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Preface

This book is based on a one-semester course taught since 2002 at In-
stituto Superior Técnico (Lisbon) to mathematics, physics and engineering
students. Its aim is to provide a quick introduction to differential geometry,
including differential forms, followed by the main ideas of Riemannian geom-
etry (minimizing properties of geodesics, completeness and curvature). Pos-
sible applications are given in the final two chapters, which have themselves
been independently used for one-semester courses on geometric mechanics
and general relativity. We hope that these will give mathematics students
a chance to appreciate the usefulness of Riemannian geometry, and physics
and engineering students an extra motivation to learn the mathematical
background.

It is assumed that the readers have basic knowledge of linear algebra,
multivariable calculus and differential equations, as well as elementary no-
tions of topology and algebra. For their convenience (especially physics and
engineering students), we have summarized the main definitions and results
from this background material at the end of each chapter as needed.

To help the readers test and consolidate their understanding, and also
to introduce important ideas and examples not treated in the main text, we
have included more than 330 exercises, of which around 140 are solved in
the appendix (the solutions to the full set are available for instructors). We
hope that this will make this book suitable for self-study, while retaining a
sufficient number of unsolved exercises to pose a challenge.

We now give a short description of the contents of each chapter.
Chapter 1 discusses the basic concepts of differential geometry: differ-

entiable manifolds and maps, vector fields and the Lie bracket. In addition,
we give a brief overview of Lie groups and Lie group actions.

Chapter 2 is devoted to differential forms, covering the standard topics:
wedge product, pull-back, exterior derivative, integration and the Stokes
theorem.

Riemannian manifolds are introduced in Chapter 3, where we treat the
Levi-Civita connection, minimizing properties of geodesics and the Hopf-
Rinow theorem.

Chapter 4 addresses the notion of curvature. In particular, we use the
powerful computational method given by the Cartan structure equations to
prove the Gauss-Bonnet theorem. Constant curvature and isometric embed-
dings are also discussed.
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4 PREFACE

Chapter 5 gives an overview of geometric mechanics, including holo-
nomic and non-holonomic systems, Lagrangian and Hamiltonian mechanics,
completely integrable systems and reduction.

Chapter 6 treats general relativity, starting with a geometric introduc-
tion to special relativity. The Einstein equation is motivated via the Cartan
connection formulation of Newtonian gravity, and the basic examples of the
Schwarzschild solution (including black holes) and cosmology are studied.
We conclude with a discussion of causality and the celebrated Hawking and
Penrose singularity theorems, which, although unusual in introductory texts,
are very interesting applications of Riemannian geometry.

Finally, we want to thank the many colleagues and students who read
this text, or parts of it, for their valuable comments and suggestions. Special
thanks are due to our colleague and friend Pedro Girão.



CHAPTER 1

Differentiable Manifolds

In pure and applied mathematics, one often encounters spaces that lo-
cally look like Rn, in the sense that they can be locally parameterized by n
coordinates: for example, the n-dimensional sphere Sn ⊂ Rn+1, or the set
R3 × SO(3) of configurations of a rigid body. It may be expected that the
basic tools of calculus can still be used in such spaces; however, since there
is, in general, no canonical choice of local coordinates, special care must
be taken when discussing concepts such as derivatives or integrals, whose
definitions in Rn rely on the preferred Cartesian coordinates.

The precise definition of these spaces, called differentiable manifolds,
and the associated notions of differentiation, are the subject of this chapter.
Although the intuitive idea seems simple enough, and in fact dates back
to Gauss and Riemann, the formal definition was not given until 1936 (by
Whitney).

The concept of spaces that locally look like Rn is formalized by the
definition of topological manifolds: topological spaces that are locally
homeomorphic to Rn. These are studied in Section 1, where several examples
are discussed, particularly in dimension 2 (surfaces).

Differentiable manifolds are defined in Section 2 as topological mani-
fold whose changes of coordinates (maps from Rn to Rn) are smooth (C∞).
This enables the definition of differentiable functions as functions whose
expressions in local coordinates are smooth (Section 3), and tangent vec-
tors as directional derivative operators acting on real-valued differentiable
functions (Section 4). Important examples of differentiable maps, namely
immersions and embeddings, are examined in Section 5.

Vector fields and their flows are the main topic of Section 6. A natural
differential operation between vector fields, called the Lie bracket, is de-
fined; it measures the non-commutativity of their flows, and plays a central
role in differential geometry.

Section 7 is devoted to the important class of differentiable manifolds
which are also groups, the so-called Lie groups. It is shown that to each
Lie group one can associate a Lie algebra, i.e. a vector space equipped
with a Lie bracket. Quotients of manifolds by actions of Lie groups are
also treated.

Orientability of a manifold (closely related to the intuitive notion of a
surface “having two sides”) and manifolds with boundary (generalizing
the concept of a surface bounded by a closed curve, or a volume bounded
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6 1. DIFFERENTIABLE MANIFOLDS

by a closed surface) are studied in Sections 8 and 9. Both these notions are
necessary to formulate the celebrated Stokes theorem, which will be proved
in Chapter 2.

1. Topological Manifolds

We will begin this section by studying spaces that are locally like Rn,
meaning that there exists a neighborhood around each point which is home-
omorphic to an open subset of Rn.

Definition 1.1. A topological manifold M of dimension n is a topo-
logical space with the following properties:

(i) M is Hausdorff, that is, for each pair p1, p2 of distinct points ofM
there exist neighborhoods V1, V2 of p1 and p2 such that V1∩V2 = ∅.

(ii) Each point p ∈M possesses a neighborhood V homeomorphic to an
open subset U of Rn.

(iii) M satisfies the second countability axiom, that is, M has a
countable basis for its topology.

Conditions (i) and (iii) are included in the definition to prevent the
topology of these spaces from being too strange. In particular, the Hausdorff
axiom ensures that the limit of a convergent sequence is unique. This, along
with the second countability axiom, guarantees the existence of partitions of
unity (cf. Section 7.2 of Chapter 2), which, as we will see, are a fundamental
tool in differential geometry.

Remark 1.2. If the dimension of M is zero then M is a countable set
equipped with the discrete topology (every subset of M is an open set).
If dimM = 1, then M is locally homeomorphic to an open interval; if
dimM = 2, then it is locally homeomorphic to an open disk, etc.

Example 1.3.

(1) Every open subset M of Rn with the subspace topology (that is,
U ⊂ M is an open set if and only if U = M ∩ V with V an open
set of Rn) is a topological manifold.

(2) (Circle) The circle

S1 = {(x, y) ∈ R2 | x2 + y2 = 1}
with the subspace topology is a topological manifold of dimension
1. Conditions (i) and (iii) are inherited from the ambient space.
Moreover, for each point p ∈ S1 there is at least one coordinate axis
which is not parallel to the vector np normal to S1 at p. The projec-
tion on this axis is then a homeomorphism between a (sufficiently
small) neighborhood V of p and an interval in R.

(3) (2-sphere) The previous example can be easily generalized to show
that the 2-sphere

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}
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(a)

(b)

(c)

Figure 1. (a) S1; (b) S2; (c) Torus of revolution.

with the subspace topology is a topological manifold of dimension
2.

(4) (Torus of revolution) Again as in the previous examples, we can
show that the surface of revolution obtained by revolving a circle
around an axis that does not intersect it is a topological manifold
of dimension 2.

(5) The surface of a cube is a topological manifold (homeomorphic to
S2).

Example 1.4. We can also obtain topological manifolds by identifying
edges of certain polygons by means of homeomorphisms. The edges of a
square, for instance, can be identified in several ways (see Figures 2 and 3):

(1) (Torus) The torus T 2 is the quotient of the unit square Q =
[0, 1]2 ⊂ R2 by the equivalence relation

(x, y) ∼ (x+ 1, y) ∼ (x, y + 1),

equipped with the quotient topology (cf. Section 10.1).
(2) (Klein bottle) The Klein bottle K2 is the quotient of Q by the

equivalence relation

(x, y) ∼ (x+ 1, y) ∼ (1− x, y + 1).

(3) (Projective plane) The projective plane RP 2 is the quotient of Q
by the equivalence relation

(x, y) ∼ (x+ 1, 1− y) ∼ (1− x, y + 1).

Remark 1.5.

(1) The only compact connected 1-dimensional topological manifold is
the circle S1 (see [Mil97]).
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(a)

(b)

∼=

∼=

Figure 2. (a) Torus (T 2); (b) Klein bottle (K2).

∼=

∼= ∼=

Figure 3. Projective plane (RP 2).

(2) A connected sum of two topological manifoldsM andN is a topo-
logical manifoldM#N obtained by deleting an open set homeomor-
phic to a ball on each manifold and gluing the boundaries, which
must be homeomorphic to spheres, by a homeomorphism (cf. Fig-
ure 4). It can be shown that any compact connected 2-dimensional
topological manifold is homeomorphic either to S2 or to connected
sums of manifolds from Example 1.4 (see [Blo96, Mun00]).

If we do not identify all the edges of the square, we obtain a cylinder or
a Möbius band (cf. Figure 5). These topological spaces are examples of
manifolds with boundary.
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# ∼=

Figure 4. Connected sum of two tori.

(a)

(b)

∼=

∼=

Figure 5. (a) Cylinder; (b) Möbius band.

Definition 1.6. Consider the closed half space

Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}.
A topological manifold with boundary is a Hausdorff space M , with a
countable basis of open sets, such that each point p ∈ M possesses a neigh-
borhood V which is homeomorphic either to an open subset U of Hn\∂Hn,
or to an open subset U of Hn, with the point p identified to a point in ∂Hn.
The points of the first type are called interior points, and the remaining
are called boundary points.

The set of boundary points ∂M is called the boundary of M , and is a
manifold of dimension (n− 1).

Remark 1.7.

1. Making a paper model of the Möbius band, we can easily verify
that its boundary is homeomorphic to a circle (not to two disjoint
circles), and that it has only one side (cf. Figure 5).

2. Both the Klein bottle and the real projective plane contain Möbius
bands (cf. Figure 6). Deleting this band on the projective plane, we
obtain a disk (cf. Figure 7). In other words, we can glue a Möbius
band to a disk along their boundaries and obtain RP 2.
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(a) (b)

Figure 6. Möbius band inside (a) Klein bottle; (b) Real
projective plane.

∼=∼=

Figure 7. Disk inside the real projective plane.

Two topological manifolds are considered the same if they are homeo-
morphic. For example, spheres of different radii in R3 are homeomorphic,
and so are the two surfaces in Figure 8. Indeed, the knotted torus can be
obtained by cutting the torus along a circle, knotting it and gluing it back
again. An obvious homeomorphism is then the one which takes each point
on the initial torus to its final position after cutting and gluing (however, this
homeomorphism cannot be extended to a homeomorphism of the ambient
space R3).

∼=

Figure 8. Two homeomorphic topological manifolds.

Exercises 1.8.

(1) Which of the following sets (with the subspace topology) are topo-
logical manifolds?
(a) D2 = {(x, y) ∈ R2 | x2 + y2 < 1};
(b) S2 \ {p} (p ∈ S2);
(c) S2 \ {p, q} (p, q ∈ S2, p 6= q);
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(d) {(x, y, z) ∈ R3 | x2 + y2 = 1};
(e) {(x, y, z) ∈ R3 | x2 + y2 = z2};

(2) Which of the manifolds above are homeomorphic?
(3) Show that the Klein bottle K2 can be obtained by gluing two

Möbius bands together through a homeomorphism of the boundary.
(4) Show that:

(a) M#S2 =M for any 2-dimensional topological manifold M ;
(b) RP 2#RP 2 = K2;
(c) RP 2#T 2 = RP 2#K2.

(5) A triangulation of a 2-dimensional topological manifold M is a
decomposition of M in a finite number of triangles (i.e. subsets
homeomorphic to triangles in R2) such that the intersection of any
two distinct triangles is either a common edge, a common vertex
or empty (it is possible to prove that such a triangulation always
exists). The Euler characteristic of M is

χ(M) := V − E + F,

where V , E and F are the number of vertices, edges and faces of
a given triangulation (it can be shown that this is well defined,
i.e. does not depend on the choice of triangulation). Show that:
(a) adding a vertex to a triangulation does not change χ(M);
(b) χ(S2) = 2;
(c) χ(T 2) = 0;
(d) χ(K2) = 0;
(e) χ(RP 2) = 1;
(f) χ(M#N) = χ(M) + χ(N)− 2.

2. Differentiable Manifolds

Recall that an n-dimensional topological manifold is a Hausdorff space
with a countable basis of open sets such that each point possesses a neigh-
borhood homeomorphic to an open subset of Rn. Each pair (U,ϕ), where
U is an open subset of Rn and ϕ : U → ϕ(U) ⊂ M is a homeomorphism of
U to an open subset of M , is called a parameterization. The inverse ϕ−1

is called a coordinate system or chart, and the set ϕ(U) ⊂M is called a
coordinate neighborhood. When two coordinate neighborhoods overlap,
we have formulas for the associated coordinate change (cf. Figure 9). The
idea to obtain differentiable manifolds will be to choose a sub-collection of
parameterizations so that the coordinate changes are differentiable maps.

Definition 2.1. An n-dimensional differentiable or smooth mani-
fold is a topological manifold of dimension n and a family of parameteri-
zations ϕα : Uα →M defined on open sets Uα ⊂ Rn, such that:

(i) the coordinate neighborhoods cover M , that is,
⋃
α ϕα(Uα) =M ;

(ii) for each pair of indices α, β such that

W := ϕα(Uα) ∩ ϕβ(Uβ) 6= ∅,
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M

W

Uα Uβ

ϕα ϕβ

Rn Rn
ϕ−1
β ◦ ϕα

ϕ−1
α ◦ ϕβ

Figure 9. Parameterizations and overlap maps.

the overlap maps

ϕ−1
β ◦ ϕα : ϕ−1

α (W ) → ϕ−1
β (W )

ϕ−1
α ◦ ϕβ : ϕ−1

β (W ) → ϕ−1
α (W )

are C∞;
(iii) the family A = {(Uα, ϕα)} is maximal with respect to (i) and (ii),

meaning that if ϕ0 : U0 →M is a parameterization such that ϕ−1
0 ◦ϕ

and ϕ−1 ◦ ϕ0 are C∞ for all ϕ in A, then (U0, ϕ0) is in A.

