas coadjuntas são as esferas $S_r^2 \subset \mathbb{R}^3$ de raio r>0.
 - (a) Mostre que, dado $\xi \in S^2_r$ e $v \in T_\xi S^2_r$, o vector

$$X = \frac{\xi \times v}{||\xi||^2}$$

é um elemento de $\mathfrak g$ cujo vector fundamental X^\sharp em ξ é igual a v.

Sugestão: Utilize a identidade em \mathbb{R}^3

$$A \times (B \times C) = B(A \cdot C) - C(A \cdot B).$$

(b) Mostre que neste caso a forma simpléctica canónica na orbita coadjunta de $\xi \in \mathfrak{g}^*$ é dada por

$$\omega_{\xi} = d\theta \wedge dh$$
.

(c) Para $\alpha=(\alpha_1,\ldots,\alpha_m)\in(\mathbb{R}_+)^m$ fixo considere as esferas $S^2_{\alpha_i}\subset\mathbb{R}^3$ de raio α_i com a forma simpléctica standard de volume $2\alpha_i$. Seja $P(\alpha)$ a variedade produto

$$P(\alpha) = \prod_{i=1}^{m} S_{\alpha_i}^2 \subset (\mathbb{R}^3)^m$$

com a forma simpléctica do produto. Podemos pensar num elemento de $P(\alpha)$ como um caminho poligonal em R^3 que começa na origem e tem m "passos" sucessivos de comprimento α_i . Considere a acção diagonal de SO(3) em $P(\alpha)$. Mostre que esta acção é Hamiltoniana e determine a sua aplicação momento μ .

(d) Diz-se que α é genérico se a equação

$$\sum_{i=1}^{m} \epsilon_i \alpha_i = 0$$

não tiver solução com $\epsilon_i=\pm 1$. Para um valor de α genérico descreva o espaço reduzido

$$\mu^{-1}(0)/SO(3)$$

quando m=3 e m=4.

7. (a) Considere um polítopo de Delzant $\Delta \subset \mathbb{R}^n$ com um vértice em p. Sejam u_1,\ldots,u_n os vectores primitivos geradores das arestas que se intersectam em p. Corte este canto de modo a obter um novo polítopo com os mesmos vértices de Δ à excepção de p, e com n novos vértices

$$p + \varepsilon u_j, \quad j = 1, \dots, n,$$

em que ε é um número positivo próximo de zero. Mostre que este novo polítopo também é um polítopo de Delzant.

Nota: A variedade tórica correspondente diz-se o ε -blow-up da variedade tórica original.

- (b) Considere o polítopo de vértices (0,0), (2,0), (0,1) e (1,1). Qual a variedade tórica W correspondente?
- (c) Construa a variedade W por redução simpléctica de \mathbb{C}^4 em relação a uma acção de T^2 .
- (d) Mostre que W é um fibrado sobre $\mathbb{C}P^1$ de fibra $\mathbb{C}P^1$.