Remark 2.2.

(1) Any family A = {(Uα, ϕα)} that satisfies (i) and (ii) is called a
C∞-atlas for M . If A also satisfies (iii) it is called a maximal
atlas or a differentiable structure.

(2) Condition (iii) is purely technical. Given any atlas A = {(Uα, ϕα)}
on M , there is a unique maximal atlas Ã containing it. In fact, we

can take the set Ã of all parameterizations that satisfy (ii) with

every parameterization on A. Clearly A ⊂ Ã, and one can easily

check that Ã satisfies (i) and (ii). Also, by construction, Ã is
maximal with respect to (i) and (ii). Two atlases are said to be
equivalent if they define the same differentiable structure.

(3) We could also have defined Ck-manifolds by requiring the coordi-
nate changes to be Ck-maps (a C0-manifold would then denote a
topological manifold).

Example 2.3.

(1) The space Rn with the usual topology defined by the Euclidean met-
ric is a Hausdorff space and has a countable basis of open sets. If,
for instance, we consider a single parameterization (Rn, id), condi-
tions (i) and (ii) of Definition 2.1 are trivially satisfied and we have
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an atlas for Rn. The maximal atlas that contains this parameter-
ization is usually called the standard differentiable structure
on Rn. We can of course consider other atlases. Take, for instance,
the atlas defined by the parameterization (Rn, ϕ) with ϕ(x) = Ax
for a non-singular (n× n)-matrix A. It is an easy exercise to show
that these two atlases are equivalent.

(2) It is possible for a manifold to possess non-equivalent atlases: con-
sider the two atlases {(R, ϕ1)} and {(R, ϕ2)} on R, where ϕ1(x) = x
and ϕ2(x) = x3. As the map ϕ−1

2 ◦ ϕ1 is not differentiable at the
origin, these two atlases define different (though, as we shall see, dif-
feomorphic) differentiable structures (cf. Exercises 2.5.4 and 3.2.6).

(3) Every open subset V of a smooth manifold is a manifold of the same
dimension. Indeed, as V is a subset of M , its subspace topology
is Hausdorff and admits a countable basis of open sets. Moreover,
if A = {(Uα, ϕα)} is an atlas for M and we take the Uα’s for
which ϕα(Uα) ∩ V 6= ∅, it is easy to check that the family of

parameterizations Ã = {(Ũα, ϕα|Ũα)}, where Ũα = ϕ−1
α (V ), is an

atlas for V .
(4) Let Mn×n be the set of n × n matrices with real coefficients. Re-

arranging the entries along one line, we see that this space is

just Rn
2
, and so it is a manifold. By Example 3, we have that

GL(n) = {A ∈ Mn×n | detA 6= 0} is also a manifold of dimension
n2. In fact, the determinant is a continuous map from Mn×n to R,
and GL(n) is the preimage of the open set R\{0}.

(5) Let us consider the n-sphere

Sn = {(x1, . . . , xn+1) ∈ Rn+1 | (x1)2 + · · ·+ (xn+1)2 = 1}
and the maps

ϕ+
i : U ⊂ Rn → Sn

(x1, . . . , xn) 7→ (x1, . . . , xi−1, g(x1, . . . , xn), xi, . . . , xn),

ϕ−
i : U ⊂ Rn → Sn

(x1, . . . , xn) 7→ (x1, . . . , xi−1,−g(x1, . . . , xn), xi, . . . , xn),
where

U = {(x1, . . . , xn) ∈ Rn | (x1)2 + · · ·+ (xn)2 < 1}
and

g(x1, . . . , xn) = (1− (x1)2 − · · · − (xn)2)
1
2 .

Being a subset of Rn+1, the sphere (equipped with the subspace
topology) is a Hausdorff space and admits a countable basis of open
sets. It is also easy to check that the family {(U,ϕ+

i ), (U,ϕ
−
i )}n+1

i=1 is
an atlas for Sn, and so this space is a manifold of dimension n (the
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corresponding charts are just the projections on the hyperplanes
xi = 0).

(6) We can define an atlas for the surface of a cube Q ⊂ R3 making
it a smooth manifold: Suppose the cube is centered at the origin
and consider the map f : Q→ S2 defined by f(x) = x/‖x‖. Then,
considering an atlas {(Uα, ϕα)} for S2, the family {(Uα, f−1 ◦ϕα)}
defines an atlas for Q.

Remark 2.4. There exist topological manifolds which admit no differ-
entiable structures at all. Indeed, Kervaire presented the first example (a
10-dimensional manifold) in 1960 [Ker60], and Smale constructed another
one (of dimension 12) soon after [Sma60]. In 1956 Milnor [Mil07] had
already given an example of a 8-manifold which he believed not to admit a
differentiable structure, but that was not proved until 1965 (see [Nov65]).

Exercises 2.5.

(1) Show that two atlases A1 and A2 for a smooth manifold are equiv-
alent if and only if A1 ∪ A2 is an atlas.

(2) LetM be a differentiable manifold. Show that a set V ⊂M is open
if and only if ϕ−1

α (V ) is an open subset of Rn for every parameter-
ization (Uα, ϕα) of a C

∞ atlas.
(3) Show that the two atlases on Rn from Example 2.3.1 are equivalent.
(4) Consider the two atlases on R from Example 2.3.2, {(R, ϕ1)} and

{(R, ϕ2)}, where ϕ1(x) = x and ϕ2(x) = x3. Show that ϕ−1
2 ◦ϕ1 is

not differentiable at the origin. Conclude that the two atlases are
not equivalent.

(5) Recall from elementary vector calculus that a surface S ⊂ R3 is
a set such that, for each p ∈ S, there is a neighborhood Vp of p in
R3 and a C∞ map fp : Up → R (where Up is an open subset of R2)
such that S ∩ Vp is the graph of z = fp(x, y), or x = fp(y, z), or
y = fp(x, z). Show that S is a smooth manifold of dimension 2.

(6) (Product manifold) Let {(Uα, ϕα)}, {(Vβ , ψβ)} be two atlases for
two smooth manifolds M and N . Show that the family {(Uα ×
Vβ , ϕα × ψβ)} is an atlas for the product M × N . With the dif-
ferentiable structure generated by this atlas, M × N is called the
product manifold of M and N .

(7) (Stereographic projection) Consider the n-sphere Sn with the sub-
space topology and let N = (0, . . . , 0, 1) and S = (0, . . . , 0,−1) be
the north and south poles. The stereographic projection from
N is the map πN : Sn\{N} → Rn which takes a point p ∈ Sn\{N}
to the intersection point of the line through N and p with the hy-
perplane xn+1 = 0 (cf. Figure 10). Similarly, the stereographic
projection from S is the map πS : Sn\{S} → Rn which takes a
point p on Sn\{S} to the intersection point of the line through S
and p with the same hyperplane. Check that {(Rn, π−1

N ), (Rn, π−1
S )}

is an atlas for Sn. Show that this atlas is equivalent to the atlas
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on Example 2.3.5. The maximal atlas obtained from these is called
the standard differentiable structure on Sn.

N

p

Sn

πN (p)

Figure 10. Stereographic projection.

(8) (Real projective space) The real projective space RPn is the set
of lines through the origin in Rn+1. This space can be defined as
the quotient space of Sn by the equivalence relation x ∼ −x that
identifies a point to its antipodal point.
(a) Show that the quotient space RPn = Sn/∼ with the quotient

topology is a Hausdorff space and admits a countable basis of
open sets. (Hint: Use Proposition 10.2).

(b) Considering the atlas on Sn defined in Example 2.3.5 and the
canonical projection π : Sn → RPn given by π(x) = [x], define
an atlas for RPn.

(9) We can define an atlas on RPn in a different way by identify-
ing it with the quotient space of Rn+1\{0} by the equivalence
relation x ∼ λx, with λ ∈ R\{0}. For that, consider the sets
Vi = {[x1, . . . , xn+1]|xi 6= 0} (corresponding to the set of lines
through the origin in Rn+1 that are not contained on the hyper-
plane xi = 0) and the maps ϕi : R

n → Vi defined by

ϕi(x
1, . . . , xn) = [x1, . . . , xi−1, 1, xi, . . . , xn].

Show that:
(a) the family {(Rn, ϕi)} is an atlas for RPn;
(b) this atlas defines the same differentiable structure as the atlas

on Exercise 2.5.8.
(10) (A non-Hausdorff manifold) Let M be the disjoint union of R with

a point p and consider the maps fi : R → M (i = 1, 2) defined by
fi(x) = x if x ∈ R\{0}, f1(0) = 0 and f2(0) = p. Show that:
(a) the maps f−1

i ◦ fj are differentiable on their domains;
(b) if we consider an atlas formed by {(R, f1), (R, f2)}, the corre-

sponding topology will not satisfy the Hausdorff axiom.
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3. Differentiable Maps

In this book the words differentiable and smooth will be used to mean
infinitely differentiable (C∞).

Definition 3.1. Let M and N be two differentiable manifolds of dimen-
sion m and n, respectively. A map f :M → N is said to be differentiable
(or smooth, or C∞) at a point p ∈M if there exist parameterizations (U,ϕ)
of M at p (i.e. p ∈ ϕ(U)) and (V, ψ) of N at f(p), with f(ϕ(U)) ⊂ ψ(V ),
such that the map

f̂ := ψ−1 ◦ f ◦ ϕ : U ⊂ Rm → Rn

is smooth at ϕ−1(p).
The map f is said to be differentiable on a subset of M if it is differen-

tiable at every point of this set.

As coordinate changes are smooth, this definition is independent of the
parameterizations chosen at f(p) and p. The map f̂ := ψ−1 ◦ f ◦ ϕ : U ⊂
Rm → Rn is called a local representation of f and is the expression of f
on the local coordinates defined by ϕ and ψ. The set of all smooth functions
f : M → N is denoted C∞(M,N), and we will simply write C∞(M) for
C∞(M,R).

M N

U V

f

f̂

Rm Rn

ϕ ψ

Figure 11. Local representation of a map between manifolds.

A differentiable map f : M → N between two manifolds is continuous
(cf. Exercise 3.2.2). Moreover, it is called a diffeomorphism if it is bijective
and its inverse f−1 : N → M is also differentiable. The differentiable
manifoldsM and N will be considered the same if they are diffeomorphic,
i.e. if there exists a diffeomorphism f : M → N . A map f is called a local
diffeomorphism at a point p ∈ M if there are neighborhoods V of p and
W of f(p) such that f |V : V →W is a diffeomorphism.
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For a long time it was thought that, up to a diffeomorphism, there was
only one differentiable structure for each topological manifold (the two differ-
ent differentiable structures in Exercises 2.5.4 and 3.2.6 are diffeomorphic –
cf. Exercise 3.2.6). However, in 1956, Milnor [Mil56] presented examples of
manifolds that were homeomorphic but not diffeomorphic to S7. Later, Mil-
nor and Kervaire [Mil59, KM63] showed that more spheres of dimension
greater than 7 admitted several differentiable structures. For instance, S19

has 73 distinct smooth structures and S31 has 16, 931, 177. More recently,
in 1982 and 1983, Freedman [Fre82] and Gompf [Gom83] constructed ex-
amples of non-standard differentiable structures on R4.

Exercises 3.2.

(1) Prove that Definition 3.1 does not depend on the choice of param-
eterizations.

(2) Show that a differentiable map f : M → N between two smooth
manifolds is continuous.

(3) Show that if f :M1 →M2 and g :M2 →M3 are differentiable maps
between smooth manifolds M1,M2 and M3, then g ◦ f :M1 →M3

is also differentiable.
(4) Show that the antipodal map f : Sn → Sn, defined by f(x) = −x,

is differentiable.
(5) Using the stereographic projection from the north pole πN : S2 \

{N} → R2 and identifying R2 with the complex plane C, we can
identify S2 with C∪{∞}, where ∞ is the so-called point at infin-
ity. A Möbius transformation is a map f : C∪{∞} → C∪{∞}
of the form

f(z) =
az + b

cz + d
,

where a, b, c, d ∈ C satisfy ad− bc 6= 0 and ∞ satisfies

α

∞ = 0,
α

0
= ∞

for any α ∈ C \ {0}. Show that any Möbius transformation f , seen
as a map f : S2 → S2, is a diffeomorphism. (Hint: Start by showing that

any Möbius transformation is a composition of transformations of the form g(z) = 1
z

and h(z) = az + b).
(6) Consider again the two atlases on R from Example 2.3.2 and Exer-

cise 2.5.4, {(R, ϕ1)} and {(R, ϕ2)}, where ϕ1(x) = x and ϕ2(x) =
x3. Show that:
(a) the identity map i : (R, ϕ1) → (R, ϕ2) is not a diffeomorphism;
(b) the map f : (R, ϕ1) → (R, ϕ2) defined by f(x) = x3 is a dif-

feomorphism (implying that although these two atlases define
different differentiable structures, they are diffeomorphic).
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4. Tangent Space

Recall from elementary vector calculus that a vector v ∈ R3 is said
to be tangent to a surface S ⊂ R3 at a point p ∈ S if there exists a
differentiable curve c : (−ε, ε) → S ⊂ R3 such that c(0) = p and ċ(0) = v
(cf. Exercise 2.5.5). The set TpS of all these vectors is a 2-dimensional vector
space, called the tangent space to S at p, and can be identified with the
plane in R3 which is tangent to S at p.

S

v
p

TpS

Figure 12. Tangent vector to a surface.

To generalize this to an abstract n-dimensional manifold we need to find
a description of v which does not involve the ambient Euclidean space R3.
To do so, we notice that the components of v are

vi =
d(xi ◦ c)

dt
(0),

where xi : R3 → R is the i-th coordinate function. If we ignore the ambient
space, xi : S → R is just a differentiable function, and

vi = v(xi),

where, for any differentiable function f : S → R, we define

v(f) :=
d(f ◦ c)
dt

(0).

This allows us to see v as an operator v : C∞(S) → R, and it is clear that this
operator completely determines the vector v. It is this new interpretation
of tangent vector that will be used to define tangent spaces for manifolds.
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Definition 4.1. Let c : (−ε, ε) → M be a differentiable curve on a
smooth manifold M . Consider the set C∞(p) of all functions f : M → R
that are differentiable at c(0) = p. The tangent vector to the curve c at
p is the operator ċ(0) : C∞(p) → R given by

ċ(0)(f) =
d(f ◦ c)
dt

(0).

A tangent vector toM at p is a tangent vector to some differentiable curve
c : (−ε, ε) → M with c(0) = p. The tangent space at p is the space TpM
of all tangent vectors at p.

Choosing a parameterization ϕ : U ⊂ Rn → M around p, the curve c is
given in local coordinates by the curve in U

ĉ(t) :=
(
ϕ−1 ◦ c

)
(t) = (x1(t), . . . , xn(t)),

and

ċ(0)(f) =
d(f ◦ c)
dt

(0) =
d

dt


(

f̂︷ ︸︸ ︷
f ◦ ϕ) ◦ (

ĉ︷ ︸︸ ︷
ϕ−1 ◦ c)




|t=0

=

=
d

dt

(
f̂(x1(t), . . . , xn(t))

)
|t=0

=
n∑

i=1

∂f̂

∂xi
(ĉ(0))

dxi

dt
(0) =

=

(
n∑

i=1

ẋi(0)

(
∂

∂xi

)

ϕ−1(p)

)
(f̂).

Hence we can write

ċ(0) =
n∑

i=1

ẋi(0)

(
∂

∂xi

)

p

,

where
(
∂
∂xi

)
p
denotes the operator associated to the vector tangent to the

curve ci at p given in local coordinates by

ĉi(t) = (x1, . . . , xi−1, xi + t, xi+1, . . . , xn),

with (x1, . . . , xn) = ϕ−1(p).

Example 4.2. The map ψ : (0, π)× (−π, π) → S2 given by

ψ(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ)

parameterizes a neighborhood of the point (1, 0, 0) = ψ
(
π
2 , 0
)
. Conse-

quently,
(
∂
∂θ

)
(1,0,0)

= ċθ(0) and
(
∂
∂ϕ

)
(1,0,0)

= ċϕ(0), where

cθ(t) = ψ
(π
2
+ t, 0

)
= (cos t, 0,− sin t);

cϕ(t) = ψ
(π
2
, t
)
= (cos t, sin t, 0).
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Note that, in the notation above,

ĉθ(t) =
(π
2
+ t, 0

)
and ĉϕ(t) =

(π
2
, t
)
.

Moreover, since cθ and cϕ are curves in R3,
(
∂
∂θ

)
(1,0,0)

and
(
∂
∂ϕ

)
(1,0,0)

can

be identified with the vectors (0, 0,−1) and (0, 1, 0).

Proposition 4.3. The tangent space to M at p is an n-dimensional
vector space.

Proof. Consider a parameterization ϕ : U ⊂ Rn → M around p and
take the vector space generated by the operators

(
∂
∂xi

)
p
,

Dp := span

{(
∂

∂x1

)

p

, . . . ,

(
∂

∂xn

)

p

}
.

It is easy to show (cf. Exercise 4.9.1) that these operators are linearly inde-
pendent. Moreover, each tangent vector to M at p can be represented by a
linear combination of these operators, so the tangent space TpM is a subset
of Dp. We will now see that Dp ⊂ TpM . Let v ∈ Dp; then v can be written
as

v =
n∑

i=1

vi
(
∂

∂xi

)

p

.

If we consider the curve c : (−ε, ε) →M , defined by

c(t) = ϕ(x1 + v1t, . . . , xn + vnt)

(where (x1, . . . , xn) = ϕ−1(p)), then

ĉ(t) = (x1 + v1t, . . . , xn + vnt)

and so ẋi(0) = vi, implying that ċ(0) = v. Therefore v ∈ TpM . �

Remark 4.4.

(1) The basis
{(

∂
∂xi

)
p

}n
i=1

determined by the chosen parameterization

around p is called the associated basis to that parameterization.
(2) Note that the definition of tangent space at p only uses functions

that are differentiable on a neighborhood of p. Hence, if U is an
open set of M containing p, the tangent space TpU is naturally
identified with TpM .

If we consider the disjoint union of all tangent spaces TpM at all points
of M , we obtain the space

TM =
⋃

p∈M
TpM = {v ∈ TpM | p ∈M},

which admits a differentiable structure naturally determined by the one on
M (cf. Exercise 4.9.8). With this differentiable structure, this space is called
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the tangent bundle. Note that there is a natural projection π : TM →M
which takes v ∈ TpM to p (cf. Section 10.3).

Now that we have defined tangent space, we can define the derivative
at a point p of a differentiable map f :M → N between smooth manifolds.
We want this derivative to be a linear transformation

(df)p : TpM → Tf(p)N

of the corresponding tangent spaces, to be the usual derivative (Jacobian)
of f when M and N are Euclidean spaces, and to satisfy the chain rule.

Definition 4.5. Let f :M → N be a differentiable map between smooth
manifolds. For p ∈M , the derivative of f at p is the map

(df)p : TpM → Tf(p)N

v 7→ d (f ◦ c)
dt

(0),

where c : (−ε, ε) →M is a curve satisfying c(0) = p and ċ(0) = v.

Proposition 4.6. The map (df)p : TpM → Tf(p)N defined above is a
linear transformation that does not depend on the choice of the curve c.

Proof. Let (U,ϕ) and (V, ψ) be two parameterizations around p and
f(p) such that f(ϕ(U)) ⊂ ψ(V ) (cf. Figure 13). Consider a vector v ∈ TpM

M N

U V

f

f̂

Rm Rn

ϕ ψ

c

ĉ

γ

γ̂

p
v

(df)p(v)

Figure 13. Derivative of a differentiable map.

and a curve c : (−ε, ε) → M such that c(0) = p and ċ(0) = v. If, in local
coordinates, the curve c is given by

ĉ(t) := (ϕ−1 ◦ c)(t) = (x1(t), . . . , xm(t)),

and the curve γ := f ◦ c : (−ε, ε) → N is given by

γ̂(t) :=
(
ψ−1 ◦ γ

)
(t) =

(
ψ−1 ◦ f ◦ ϕ

)
(x1(t), . . . , xm(t))

= (y1(x(t)), . . . , yn(x(t))),
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then γ̇(0) is the tangent vector in Tf(p)N given by

γ̇(0) =
n∑

i=1

d

dt

(
yi(x1(t), . . . , xm(t))

)
|t=0

(
∂

∂yi

)

f(p)

=
n∑

i=1

{
m∑

k=1

ẋk(0)

(
∂yi

∂xk

)
(x(0))

}(
∂

∂yi

)

f(p)

=
n∑

i=1

{
m∑

k=1

vk
(
∂yi

∂xk

)
(x(0))

}(
∂

∂yi

)

f(p)

,

where the vk are the components of v in the basis associated to (U,ϕ). Hence
γ̇(0) does not depend on the choice of c, as long as ċ(0) = v. Moreover, the
components of w = (df)p(v) in the basis associated to (V, ψ) are

wi =
m∑

j=1

∂yi

∂xj
vj ,

where
(
∂yi

∂xj

)
is an n × m matrix (the Jacobian matrix of the local repre-

sentation of f at ϕ−1(p)). Therefore, (df)p : TpM → Tf(p)N is the linear
transformation which, on the basis associated to the parameterizations ϕ
and ψ, is represented by this matrix. �

Remark 4.7. The derivative (df)p is sometimes called differential of
f at p. Several other notations are often used for df , as for example f∗, Df ,
Tf and f ′.

Example 4.8. Let ϕ : U ⊂ Rn → M be a parameterization around a
point p ∈ M . We can view ϕ as a differentiable map between two smooth
manifolds and we can compute its derivative at x = ϕ−1(p)

(dϕ)x : TxU → TpM.

For v ∈ TxU ∼= Rn, the i-th component of (dϕ)x(v) is
n∑

j=1

∂xi

∂xj
vj = vi

(where
(
∂xi

∂xj

)
is the identity matrix). Hence, (dϕ)x(v) is the vector in TpM

which, in the basis
{(

∂
∂xi

)
p

}
associated to the parameterization ϕ, is repre-

sented by v.

Given a differentiable map f : M → N we can also define a global
derivative df (also called push-forward and denoted f∗) between the cor-
responding tangent bundles:

df : TM → TN

TpM ∋ v 7→ (df)p(v) ∈ Tf(p)N.
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Exercises 4.9.

(1) Show that the operators
(
∂
∂xi

)
p
are linearly independent.

(2) LetM be a smooth manifold, p a point inM and v a vector tangent
to M at p. Show that if v can be written as v =

∑n
i=1 a

i( ∂
∂xi

)p and

v =
∑n

i=1 b
i( ∂
∂yi

)p for two basis associated to different parameteri-

zations around p, then

b j =

n∑

i=1

∂yj

∂xi
ai.

(3) Let M be an n-dimensional differentiable manifold and p ∈ M .
Show that the following sets can be canonically identified with
TpM (and therefore constitute alternative definitions of the tan-
gent space):
(a) Cp/ ∼, where Cp is the set of differentiable curves c : I ⊂ R →

M such that c(0) = p and ∼ is the equivalence relation defined
by

c 1 ∼ c 2 ⇔
d

dt
(ϕ−1 ◦ c1)(0) =

d

dt
(ϕ−1 ◦ c2)(0)

for some parameterization ϕ : U ⊂ Rn →M of a neighborhood
of p.

(b) {(α, vα) | p ∈ ϕα(Uα) and vα ∈ Rn}/ ∼, whereA = {(Uα, ϕα)}
is the differentiable structure and ∼ is the equivalence relation
defined by

(α, vα) ∼ (β, vβ) ⇔ vβ = d(ϕ−1
β ◦ ϕα)ϕ−1

α (p)(vα).

(4) (Chain rule) Let f : M → N and g : N → P be two differentiable
maps. Then g◦f :M → P is also differentiable (cf. Exercise 3.2.3).
Show that for p ∈M ,

(d(g ◦ f))p = (dg)f(p) ◦ (df)p.
(5) Let φ : (0,+∞)× (0, π)× (0, 2π) → R3 be the parameterization of

U = R3 \ {(x, 0, z) | x ≥ 0 and z ∈ R} by spherical coordinates,

φ(r, θ, ϕ) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ).

Determine the Cartesian components of ∂
∂r ,

∂
∂θ and

∂
∂ϕ at each point

of U .
(6) Compute the derivative (df)N of the antipodal map f : Sn → Sn

at the north pole N .
(7) Let W be a coordinate neighborhood on M , let x : W → Rn be a

coordinate chart and consider a smooth function f :M → R. Show
that for p ∈W , the derivative (df)p is given by

(df)p =
∂f̂

∂x1
(x(p))(dx1)p + · · ·+ ∂f̂

∂xn
(x(p))(dxn)p,
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where f̂ := f ◦ x−1.
(8) (Tangent bundle) Let {(Uα, ϕα)} be a differentiable structure on

M and consider the maps

Φα : Uα × Rn → TM

(x, v) 7→ (dϕα)x(v) ∈ Tϕα(x)M.

Show that the family {(Uα×Rn,Φα)} defines a differentiable struc-
ture for TM . Conclude that, with this differentiable structure, TM
is a smooth manifold of dimension 2× dimM .

(9) Let f :M → N be a differentiable map between smooth manifolds.
Show that:
(a) df : TM → TN is also differentiable;
(b) if f :M →M is the identity map then df : TM → TM is also

the identity;
(c) if f is a diffeomorphism then df : TM → TN is also a diffeo-

morphism and (df)−1 = df−1.
(10) Let M1,M2 be two differentiable manifolds and

π1 :M1 ×M2 → M1

π2 :M1 ×M2 → M2

the corresponding canonical projections.
(a) Show that dπ1 × dπ2 is a diffeomorphism between the tangent

bundle T (M1 ×M2) and the product manifold TM1 × TM2.
(b) Show that ifN is a smooth manifold and fi : N →Mi (i = 1, 2)

are differentiable maps, then d(f1 × f2) = df1 × df2.

5. Immersions and Embeddings

In this section we will study the local behavior of differentiable maps
f : M → N between smooth manifolds. We have already seen that f is
said to be a local diffeomorphism at a point p ∈ M if dimM = dimN and
f transforms a neighborhood of p diffeomorphically onto a neighborhood of
f(p). In this case, its derivative (df)p : TpM → Tf(p)N must necessarily be
an isomorphism (cf. Exercise 4.9.9). Conversely, if (df)p is an isomorphism
then the inverse function theorem implies that f is a local diffeomorphism
(cf. Section 10.4). Therefore, to check whether f maps a neighborhood of
p diffeomorphically onto a neighborhood of f(p), one just has to check that
the determinant of the local representation of (df)p is nonzero.

When dimM < dimN , the best we can hope for is that (df)p : TpM →
Tf(p)N is injective. The map f is then called an immersion at p. If f is an
immersion at every point in M , it is called an immersion. Locally, every
immersion is (up to a diffeomorphism) the canonical immersion of Rm into
Rn (m < n) where a point (x1, . . . , xm) is mapped to (x1, . . . , xm, 0, . . . , 0).
This result is known as the local immersion theorem.



5. IMMERSIONS AND EMBEDDINGS 25

Theorem 5.1. Let f : M → N be an immersion at p ∈ M . Then
there exist local coordinates around p and f(p) on which f is the canonical
immersion.

Proof. Let (U,ϕ) and (V, ψ) be parameterizations around p and q =
f(p). Let us assume for simplicity that ϕ(0) = p and ψ(0) = q. Since f

is an immersion, (df̂)0 : Rm → Rn is injective (where f̂ := ψ−1 ◦ f ◦ ϕ is
the expression of f in local coordinates). Hence we can assume (changing
basis on Rn if necessary) that this linear transformation is represented by
the n×m matrix 


Im×m
−−−

0


 ,

where Im×m is the m×m identity matrix. Therefore, the map

F : U × Rn−m → Rn

(x1, . . . , xn) 7→ f̂(x1, . . . , xm) + (0, . . . , 0, xm+1, . . . , xn),

has derivative (dF )0 : R
n → Rn given by the matrix




Im×m | 0
−−− + −−−

0 | I(n−m)×(n−m)


 = In×n.

Applying the inverse function theorem, we conclude that F is a local diffeo-
morphism at 0. This implies that ψ ◦ F is also a local diffeomorphism at 0,
and so ψ◦F is another parameterization of N around q. Denoting the canon-
ical immersion of Rm into Rn by j, we have f̂ = F ◦ j ⇔ f = ψ ◦F ◦ j ◦ϕ−1,
implying that the following diagram commutes:

M ⊃ ϕ(Ũ)
f−→ (ψ ◦ F )(Ṽ ) ⊂ N

ϕ ↑ ↑ ψ ◦ F

Rm ⊃ Ũ
j−→ Ṽ ⊂ Rn

(for possibly smaller open sets Ũ ⊂ U and Ṽ ⊂ V ). Hence, on these new
coordinates, f is the canonical immersion. �

Remark 5.2. As a consequence of the local immersion theorem, any
immersion at a point p ∈M is an immersion on a neighborhood of p.

When an immersion f : M → N is also a homeomorphism onto its
image f(M) ⊂ N with its subspace topology, it is called an embedding.
We leave as an exercise to show that the local immersion theorem implies
that, locally, any immersion is an embedding.

Example 5.3.

(1) The map f : R → R2 given by f(t) = (t2, t3) is not an immersion
at t = 0.
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(2) The map f : R → R2 defined by f(t) = (cos t, sin 2t) is an immer-
sion but it is not an embedding (it is not injective).

(3) Let g : R → R be the function g(t) = 2 arctan(t) + π/2. If f is the
map defined in (2) then h := f ◦ g is an injective immersion which
is not an embedding. Indeed, the set S = h(R) in Figure 14 is not
the image of an embedding of R into R2. The arrows in the figure
mean that the line approaches itself arbitrarily close at the origin
but never self-intersects. If we consider the usual topologies on R
and on R2, the image of a bounded open set in R containing 0 is
not an open set in h(R) for the subspace topology, and so h−1 is
not continuous.

S

Figure 14.

(4) The map f : R → R2 given by f(t) = (et cos t, et sin t) is an embed-
ding of R into R2.

If M ⊂ N and the inclusion map i :M →֒ N is an embedding, M is said
to be a submanifold of N . Therefore, an embedding f : M → N maps
M diffeomorphically onto a submanifold of N . Charts on f(M) are just
restrictions of appropriately chosen charts on N to f(M) (cf. Exercise 5.9.3).

A differentiable map f :M → N for which (df)p is surjective is called a
submersion at p. Note that, in this case, we necessarily have m ≥ n. If
f is a submersion at every point in M it is called a submersion. Locally,
every submersion is the standard projection of Rm onto the first n factors.

Theorem 5.4. Let f : M → N be a submersion at p ∈ M . Then
there exist local coordinates around p and f(p) for which f is the standard
projection.

Proof. Let us consider parameterizations (U,ϕ) and (V, ψ) around p
and f(p), such that f(ϕ(U)) ⊂ ψ(V ), ϕ(0) = p and ψ(0) = f(p). In

local coordinates f is given by f̂ := ψ−1 ◦ f ◦ ϕ and, as (df)p is surjective,

(df̂)0 : Rm → Rn is a surjective linear transformation. By a linear change

of coordinates on Rn we may assume that (df̂)0 =
(
In×n | ∗

)
. As in
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the proof of the local immersion theorem, we will use an auxiliary map F
that will allow us to use the inverse function theorem,

F : U ⊂ Rm → Rm

(x1, . . . , xm) 7→
(
f̂(x1, . . . , xm), xn+1, . . . , xm

)
.

Its derivative at 0 is the linear map given by

(dF )0 =




In×n | ∗
− − − + −−−

0 | I(m−n)×(m−n)


 .

The inverse function theorem then implies that F is a local diffeomorphism

at 0, meaning that it maps some open neighborhood of this point Ũ ⊂ U ,
diffeomorphically onto an open set W of Rm containing 0. If π1 : R

m → Rn

is the standard projection onto the first n factors, we have π1 ◦ F = f̂ , and
hence

f̂ ◦ F−1 = π1 :W → Rn.

Therefore, replacing ϕ by ϕ̃ := ϕ ◦ F−1, we obtain coordinates for which f
is the standard projection π1 onto the first n factors:

ψ−1 ◦ f ◦ ϕ̃ = ψ−1 ◦ f ◦ ϕ ◦ F−1 = f̂ ◦ F−1 = π1.

�

Remark 5.5. This result is often stated together with the local im-
mersion theorem in what is known as the rank theorem (see for instance
[Boo03]).

Let f : M → N be a differentiable map between smooth manifolds of
dimensions m and n, respectively. A point p ∈M is called a regular point
of f if (df)p is surjective. A point q ∈ N is called a regular value of f if
every point in f−1(q) is a regular point. A point p ∈M which is not regular
is called a critical point of f . The corresponding value f(p) is called a
critical value. Note that if there exists a regular value of f then m ≥ n.
We can obtain differentiable manifolds by taking inverse images of regular
values.

Theorem 5.6. Let q ∈ N be a regular value of f :M → N and assume
that the level set L := f−1(q) = {p ∈ M | f(p) = q} is nonempty. Then L
is a submanifold of M and TpL = ker(df)p ⊂ TpM for all p ∈ L.

Proof. For each point p ∈ f−1(q), we choose parameterizations (U,ϕ)
and (V, ψ) around p and q for which f is the standard projection π1 onto the
first n factors, ϕ(0) = p and ψ(0) = q (cf. Theorem 5.4). We then construct
a differentiable structure for L := f−1(q) in the following way: take the sets
U from each of these parameterizations of M ; since f ◦ ϕ = ψ ◦ π1, we have

ϕ−1(f−1(q)) = π−1
1 (ψ−1(q)) = π−1

1 (0)

= {(0, . . . , 0, xn+1, . . . , xm) | xn+1, . . . , xm ∈ R},
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and so

Ũ := ϕ−1(L) = {(x1, . . . , xm) ∈ U | x1 = · · · = xn = 0};
hence, taking π2 : Rm → Rm−n, the standard projection onto the last m−n
factors, and j : Rm−n → Rm, the immersion given by

j(x1, . . . , xm−n) = (0, . . . , 0, x1, . . . , xm−n),

the family {(π2(Ũ), ϕ ◦ j)} is an atlas for L.
Moreover, the inclusion map i : L → M is an embedding. In fact, if A

is an open set in L contained in a coordinate neighborhood then

A = ϕ
((
Rn × (ϕ ◦ j)−1(A)

)
∩ U

)
∩ L

is an open set for the subspace topology on L.
We will now show that TpL = ker (df)p. For that, for each v ∈ TpL, we

consider a curve c on L such that c(0) = p and ċ(0) = v. Then (f ◦ c)(t) = q
for every t and so

d

dt
(f ◦ c) (0) = 0 ⇔ (df)p ċ(0) = (df)p v = 0,

implying that v ∈ ker (df)p. As dimTpL = dim (ker (df)p) = m − n, the
result follows. �

Given a differentiable manifold, we can ask ourselves if it can be embed-
ded into RK for some K ∈ N. The following theorem, which was proved by
Whitney in [Whi44a, Whi44b] answers this question and is known as the
Whitney embedding theorem.

Theorem 5.7. (Whitney) Any smooth manifold M of dimension n can
be embedded in R2n (and, provided that n > 1, immersed in R2n−1). �

Remark 5.8. By the Whitney embedding theorem, any smooth mani-
fold M of dimension n is diffeomorphic to a submanifold of R2n.

Exercises 5.9.

(1) Show that any parameterization ϕ : U ⊂ Rm →M is an embedding
of U into M .

(2) Show that, locally, any immersion is an embedding, i.e., if f :M →
N is an immersion and p ∈ M , then there is an open set W ⊂ M
containing p such that f |W is an embedding.

(3) Let N be a manifold. Show that M ⊂ N is a submanifold of N of
dimension m if and only if, for each p ∈ M , there is a coordinate
system x : W → Rn around p on N , for which M ∩W is defined
by the equations xm+1 = · · · = xn = 0.

(4) Consider the sphere

Sn =
{
x ∈ Rn+1 | (x1)2 + · · ·+ (xn+1)2 = 1

}
.

Show that Sn is an n-dimensional submanifold of Rn+1 and that

TxS
n =

{
v ∈ Rn+1 | 〈x, v〉 = 0

}
,
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where 〈·, ·〉 is the usual inner product on Rn.
(5) Let f :M → N be a differentiable map between smooth manifolds

and consider submanifolds V ⊂ M and W ⊂ N . Show that if
f(V ) ⊂W then f : V →W is also a differentiable map.

(6) Let f : M → N be an injective immersion. Show that if M is
compact then f(M) is a submanifold of N .

6. Vector Fields

A vector field on a smooth manifold M is a map that to each point
p ∈M assigns a vector tangent to M at p:

X :M → TM

p 7→ X(p) := Xp ∈ TpM.

The vector field is said to be differentiable if this map is differentiable.
The set of all differentiable vector fields on M is denoted by X(M). Locally
we have:

Proposition 6.1. Let W be a coordinate neighborhood on M (that is,
W = ϕ(U) for some parameterization ϕ : U →M), and let x := ϕ−1 :W →
Rn be the corresponding coordinate chart. Then, a map X : W → TW is a
differentiable vector field on W if and only if,

Xp = X1(p)

(
∂

∂x1

)

p

+ · · ·+Xn(p)

(
∂

∂xn

)

p

for some differentiable functions Xi :W → R (i = 1, . . . , n).

Proof. Let us consider the coordinate chart x = (x1, . . . , xn). As Xp ∈
TpM , we have

Xp = X1(p)

(
∂

∂x1

)

p

+ · · ·+Xn(p)

(
∂

∂xn

)

p

for some functions Xi : W → R. In the local chart associated with the
parameterization (U × Rn, dϕ) of TM , the local representation of the map
X is

X̂(x1, . . . , xn) = (x1, . . . , xn, X̂1(x1, . . . , xn), . . . , X̂n(x1, . . . , xn)).

Therefore X is differentiable if and only if the functions X̂i : U → R are
differentiable, i.e., if and only if the functions Xi :W → R are differentiable.

�

A vector field X is differentiable if and only if, given any differentiable
function f :M → R, the function

X · f :M → R

p 7→ Xp · f := Xp(f)
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is also differentiable (cf. Exercise 6.11.1). This function X · f is called the
directional derivative of f along X. Thus one can view X ∈ X(M) as a
linear operator X : C∞(M) → C∞(M).

Let us now take two vector fieldsX,Y ∈ X(M). In general, the operators
X◦Y and Y ◦X will involve derivatives of order two, and will not correspond
to vector fields. However, the commutator X ◦Y −Y ◦X does define a vector
field.

Proposition 6.2. Given two differentiable vector fields X,Y ∈ X(M)
on a smooth manifold M , there exists a unique differentiable vector field
Z ∈ X(M) such that

Z · f = (X ◦ Y − Y ◦X) · f
for every differentiable function f ∈ C∞(M).

Proof. Considering a coordinate chart x :W ⊂M → Rn, we have

X =
n∑

i=1

Xi ∂

∂xi
and Y =

n∑

i=1

Y i ∂

∂xi
.

Then,

(X ◦ Y − Y ◦X) · f

= X ·
(

n∑

i=1

Y i ∂f̂

∂xi

)
− Y ·

(
n∑

i=1

Xi ∂f̂

∂xi

)

=

n∑

i=1

(
(X · Y i)

∂f̂

∂xi
− (Y ·Xi)

∂f̂

∂xi

)
+

n∑

i,j=1

(
XjY i ∂2f̂

∂xj∂xi
− Y jXi ∂2f̂

∂xj∂xi

)

=

(
n∑

i=1

(
X · Y i − Y ·Xi

) ∂

∂xi

)
· f,

and so, at each point p ∈ W , one has ((X ◦ Y − Y ◦X) · f) (p) = Zp · f ,
where

Zp =
n∑

i=1

(
X · Y i − Y ·Xi

)
(p)

(
∂

∂xi

)

p

.

Hence, the operator X◦Y −Y ◦X defines a vector field. Note that this vector
field is differentiable, as (X ◦ Y − Y ◦X) · f is smooth for every smooth
function f :M → R. �

The vector field Z is called the Lie bracket of X and Y , and is denoted
by [X,Y ]. In local coordinates it is given by

(1) [X,Y ] =
n∑

i=1

(
X · Y i − Y ·Xi

) ∂

∂xi
.

We say that two vector fields X,Y ∈ X(M) commute if [X,Y ] = 0.
The Lie bracket as has the following properties.
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Proposition 6.3. Given X,Y, Z ∈ X(M), we have:

(i) Bilinearity: for any α, β ∈ R,

[αX + βY, Z] = α[X,Z] + β[Y, Z]

[X,αY + βZ] = α[X,Y ] + β[X,Z];

(ii) Antisymmetry:

[X,Y ] = −[Y,X];

(iii) Jacobi identity:

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0;

(iv) Leibniz rule: For any f, g ∈ C∞(M),

[f X, g Y ] = fg [X,Y ] + f(X · g)Y − g(Y · f)X.

Proof. Exercise 6.11.2. �

The space X(M) of vector fields on M is a particular case of a Lie
algebra:

Definition 6.4. A vector space V equipped with an antisymmetric bi-
linear map [·, ·] : V × V → V (called a Lie bracket) satisfying the Jacobi
identity is called a Lie algebra. A linear map F : V →W between Lie alge-
bras is called a Lie algebra homomorphism if F ([v1, v2]) = [F (v1), F (v2)]
for all v1, v2 ∈ V . If F is bijective then it is called a Lie algebra isomor-
phism.

Given a vector field X ∈ X(M) and a diffeomorphism f : M → N
between smooth manifolds, we can naturally define a vector field on N using
the derivative of f . This vector field, the push-forward of X, is denoted
by f∗X and is defined in the following way: given p ∈M ,

(f∗X)f(p) := (df)pXp.

This makes the following diagram commute:

TM
df→ TN

X ↑ ↑ f∗X
M

f→ N

Let us now turn to the definition of integral curve. If X ∈ X(M) is a
smooth vector field, an integral curve of X is a smooth curve c : (−ε, ε) →
M such that ċ(t) = Xc(t). If this curve has initial value c(0) = p, we denote
it by cp and we say that cp is an integral curve of X at p.

Considering a parameterization ϕ : U ⊂ Rn → M on M , the integral
curve c is locally given by ĉ := ϕ−1 ◦ c. Applying (dϕ−1)c(t) to both sides of
the equation defining c, we obtain

˙̂c(t) = X̂(ĉ(t)),
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M

U

Rn

ϕ

c

ĉ

X

X̂

Figure 15. Integral curves of a vector field.

where X̂ = dϕ−1 ◦X ◦ϕ is the local representation of X with respect to the
parameterizations (U,ϕ) and (TU, dϕ) on M and on TM (cf. Figure 15).
This equation is just a system of n ordinary differential equations:

(2)
dĉi

dt
(t) = X̂i(ĉ(t)), for i = 1, . . . , n.

The (local) existence and uniqueness of integral curves is then determined
by the Picard-Lindelöf theorem of ordinary differential equations (see for
example [Arn92]), and we have

Theorem 6.5. Let M be a smooth manifold and let X ∈ X(M) be a
smooth vector field on M . Given p ∈ M , there exists an integral curve
cp : I → M of X at p (that is, ċp(t) = Xcp(t) for t ∈ I = (−ε, ε) and
cp(0) = p). Moreover, this curve is unique, meaning that any two such
curves agree on the intersection of their domains. �

This integral curve, obtained by solving (2), depends smoothly on the
initial point p (see [Arn92]).

Theorem 6.6. Let X ∈ X(M). For each p ∈M there exists a neighbor-
hood W of p, an interval I = (−ε, ε) and a mapping F : W × I → M such
that:

(i) for a fixed q ∈ W the curve F (q, t), t ∈ I, is an integral curve of
X at q, that is, F (q, 0) = q and ∂F

∂t (q, t) = XF (q,t);
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(ii) the map F is differentiable. �

The map F : W × I → M defined above is called the local flow of X
at p. Let us now fix t ∈ I and consider the map

ψt :W → M

q 7→ F (q, t) = cq(t).

defined by the local flow. The following proposition then holds:

Proposition 6.7. The maps ψt : W → M above are local diffeomor-
phisms and satisfy

(3) (ψt ◦ ψs)(q) = ψt+s(q),

whenever t, s, t+ s ∈ I and ψs(q) ∈W .

Proof. First we note that
dcq
dt

(t) = Xcq(t)

and so
d

dt
(cq(t+ s)) = Xcq(t+s).

Hence, as cq(t + s)|t=0 = cq(s), the curve ccq(s)(t) is just cq(t + s), that is,
ψt+s(q) = ψt(ψs(q)). We can use this formula to extend ψt to ψs(W ) for
all s ∈ I such that t + s ∈ I. In particular, ψ−t is well defined on ψt(W ),
and (ψ−t ◦ ψt)(q) = ψ0(q) = cq(0) = q for all q ∈ W . Thus the map ψ−t is
the inverse of ψt, which consequently is a local diffeomorphism (it maps W
diffeomorphically onto its image). �

A collection of diffeomorphisms {ψt :M → M}t∈I , where I = (−ε, ε),
satisfying (3) is called a local 1-parameter group of diffeomorphisms.
When the interval of definition I of cq is R, this local 1-parameter group
of diffeomorphisms becomes a group of diffeomorphisms. A vector field
X whose local flow defines a 1-parameter group of diffeomorphisms is said
to be complete. This happens for instance when the vector field X has
compact support.

Theorem 6.8. If X ∈ X(M) is a smooth vector field with compact sup-
port then it is complete.

Proof. For each p ∈M we can take a neighborhood W and an interval
I = (−ε, ε) such that the local flow of X at p, F (q, t) = cq(t), is defined on
W×I. We can therefore cover the support ofX (which is compact) by a finite
number of such neighborhoods Wk and consider an interval I0 = (−ε0, ε0)
contained in the intersection of the corresponding intervals Ik. If q is not
in supp(X), then Xq = 0 and so cq(t) is trivially defined on I0. Hence we
can extend the map F to M × I0. Moreover, condition (3) is true for each
−ε0/2 < s, t < ε0/2, and we can again extend the map F , this time to
M ×R. In fact, for any t ∈ R, we can write t = kε0/2+ s, where k ∈ Z and
0 ≤ s < ε0/2, and define F (q, t) := F k(F (q, s), ε0/2). �
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Corollary 6.9. If M is compact then all smooth vector fields on M
are complete. �

We finish this section with an important result.

Theorem 6.10. Let X1, X2 ∈ X(M) be two complete vector fields. Then
their flows ψ1, ψ2 commute (i.e., ψ1,t ◦ ψ2,s = ψ2,s ◦ ψ1,t for all s, t ∈ R) if
and only if [X1, X2] = 0.

Proof. Exercise 6.11.13. �

Exercises 6.11.

(1) Let X : M → TM be a differentiable vector field on M and, for
a smooth function f : M → R, consider its directional derivative
along X defined by

X · f :M → R

p 7→ Xp · f.
Show that:
(a) (X · f)(p) = (df)pXp;
(b) the vector fieldX is smooth if and only ifX ·f is a differentiable

function for any smooth function f :M → R;
(c) the directional derivative satisfies the following properties: for

f, g ∈ C∞(M) and α ∈ R,
(i) X · (f + g) = X · f +X · g;
(ii) X · (αf) = α(X · f);
(iii) X · (fg) = fX · g + gX · f .

(2) Prove Proposition 6.3.
(3) Show that (R3,×) is a Lie algebra, where × is the cross product

on R3.
(4) Compute the flows of the vector fields X,Y, Z ∈ X(R2) defined by

X(x,y) =
∂

∂x
; Y(x,y) = x

∂

∂x
+ y

∂

∂y
; Z(x,y) = −y ∂

∂x
+ x

∂

∂y
.

(5) Let X1, X2, X3 ∈ X(R3) be the vector fields defined by

X1 = y
∂

∂z
− z

∂

∂y
, X2 = z

∂

∂x
− x

∂

∂z
, X3 = x

∂

∂y
− y

∂

∂x
,

where (x, y, z) are the usual Cartesian coordinates.
(a) Compute the Lie brackets [Xi, Xj ] for i, j = 1, 2, 3.
(b) Show that span{X1, X2, X3} is a Lie subalgebra of X(R3), iso-

morphic to (R3,×).
(c) Compute the flows ψ1,t, ψ2,t, ψ3,t of X1, X2, X3.
(d) Show that ψi,π

2
◦ ψj,π

2
6= ψj,π

2
◦ ψi,π

2
for i 6= j.

(6) Give an example of a non-complete vector field.
(7) Let N be a differentiable manifold, M ⊂ N a submanifold and

X,Y ∈ X(N) vector fields tangent to M , i.e., such that Xp, Yp ∈
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TpM for all p ∈M . Show that [X,Y ] is also tangent toM , and that
its restriction toM coincides with the Lie bracket of the restrictions
of X and Y to M .

(8) Let f : M → N be a smooth map between manifolds. Two vector
fields X ∈ X(M) and Y ∈ X(N) are said to be f -related (and we
write Y = f∗X) if, for each q ∈ N and p ∈ f−1(q) ⊂ M , we have
(df)pXp = Yq. Show that:
(a) given f and X it is possible that no vector field Y is f -related

to X;
(b) the vector field X is f -related to Y if and only if, for any

differentiable function g defined on some open subset W of N ,
(Y · g) ◦ f = X · (g ◦ f) on the inverse image f−1(W ) of the
domain of g;

(c) for differentiable maps f : M → N and g : N → P between
smooth manifolds and vector fields X ∈ X(M), Y ∈ X(N) and
Z ∈ X(P ), if X is f -related to Y and Y is g-related to Z, then
X is (g ◦ f)-related to Z.

(9) Let f : M → N be a diffeomorphism between smooth manifolds.
Show that f∗[X,Y ] = [f∗X, f∗Y ] for every X,Y ∈ X(M). There-
fore, f∗ induces a Lie algebra isomorphism between X(M) and
X(N).

(10) Let f :M → N be a differentiable map between smooth manifolds
and consider two vector fields X ∈ X(M) and Y ∈ X(N). Show
that:
(a) if the vector field Y is f -related to X then any integral curve

of X is mapped by f into an integral curve of Y ;
(b) the vector field Y is f -related to X if and only if the local flows

FX and FY satisfy f (FX(p, t)) = FY (f(p), t) for all (t, p) for
which both sides are defined.

(11) (Lie derivative of a function) Given a vector field X ∈ X(M), we
define the Lie derivative of a smooth function f : M → R in the
direction of X as

LXf(p) :=
d

dt
((f ◦ ψt)(p))

|t=0

,

where ψt = F (·, t), for F the local flow of X at p. Show that
LXf = X · f , meaning that the Lie derivative of f in the direction
of X is just the directional derivative of f along X.

(12) (Lie derivative of a vector field) For two vector fields X,Y ∈ X(M)
we define the Lie derivative of Y in the direction of X as

LXY :=
d

dt
((ψ−t)∗Y )

|t=0

,

where {ψt}t∈I is the local flow of X. Show that:
(a) LXY = [X,Y ];
(b) LX [Y, Z] = [LXY, Z] + [Y, LXZ], for X,Y, Z ∈ X(M);
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(c) LX ◦ LY − LY ◦ LX = L[X,Y ].
(13) Let X,Y ∈ X(M) be two complete vector fields with flows ψ, φ.

Show that:
(a) given a diffeomorphism f :M →M , we have f∗X = X if and

only if f ◦ ψt = ψt ◦ f for all t ∈ R;
(b) ψt ◦ φs = φs ◦ ψt for all s, t ∈ R if and only if [X,Y ] = 0.

7. Lie Groups

A Lie group G is a smooth manifold which is at the same time a group,
in such a way that the group operations

G×G → G
(g, h) 7→ gh

and
G → G
g 7→ g−1

are differentiable maps (where we consider the standard differentiable struc-
ture of the product on G×G – cf. Exercise 2.5.6).

Example 7.1.

(1) (Rn,+) is trivially an abelian Lie group.
(2) The general linear group

GL(n) = {n× n invertible real matrices}
is the most basic example of a nontrivial Lie group. We have seen
in Example 2.3.4 that it is a smooth manifold of dimension n2.
Moreover, the group multiplication is just the restriction to

GL(n)×GL(n)

of the usual multiplication of n × n matrices, whose coordinate
functions are quadratic polynomials; the inversion is just the re-
striction to GL(n) of the usual inversion of nonsingular matrices
which, by Cramer’s rule, is a map with rational coordinate func-
tions and nonzero denominators (only the determinant appears on
the denominator).

(3) The orthogonal group

O(n) = {A ∈ Mn×n | AtA = I}
of orthogonal transformations of Rn is also a Lie group. We can

show this by considering the map f : A 7→ AtA from Mn×n ∼= Rn
2

to the space Sn×n ∼= R
1
2
n(n+1) of symmetric n × n matrices. Its

derivative at a point A ∈ O(n), (df)A, is a surjective map from
TAMn×n ∼= Mn×n onto Tf(A)Sn×n ∼= Sn×n. Indeed,

(df)A(B) = lim
h→0

f(A+ hB)− f(A)

h

= lim
h→0

(A+ hB)t(A+ hB)−AtA

h

= BtA+AtB,
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and any symmetric matrix S can be written as BtA + AtB with
B = 1

2(A
−1)tS = 1

2AS. In particular, the identity I is a regular

value of f and so, by Theorem 5.6, we have that O(n) = f−1(I) is a
submanifold of Mn×n of dimension 1

2n(n−1). Moreover, it is also a
Lie group as the group multiplication and inversion are restrictions
of the same operations on GL(n) to O(n) (a submanifold) and have
values on O(n) (cf. Exercise 5.9.5).

(4) The map f : GL(n) → R given by f(A) = detA is differentiable,
and the level set f−1(1) is

SL(n) = {A ∈ Mn×n | detA = 1},
the special linear group. Again, the derivative of f is surjective
at a point A ∈ SL(n), making SL(n) into a Lie group. Indeed, it
is easy to see that

(df)I(B) = lim
h→0

det (I + hB)− det I

h
= trB

implying that

(df)A(B) = lim
h→0

det (A+ hB)− detA

h

= lim
h→0

(detA) det (I + hA−1B)− detA

h

= (detA) lim
h→0

det (I + hA−1B)− 1

h

= (detA) (df)I(A
−1B) = (detA) tr(A−1B).

Since det (A) = 1, for any k ∈ R, we can take the matrix B = k
nA

to obtain (df)A(B) = tr
(
k
nI
)
= k. Therefore, (df)A is surjective

for every A ∈ SL(n), and so 1 is a regular value of f . Consequently,
SL(n) is a submanifold of GL(n). As in the preceding example, the
group multiplication and inversion are differentiable, and so SL(n)
is a Lie group.

(5) The map A 7→ detA is a differentiable map from O(n) to {−1, 1},
and the level set f−1(1) is

SO(n) = {A ∈ O(n) | detA = 1},
the special orthogonal group or the rotation group in Rn,
which is then an open subset of O(n), and therefore a Lie group of
the same dimension.

(6) We can also consider the space Mn×n(C) of complex n× n matri-
ces, and the space GL(n,C) of complex n × n invertible matrices.
This is a Lie group of real dimension 2n2. Moreover, similarly to
what was done above for O(n), we can take the group of unitary
transformations on Cn,

U(n) = {A ∈ Mn×n(C) | A∗A = I},
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where A∗ is the adjoint of A. This group is a submanifold of

Mn×n(C) ∼= Cn
2 ∼= R2n2

, and a Lie group, called the unitary
group. This can be seen from the fact that I is a regular value of
the map f : A 7→ A∗A from Mn×n(C) to the space of self-adjoint
matrices. As any element of Mn×n(C) can be uniquely written as a
sum of a self-adjoint with an anti-self-adjoint matrix, and the map
A → iA is an isomorphism from the space of self-adjoint matrices
to the space of anti-self-adjoint matrices, we conclude that these
two spaces have real dimension 1

2 dimRMn×n(C) = n2. Hence,

dimU(n) = n2.
(7) The special unitary group

SU(n) = {A ∈ U(n) | detA = 1},
is also a Lie group now of dimension n2−1 (note that A 7→ det (A)
is now a differentiable map from U(n) to S1).

As a Lie group G is, by definition, a manifold, we can consider the
tangent space at one of its points. In particular, the tangent space at the
identity e is usually denoted by

g := TeG.

For g ∈ G, we have the maps

Lg : G → G
h 7→ g · h and

Rg : G → G
h 7→ h · g

which correspond to left multiplication and right multiplication by g.
A vector field on G is called left-invariant if (Lg)∗X = X for every

g ∈ G, that is,

((Lg)∗X)gh = Xgh or (dLg)hXh = Xgh,

for every g, h ∈ G. There is, of course, a vector space isomorphism between
g and the space of left-invariant vector fields on G that, to each V ∈ g,
assigns the vector field XV defined by

XV
g := (dLg)eV,

for any g ∈ G. This vector field is left-invariant as

(dLg)hX
V
h = (dLg)h(dLh)eV = (d(Lg ◦ Lh))eV = (dLgh)eV = XV

gh.

Note that, given a left-invariant vector field X, the corresponding element
of g is Xe. As the space XL(G) of left-invariant vector fields is closed under
the Lie bracket of vector fields (because, from Exercise 6.11.9, (Lg)∗[X,Y ] =
[(Lg)∗X, (Lg)∗Y ]), it is a Lie subalgebra of the Lie algebra of vector fields
(see Definition 6.4). The isomorphism XL(G) ∼= g then determines a Lie
algebra structure on g. We call g the Lie algebra of the Lie group G.

Example 7.2.
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(1) If G = GL(n), then gl(n) = TIGL(n) = Mn×n is the space of n×n
matrices with real coefficients, and the Lie bracket on gl(n) is the
commutator of matrices

[A,B] = AB −BA.

In fact, if A,B ∈ gl(n) are two n × n matrices, the corresponding
left-invariant vector fields are given by

XA
g = (dLg)I(A) =

∑

i,k,j

xikakj
∂

∂xij

XB
g = (dLg)I(B) =

∑

i,k,j

xikbkj
∂

∂xij
,

where g ∈ GL(n) is a matrix with components xij . The ij-component
of [XA, XB]g is given by XA

g · (XB)ij −XB
g · (XA)ij , i.e.

[XA, XB]ij(g) =


∑

l,m,p

xlpapm
∂

∂xlm



(∑

k

xikbkj

)
−

−


∑

l,m,p

xlpbpm
∂

∂xlm



(∑

k

xikakj

)

=
∑

k,l,m,p

xlpapmδilδkmb
kj −

∑

k,l,m,p

xlpbpmδilδkma
kj

=
∑

m,p

xip(apmbmj − bpmamj)

=
∑

p

xip(AB −BA)pj

(where δij = 1 if i = j and δij = 0 if i 6= j is the Kronecker
symbol). Making g = I, we obtain

[A,B] = [XA, XB]I = AB −BA.

From Exercise 6.11.7 we see that this will always be the case when
G is a matrix group, that is, when G is a subgroup of GL(n) for
some n.

(2) If G = O(n) then its Lie algebra is

o(n) = {A ∈ Mn×n | At +A = 0}.
In fact, we have seen in Example 7.1.3 that O(n) = f−1(I), where
the identity I is a regular value of the map

f : Mn×n → Sn×n
A 7→ AtA.
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Hence, o(n) = TIG = ker(df)I = {A ∈ Mn×n | At + A = 0} is the
space of skew-symmetric matrices.

(3) If G = SL(n) then its Lie algebra is

sl(n) = {A ∈ Mn×n | trA = 0}.
In fact, we have seen in Example 7.1.4 that SL(n) = f−1(1), where
1 is a regular value of the map

f : Mn×n → R

A 7→ detA.

Hence, sl(n) = TIG = ker(df)I = {A ∈ Mn×n | trA = 0} is the
space of traceless matrices.

(4) If G = SO(n) = {A ∈ O(n) | detA = 1}, then its Lie algebra is

so(n) = TISO(n) = TIO(n) = o(n).

(5) Similarly to Example 7.2.2, the Lie algebra of U(n) is

u(n) = {A ∈ Mn×n(C) | A∗ +A = 0},
the space of skew-hermitian matrices.

(6) To determine the Lie algebra of SU(n), we see that SU(n) is the
level set f−1(1), where f(A) = detA, and so

su(n) = ker(df)I = {A ∈ u(n) | tr(A) = 0}.

We now study the flow of a left-invariant vector field.

Proposition 7.3. Let F be the local flow of a left-invariant vector field
X at a point h ∈ G. Then the map ψt defined by F (that is, ψt(g) = F (g, t))
satisfies ψt = Rψt(e). Moreover, the flow of X is globally defined for all t ∈ R.

Proof. For g ∈ G, Rψt(e)(g) = g · ψt(e) = Lg(ψt(e)). Hence,

Rψ0(e)(g) = g · e = g

and

d

dt

(
Rψt(e)(g)

)
=

d

dt
(Lg(ψt(e))) = (dLg)ψt(e)

(
d

dt
(ψt(e))

)

= (dLg)ψt(e)
(
Xψt(e)

)
= Xg·ψt(e)

= XRψt(e)(g)
,

implying that Rψt(e)(g) = cg(t) = ψt(g) is the integral curve of X at g.
Consequently, if ψt(e) is defined for t ∈ (−ε, ε), then ψt(g) is defined for
t ∈ (−ε, ε) and g ∈ G. Moreover, condition (3) in Section 6 is true for each
−ε/2 < s, t < ε/2 and we can extend the map F to G × R as before: for
any t ∈ R, we write t = kε/2 + s where k ∈ Z and 0 ≤ s < ε/2, and define
F (g, t) := F k(F (g, s), ε/2) = gF (e, s)F k(e, ε/2). �
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Remark 7.4. A homomorphism F : G1 → G2 between Lie groups is
called a Lie group homomorphism if, besides being a group homomor-
phism, it is also a differentiable map. Since

ψt+s(e) = ψs(ψt(e)) = Rψs(e)ψt(e) = ψt(e) · ψs(e),
the integral curve t 7→ ψt(e) defines a group homomorphism between (R,+)
and (G, ·).

Definition 7.5. The exponential map exp : g → G is the map that, to
each V ∈ g, assigns the value ψ1(e), where ψt is the flow of the left-invariant
vector field XV .

Remark 7.6. If cg(t) is the integral curve of X at g and s ∈ R, it is easy
to check that cg(st) is the integral curve of sX at g. On the other hand, for
V ∈ g one has XsV = sXV . Consequently,

ψt(e) = ce(t) = ce(t · 1) = F (e, 1) = exp (tV ),

where F is the flow of tXV = XtV .

Example 7.7. If G is a group of matrices, then for A ∈ g,

expA = eA =
∞∑

k=0

Ak

k!
.

In fact, this series converges for any matrix A and the map h(t) = eAt

satisfies

h(0) = e0 = I

dh

dt
(t) = eAtA = h(t)A.

Hence, h is the flow of XA at the identity (that is, h(t) = ψt(e)), and so
expA = ψ1(e) = eA.

Let now G be any group and M be any set. We say that G acts on
M if there is a homomorphism φ from G to the group of bijective mappings
from M to M , or, equivalently, writing

φ(g)(p) = A(g, p),

if there is a mapping A : G×M →M satisfying the following conditions:

(i) if e is the identity in G, then A(e, p) = p, ∀p ∈M ;
(ii) if g, h ∈ G, then A(g,A(h, p)) = A(gh, p), ∀p ∈M .

Usually we denote A(g, p) by g · p.
Example 7.8.

(1) Let G be a group and H ⊂ G a subgroup. Then H acts on G by
left multiplication: A(h, g) = h · g for h ∈ H, g ∈ G.

(2) GL(n) acts on Rn through A · x = Ax for A ∈ GL(n) and x ∈ Rn.
The same is true for any subgroup G ⊂ GL(n).
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For each p ∈M we can define the orbit of p as the set G · p := {g · p |
g ∈ G}. If G · p = {p} then p is called a fixed point of G. If there is a
point p ∈ M whose orbit is all of M (i.e. G · p = M), then the action is
said to be transitive. Note that when this happens, there is only one orbit
and, for every p, q ∈M with p 6= q, there is always an element of the group
g ∈ G such that q = g · p. The manifold M is then called a homogeneous
space of G. The stabilizer (or isotropy subgroup) of a point p ∈ M is
the group

Gp = {g ∈ G | g · p = p}.
The action is called free if all the stabilizers are trivial.

If G is a Lie group and M is a smooth manifold, we say that the action
is smooth if the map A : G ×M → M is differentiable. In this case, the
map p 7→ g · p is a diffeomorphism. We will always assume the action of
a Lie group on a differentiable manifold to be smooth. A smooth action is
said to be proper if the map

G×M → M ×M

(g, p) 7→ (g · p, p)
is proper (recall that a map is called proper if the preimage of any compact
set is compact – cf. Section 10.5).

Remark 7.9. Note that a smooth action is proper if and only if, given
two convergent sequences {pn} and {gn ·pn} in M , there exists a convergent
subsequence {gnk} in G. If G is compact this condition is always satisfied.

The orbits of the action of G on M are equivalence classes of the equiv-
alence relation ∼ given by p ∼ q ⇔ q ∈ G · p (cf. Section 10.1). For that
reason, the quotient (topological) space M/ ∼ is usually called the orbit
space of the action, and denoted by M/G.

Proposition 7.10. If the action of a Lie group G on a differentiable
manifold M is proper, then the orbit space M/G is a Hausdorff space.

Proof. The relation p ∼ q ⇔ q ∈ G · p is an open equivalence relation
(cf. Section 10.1). Indeed, since p 7→ g · p is a homeomorphism, the set
π−1(π(U)) = {g · p | p ∈ U and g ∈ G} =

⋃
g∈G g ·U is an open subset of M

for any open set U in M , meaning that π(U) is open (here π : M → M/G
is the quotient map). Therefore we just have to show that the set

R = {(p, q) ∈M ×M | p ∼ q}
is closed (cf. Proposition 10.2). This follows from the fact that R is the
image of the map

G×M → M ×M

(g, p) 7→ (g · p, p)
which is continuous and proper, hence closed (cf. Section 10.5). �
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Under certain conditions the orbit space M/G is naturally a differen-
tiable manifold.

Theorem 7.11. Let M be a differentiable manifold equipped with a free
proper action of a Lie group G. Then the orbit space M/G is naturally a
differentiable manifold of dimension dimM − dimG, and the quotient map
π :M →M/G is a submersion.

Proof. By the previous proposition, the quotient M/G is Hausdorff.
Moreover, this quotient satisfies the second countability axiom because M
does so and the equivalence relation defined by G is open. It remains to
be shown that M/G has a natural differentiable structure for which the
quotient map is a submersion. We do this only in the case of a discrete
(i.e. zero-dimensional) Lie group (cf. Remark 1.2); the proof for general Lie
groups can be found in [DK99].

In our case, we just have to prove that for each point p ∈M there exists
a neighborhood U ∋ p such that g ·U ∩h ·U = ∅ for g 6= h. This guarantees
that each point [p] ∈ M/G has a neighborhood [U ] homeomorphic to U ,
which we can assume to be a coordinate neighborhood. Since G acts by
diffeomorphisms, the differentiable structure defined in this way does not
depend on the choice of p ∈ [p]. Since the charts of M/G are obtained from
charts of M , the overlap maps are smooth. Therefore M/G has a natural
differentiable structure for which π : M → M/G is a local diffeomorphism
(as the coordinate expression of π|U : U → [U ] is the identity map).

Showing that g · U ∩ h · U = ∅ for g 6= h is equivalent to showing
that g · U ∩ U = ∅ for g 6= e. Assume that this did not happen for any
neighborhood U ∋ p. Then there would exist a sequence of open sets Un ∋ p
with Un+1 ⊂ Un,

⋂+∞
n=1 Un = {p} and a sequence gn ∈ G \ {e} such that

gn · Un ∩ Un 6= ∅. Choose pn ∈ gn · Un ∩ Un. Then pn = gn · qn for some
qn ∈ Un. We have pn → p and qn → p. Since the action is proper, gn
admits a convergent subsequence gnk . Let g be its limit. Making k → +∞
in qnk = gnk · pnk yields g · p = p, implying that g = e (the action is free).
Because G is discrete, we would then have gnk = e for sufficiently large k,
which is a contradiction. �

Example 7.12.

(1) Let Sn = {x ∈ Rn+1 |∑n
i=1(x

i)2 = 1} be equipped with the action
of G = Z2 = {−I, I} given by −I · x = −x (antipodal map). This
action is proper and free, and so the orbit space Sn/G is an n-
dimensional manifold. This space is the real projective space RPn

(cf. Exercise 2.5.8).
(2) The group G = R \ {0} acts on M = Rn+1 \ {0} by multiplica-

tion: t · x = tx. This action is proper and free, and so M/G is a
differentiable manifold of dimension n (which is again RPn).

(3) Consider M = Rn equipped with an action of G = Zn defined by:

(k1, . . . , kn) · (x1, . . . , xn) = (x1 + k1, . . . , xn + kn).
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This action is proper and free, and so the quotient M/G is a
manifold of dimension n. This space with the quotient differen-
tiable structure defined in Theorem 7.11 is called the n-torus and
is denoted by Tn. It is diffeomorphic to the product manifold
S1 × · · · × S1 and, when n = 2, is diffeomorphic to the torus of
revolution in R3.

Quotients by discrete group actions determine coverings of manifolds.

Definition 7.13. A smooth covering of a differentiable manifold B is
a pair (M,π), where M is a connected differentiable manifold, π : M → B
is a surjective local diffeomorphism, and, for each p ∈ B, there exists a
connected neighborhood U of p in B such that π−1(U) is the union of disjoint
open sets Uα ⊂ M (called slices), and the restrictions πα of π to Uα are
diffeomorphisms onto U . The map π is called a covering map and M is
called a covering manifold.

Remark 7.14.

(1) It is clear that we must have dimM = dimB.
(2) Note that the collection of mutually disjoint open sets {Uα} must

be countable (M has a countable basis).
(3) The fibers π−1(p) ⊂ M have the discrete topology. Indeed, as

each slice Uα is open and intersects π−1(p) in exactly one point,
this point is open in the subspace topology.

Example 7.15.

(1) The map π : R → S1 given by

π(t) = (cos(2πt), sin(2πt))

is a smooth covering of S1. However, the restriction of this map to
(0,+∞) is a surjective local diffeomorphism which is not a covering
map.

(2) The product of covering maps is clearly a covering map. Thus we
can generalize the above example and obtain a covering of Tn ∼=
S1 × · · · × S1 by Rn.

(3) In Example 7.12.1 we have a covering of RPn by Sn.

A diffeomorphism h :M →M , whereM is a covering manifold, is called
a deck transformation (or covering transformation) if π ◦ h = π, or,
equivalently, if each set π−1(p) is carried to itself by h. It can be shown that
the group G of all covering transformations is a discrete Lie group whose
action on M is free and proper.

If the covering manifold M is simply connected (cf. Section 10.5), the
covering is said to be a universal covering. In this case, B is diffeomorphic
to M/G. Moreover, G is isomorphic to the fundamental group π1(B) of
B (cf. Section 10.5).

The Lie theorem (see for instance [DK99]) states that for a given Lie

algebra g there exists a unique simply connected Lie group G̃ whose Lie
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algebra is g. If a Lie group G also has g as its Lie algebra, then there exists

a unique Lie group homomorphism π : G̃ → G which is a covering map.
The group of deck transformations is, in this case, simply ker(π), and hence

G is diffeomorphic to G̃/ ker(π). In fact, G is also isomorphic to G̃/ ker(π),
which has a natural group structure (ker(π) is a normal subgroup).

Example 7.16.

(1) In the universal covering of S1 of Example 7.15.1 the deck trans-
formations are translations hk : t 7→ t + k by an integer k, and so
the fundamental group of S1 is Z.

(2) Similarly, the deck transformations of the universal covering of Tn

are translations by integer vectors (cf. Example 7.15.2), and so the
fundamental group of Tn is Zn.

(3) In the universal covering of RPn from Example 7.15.3, the only
deck transformations are the identity and the antipodal map, and
so the fundamental group of RPn is Z2.

Exercises 7.17.

(1) (a) Given two Lie groups G1, G2, show that G1 × G2 (the direct
product of the two groups) is a Lie group with the standard
differentiable structure on the product.

(b) The circle S1 can be identified with the set of complex numbers
of absolute value 1. Show that S1 is a Lie group and conclude
that the n-torus Tn ∼= S1 × . . .× S1 is also a Lie group.

(2) (a) Show that (Rn,+) is a Lie group, determine its Lie algebra
and write an expression for the exponential map.

(b) Prove that, if G is an abelian Lie group, then [V,W ] = 0 for
all V,W ∈ g.

(3) We can identify each point in

H = {(x, y) ∈ R2 | y > 0}

with the invertible affine map h : R → R given by h(t) = yt+x. The
set of all such maps is a group under composition; consequently,
our identification induces a group structure on H.
(a) Show that the induced group operation is given by

(x, y) · (z, w) = (yz + x, yw),

and that H, with this group operation, is a Lie group.
(b) Show that the derivative of the left translation map L(x,y) :

H → H at a point (z, w) ∈ H is represented in the above
coordinates by the matrix

(
dL(x,y)

)
(z,w)

=

(
y 0
0 y

)
.
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Conclude that the left-invariant vector field XV ∈ X(H) de-
termined by the vector

V = ξ
∂

∂x
+ η

∂

∂y
∈ h ≡ T(0,1)H (ξ, η ∈ R)

is given by

XV
(x,y) = ξy

∂

∂x
+ ηy

∂

∂y
.

(c) Given V,W ∈ h, compute [V,W ].
(d) Determine the flow of the vector field XV , and give an expres-

sion for the exponential map exp : h → H.
(e) Confirm your results by first showing that H is the subgroup

of GL(2) formed by the matrices
(
y x
0 1

)

with y > 0.
(4) Consider the group

SL(2) =

{(
a b
c d

)
| ad− bc = 1

}
,

which we already know to be a 3-manifold. Making

a = p+ q, d = p− q, b = r + s, c = r − s,

show that SL(2) is diffeomorphic to S1 × R2.
(5) Give examples of matrices A,B ∈ gl(2) such that eA+B 6= eAeB.
(6) For A ∈ gl(n), consider the differentiable map

h : R → R\{0}
t 7→ det eAt

and show that:
(a) this map is a group homomorphism between (R,+) and (R\{0}, ·);
(b) h′(0) = trA;
(c) det(eA) = etrA.

(7) (a) If A ∈ sl(2), show that there is a λ ∈ R ∪ iR such that

eA = coshλ I +
sinhλ

λ
A.

(b) Show that exp : sl(2) → SL(2) is not surjective.
(8) Consider the vector field X ∈ X(R2) defined by

X =
√
x2 + y2

∂

∂x
.

(a) Show that the flow of X defines a free action of R on M =
R2 \ {0}.

(b) Describe the topological quotient space M/R. Is the action
above proper?
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(9) Let M = S2 × S2 and consider the diagonal S1-action on M given
by

eiθ · (u, v) = (eiθ · u, e2iθ · v),

where, for u ∈ S2 ⊂ R3 and eiβ ∈ S1, eiβ · u denotes the rotation
of u by an angle β around the z-axis.
(a) Determine the fixed points for this action.
(b) What are the possible nontrivial stabilizers?

(10) Let G be a Lie group and H a closed Lie subgroup, i.e. a subgroup
of G which is also a closed submanifold of G. Show that the action
of H in G defined by A(h, g) = h · g is free and proper.

(11) (Grassmannian) Consider the setH ⊂ GL(n) of invertible matrices
of the form (

A 0
C B

)
,

where A ∈ GL(k), B ∈ GL(n− k) and C ∈ M(n−k)×k.
(a) Show that H is a closed Lie subgroup of GL(n). Therefore H

acts freely and properly on GL(n) (cf. Exercise 7.17.10).
(b) Show that the quotient manifold

Gr(n, k) := GL(n)/H

can be identified with the set of k-dimensional subspaces of Rn

(in particular Gr(n, 1) is just the projective space RPn−1).
(c) The manifoldGr(n, k) is called theGrassmannian of k-planes

in Rn. What is its dimension?
(12) Let G and H be connected Lie groups and F : G→ H a Lie group

homomorphism. Show that:
(a) (dF )e : g → h is a Lie algebra homomorphism;
(b) if (dF )e is an isomorphism then F is a local diffeomorphism;
(c) if F is a surjective local diffeomorphism then F is a covering

map.
(13) (a) Show that R ·SU(2) is a four dimensional real linear subspace

of M2×2(C), closed under matrix multiplication, with basis

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
,

j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
,

satisfying i2 = j2 = k2 = ijk = −1. Therefore this space can
be identified with the quaternions (cf. Section 10.5). Show
that SU(2) can be identified with the quaternions of Euclidean
norm equal to 1, and is therefore diffeomorphic to S3.
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(b) Show that if n ∈ R3 is a unit vector, which we identify with a
quaternion with zero real part, then

exp

(
nθ

2

)
= 1 cos

(
θ

2

)
+ n sin

(
θ

2

)

is also a unit quaternion.
(c) Again identifying R3 with quaternions with zero real part,

show that the map

R3 → R3

v 7→ exp

(
nθ

2

)
· v · exp

(
−nθ

2

)

is a rotation by an angle θ about the axis defined by n.
(d) Show that there exists a surjective homomorphism F : SU(2) →

SO(3), and use this to conclude that SU(2) is the universal
covering of SO(3).

(e) What is the fundamental group of SO(3)?

8. Orientability

Let V be a finite dimensional vector space and consider two ordered
bases β = {b1, . . . , bn} and β′ = {b′1, . . . , b′n}. There is a unique linear
transformation S : V → V such that b′i = S bi for every i = 1, . . . , n. We say
that the two bases are equivalent if detS > 0. This defines an equivalence
relation that divides the set of all ordered basis of V into two equivalence
classes. An orientation for V is an assignment of a positive sign to the
elements of one equivalence class and a negative sign to the elements of the
other. The sign assigned to a basis is called its orientation and the basis
is said to be positively oriented or negatively oriented according to its
sign. It is clear that there are exactly two possible orientations for V .

Remark 8.1.

(1) The ordering of the basis is very important. If we interchange the
positions of two basis vectors we obtain a different ordered basis
with the opposite orientation.

(2) An orientation for a zero-dimensional vector space is just an as-
signment of a sign +1 or −1.

(3) We call the standard orientation of Rn to the orientation that
assigns a positive sign to the standard ordered basis.

An isomorphism A : V →W between two oriented vector spaces carries
equivalent ordered bases of V to equivalent ordered bases of W . Hence, for
any ordered basis β, the sign of the image Aβ is either always the same as the
sign of β or always the opposite. In the first case, the isomorphism A is said
to be orientation preserving, and in the latter it is called orientation
reversing.
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An orientation of a smooth manifold consists on a choice of orientations
for all tangent spaces TpM . If dimM = n ≥ 1, these orientations have to
fit together smoothly, meaning that for each point p ∈ M there exists a
parameterization (U,ϕ) around p such that

(dϕ)x : Rn → Tϕ(x)M

preserves the standard orientation of Rn at each point x ∈ U .

Remark 8.2. If the dimension of M is zero, an orientation is just an
assignment of a sign (+1 or −1), called orientation number, to each point
p ∈M .

Definition 8.3. A smooth manifold M is said to be orientable if it
admits an orientation.

Proposition 8.4. If a smooth manifold M is connected and orientable
then it admits precisely two orientations.

Proof. We will show that the set of points where two orientations agree
and the set of points where they disagree are both open. Hence, one of them
has to be M and the other the empty set. Let p be a point in M and let
(Uα, ϕα), (Uβ , ϕβ) be two parameterizations centered at p such that dϕα is
orientation preserving for the first orientation and dϕβ is orientation preserv-

ing for the second. The map
(
d(ϕ−1

β ◦ ϕα)
)
0
: Rn → Rn is either orientation

preserving (if the two orientations agree at p) or reversing. In the first case,

it has positive determinant at 0, and so, by continuity,
(
d(ϕ−1

β ◦ ϕα)
)
x
has

positive determinant for x in a neighborhood of 0, implying that the two

orientations agree in a neighborhood of p. Similarly, if
(
d(ϕ−1

β ◦ ϕα)
)
0
is

orientation reversing, the determinant of
(
d(ϕ−1

β ◦ ϕα)
)
x
is negative in a

neighborhood of 0, and so the two orientations disagree in a neighborhood
of p.

Let O be an orientation for M (i.e. a smooth choice of an orientation Op
of TpM for each p ∈ M), and −O the opposite orientation (corresponding
to taking the opposite orientation −Op at each tangent space TpM). If O′

is another orientation for M , then, for a given point p ∈ M , we know that
O′
p agrees either with Op or with −Op (because a vector space has just two

possible orientations). Consequently, O′ agrees with either O or −O on
M . �

An alternative characterization of orientability is given by the following
proposition.

Proposition 8.5. A smooth manifold M is orientable if and only if
there exists an atlas A = {(Uα, ϕα)} for which all the overlap maps ϕ−1

β ◦ϕα
are orientation-preserving.

Proof. Exercise 8.6.2. �
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An oriented manifold is an orientable manifold together with a choice
of an orientation. A map f : M → N between two oriented manifolds
with the same dimension is said to be orientation preserving if (df)p is
orientation preserving at all points p ∈ M , and orientation reversing if
(df)p is orientation reversing at all points p ∈M .

Exercises 8.6.

(1) Prove that the relation of “being equivalent” between ordered basis
of a finite dimensional vector space described above is an equiva-
lence relation.

(2) Show that a differentiable manifold M is orientable iff there exists
an atlas A = {(Uα, ϕα)} for which all the overlap maps ϕ−1

β ◦ ϕα
are orientation-preserving.

(3) (a) Show that if a manifoldM is covered by two coordinate neigh-
borhoods V1 and V2 such that V1 ∩ V2 is connected, then M is
orientable.

(b) Show that Sn is orientable.
(4) Let M be an oriented n-dimensional manifold and c : I → M a

differentiable curve. A smooth vector field along c is a differ-
entiable map V : I → TM such that V (t) ∈ Tc(t)M for all t ∈ I
(cf. Section 2 in Chapter 3). Show that if V1, . . . , Vn : I → M are
smooth vector fields along c such that {V1(t), . . . , Vn(t)} is a basis of
Tc(t)M for all t ∈ I then all these bases have the same orientation.

(5) We can see the Möbius band as the 2-dimensional submanifold of
R3 given by the image of the immersion g : (−1, 1) × R → R3

defined by

g(t, ϕ) =
((

1 + t cos
(ϕ
2

))
cosϕ,

(
1 + t cos

(ϕ
2

))
sinϕ, t sin

(ϕ
2

))
.

Show that the Möbius band is not orientable.
(6) Let f : M → N be a diffeomorphism between two smooth man-

ifolds. Show that M is orientable if and only if N is orientable.
If, in addition, both manifolds are connected and oriented, and
(df)p : TpM → Tf(p)N preserves orientation at one point p ∈ M ,
show that f is orientation preserving.

(7) Let M and N be two oriented manifolds. We define an orientation
on the product manifold M × N (called product orientation)
in the following way: If α = {a1, . . . , am} and β = {b1, . . . , bn}
are ordered bases of TpM and TqN , we consider the ordered basis
{(a1, 0), . . . , (am, 0), (0, b1), . . . , (0, bn)} of T(p,q)(M ×N) ∼= TpM ×
TqN . We then define an orientation on this space by setting the
sign of this basis equal to the product of the signs of α and β. Show
that this orientation does not depend on the choice of α and β.

(8) Show that the tangent bundle TM is always orientable, even if M
is not.
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(9) (Orientable double covering) LetM be a non-orientable n-dimensional
manifold. For each point p ∈M we consider the set Op of the (two)

equivalence classes of bases of TpM . Let M be the set

M = {(p,Op) | p ∈M,Op ∈ Op}.
Given a parameterization (U,ϕ) of M consider the maps ϕ : U →
M defined by

ϕ(x1, . . . , xn) =

(
ϕ(x1, . . . , xn),

[(
∂

∂x1

)

ϕ(x)

, . . . ,

(
∂

∂xn

)

ϕ(x)

])
,

where x = (x1, . . . , xn) ∈ U and
[(

∂
∂x1

)
ϕ(x)

, . . . ,
(

∂
∂xn

)
ϕ(x)

]
repre-

sents the equivalence class of the basis
{(

∂
∂x1

)
ϕ(x)

, . . . ,
(

∂
∂xn

)
ϕ(x)

}

of Tϕ(x)M .
(a) Show that these maps determine the structure of an orientable

differentiable manifold of dimension n on M .
(b) Consider the map π :M →M defined by π(p,Op) = p. Show

that π is differentiable and surjective. Moreover, show that,
for each p ∈ M , there exists a neighborhood V of p with
π−1(V ) = W1 ∪ W2, where W1 e W2 are two disjoint open
subsets of M , such that π restricted to Wi (i = 1, 2) is a
diffeomorphism onto V .

(c) Show that M is connected (M is therefore called the ori-
entable double covering of M).

(d) Let σ : M → M be the map defined by σ(p,Op) = (p,−Op),
where −Op represents the orientation of TpM opposite to Op.
Show that σ is a diffeomorphism which reverses orientations
satisfying π ◦ σ = π and σ ◦ σ = id.

(e) Show that any simply connected manifold is orientable.

9. Manifolds with Boundary

Let us consider again the closed half space

Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}
with the topology induced by the usual topology of Rn. Recall that a map
f : U → Rm defined on an open set U ⊂ Hn is said to be differentiable

if it is the restriction to U of a differentiable map f̃ defined on an open
subset of Rn containing U (cf. Section 10.2). In this case, the derivative

(df)p is defined to be (df̃)p. Note that this derivative is independent of the
extension used since any two extensions have to agree on U .

Definition 9.1. A smooth n-manifold with boundary is a topological
manifold with boundary of dimension n and a family of parameterizations
ϕα : Uα ⊂ Hn → M (that is, homeomorphisms of open sets Uα of Hn onto
open sets of M), such that:
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(i) the coordinate neighborhoods cover M , meaning that
⋃
α ϕα(Uα) =

M ;
(ii) for each pair of indices α, β such that

W := ϕα(Uα) ∩ ϕβ(Uβ) 6= ∅,

the overlap maps

ϕ−1
β ◦ ϕα : ϕ−1

α (W ) → ϕ−1
β (W )

ϕ−1
α ◦ ϕβ : ϕ−1

β (W ) → ϕ−1
α (W )

are smooth;
(iii) the family A = {(Uα, ϕα)} is maximal with respect to (i) and (ii),

meaning that, if ϕ0 : U0 → M is a parameterization such that
ϕ0 ◦ ϕ−1 and ϕ−1 ◦ ϕ0 are C∞ for all ϕ in A, then ϕ0 is in A.

Recall that a point in M is said to be a boundary point if it is
on the image of ∂Hn under some parameterization (that is, if there is a
parameterization ϕ : U ⊂ Hn → M such that ϕ(x1, . . . , xn−1, 0) = p for
some (x1, . . . , xn−1) ∈ Rn−1), and that the set ∂M of all such points is
called the boundary of M . Notice that differentiable manifolds are partic-
ular cases of differentiable manifolds with boundary, for which ∂M = ∅.

Proposition 9.2. The boundary of a smooth n-manifold with boundary
is a differentiable manifold of dimension n− 1.

Proof. Suppose that p is a boundary point of M (an n-manifold with
boundary) and choose a parameterization ϕα : Uα ⊂ Hn → M around
p. Letting Vα := ϕα(Uα), we claim that ϕα(∂Uα) = ∂Vα, where ∂Uα =
Uα ∩ ∂Hn and ∂Vα = Vα ∩ ∂M . By definition of boundary, we already know
that ϕα(∂Uα) ⊂ ∂Vα, so we just have to show that ∂Vα ⊂ ϕα(∂Uα). Let
q ∈ ∂Vα and consider a parameterization ϕβ : Uβ → Vα around q, mapping
an open subset of Hn to an open subset of M and such that q ∈ ϕβ(∂Uβ).
If we show that ϕβ(∂Uβ) ⊂ ϕα(∂Uα) we are done. For that, we prove that(
ϕ−1
α ◦ ϕβ

)
(∂Uβ) ⊂ ∂Uα. Indeed, suppose that this map ϕ−1

α ◦ ϕβ takes
a point x ∈ ∂Uβ to an interior point (in Rn) of Uα. As this map is a
diffeomorphism, x would be an interior point (in Rn) of Uβ. This, of course,
contradicts the assumption that x ∈ ∂Uβ. Hence,

(
ϕ−1
α ◦ ϕβ

)
(∂Uβ) ⊂ ∂Uα

and so ϕβ(∂Uβ) ⊂ ϕα(∂Uα).
The map ϕα then restricts to a diffeomorphism from ∂Uα onto ∂Vα,

where we identify ∂Uα with an open subset of Rn−1. We obtain in this
way a parameterization around p in ∂M , and it is easily seen that these
parameterizations define a differentiable structure on ∂M . �

Remark 9.3. In the above proof we saw that the definition of a bound-
ary point does not depend on the parameterization chosen, meaning that, if
there exists a parameterization around p such that p is an image of a point
in ∂Hn, then any parameterization around p maps a boundary point of Hn

to p.
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The definition of orientability can easily be extended to manifolds with
boundary. We then have the following result.

Proposition 9.4. LetM be an orientable manifold with boundary. Then
∂M is also orientable.

Proof. If M is orientable we can choose an atlas {(Uα, ϕα)} on M for
which the determinants of the derivatives of all overlap maps are positive.
With this atlas we can obtain an atlas {(∂Uα, ϕ̃α)} for ∂M in the way
described in the proof of Proposition 9.2. For any overlap map

(ϕ−1
β ◦ ϕα)(x1, . . . , xn) = (y1(x1, . . . , xn), . . . , yn(x1, . . . , xn))

we have

(ϕ−1
β ◦ϕα)(x1, . . . , xn−1, 0) = (y1(x1, . . . , xn−1, 0), . . . , yn−1(x1, . . . , xn−1, 0), 0)

and

(ϕ̃−1
β ◦ ϕ̃α)(x1, . . . , xn−1) = (y1(x1, . . . , xn−1, 0), . . . , yn−1(x1, . . . , xn−1, 0)).

Consequently, denoting (x1, . . . , xn−1, 0) by (x̃, 0),

(d(ϕ−1
β ◦ ϕα))(x̃,0) =




(d(ϕ̃−1
β ◦ ϕ̃α))x̃ | ∗
− − − + −−−

0 | ∂yn

∂xn (x̃, 0)




and so

det (d(ϕ−1
β ◦ ϕα))(x̃,0) =

∂yn

∂xn
(x̃, 0) det (d(ϕ̃−1

β ◦ ϕ̃α))x̃.

However, fixing x1, · · · , xn−1, we have that yn is positive for positive values
of xn and is zero for xn = 0. Consequently, ∂y

n

∂xn (x̃, 0) > 0, and so

det (d(ϕ̃−1
β ◦ ϕ̃α))x̃ > 0.

�

Hence, choosing an orientation on a manifold with boundary M induces
an orientation on the boundary ∂M . The convenient choice, called the
induced orientation, can be obtained in the following way. For p ∈ ∂M
the tangent space Tp(∂M) is a subspace of TpM of codimension 1. As we
have seen above, considering a coordinate system x : W → Rn around p,
we have xn(p) = 0 and (x1, . . . , xn−1) is a coordinate system around p in
∂M . Setting np := −

(
∂
∂xn

)
p
(called an outward pointing vector at p),

the induced orientation on ∂M is defined by assigning a positive sign to an
ordered basis β of Tp(∂M) whenever the ordered basis {np, β} of TpM is

positive, and negative otherwise. Note that, since ∂yn

∂xn (ϕ
−1(p)) > 0 (in the

above notation), the sign of the last component of np does not depend on the
choice of coordinate system. In general, the induced orientation is not the
one obtained from the charts of M by simply dropping the last coordinate
(in fact, it is (−1)n times this orientation).
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Exercises 9.5.

(1) Show with an example that the product of two manifolds with
boundary is not always a manifold with boundary.

(2) Let M be a manifold without boundary and N a manifold with
boundary. Show that the productM×N is a manifold with bound-
ary. What is ∂(M ×N)?

(3) Show that a diffeomorphism between two manifolds with boundary
M and N maps the boundary ∂M diffeomorphically onto ∂N .

10. Notes on Chapter 1

10.1. Section 1. We begin by briefly reviewing the main concepts and
results from general topology that we will need (see [Mun00] for a detailed
exposition).

(1) A topology on a set M is a collection T of subsets of M having
the following properties:
(i) the sets ∅ and M are in T ;
(ii) the union of the elements of any sub-collection of T is in T ;
(iii) the intersection of the elements of any finite sub-collection of

T is in T .
A setM equipped with a topology T is called a topological space.
We say that a subset U ⊂M is an open set of M if it belongs to
the topology T . A neighborhood of a point p ∈ M is simply an
open set U ∈ T containing p. A closed set F ⊂M is a set whose
complement M \F is open. The interior intA of a subset A ⊂M
is the largest open set contained in A, and its closure A is the
smallest closed set containing A. Finally, the subspace topology
on A ⊂M is TA := {U ∩A}U∈T .

(2) A topological space (M, T ) is said to be Hausdorff if for each pair
of distinct points p1, p2 ∈M there exist neighborhoods U1, U2 of p1
and p2 such that U1 ∩ U2 = ∅.

(3) A basis for a topology T onM is a collection B ⊂ T such that, for
each point p ∈ M and each open set U containing p, there exists
a basis element B ∈ B for which p ∈ B ⊂ U . If B is a basis for a
topology T then any element of T is a union of elements of B. A
topological space (M, T ) is said to satisfy the second countability
axiom if T has a countable basis.

(4) A map f : M → N between two topological spaces is said to be
continuous if for each open set U ⊂ N the preimage f−1(U) is an
open subset of M . A bijection f is called a homeomorphism if
both f and its inverse f−1 are continuous.

(5) An open cover for a topological space (M, T ) is a collection {Uα} ⊂
T such that

⋃
α Uα = M . A subcover is a sub-collection {Vβ} ⊂

{Uα} which is still an open cover. A topological space is said to
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be compact if every open cover admits a finite subcover. A sub-
set A ⊂ M is said to be a compact subset if it is a compact
topological space for the subspace topology. It is easily seen that
continuous maps carry compact sets to compact sets.

(6) A topological space is said to be connected if the only subsets
of M which are simultaneously open and closed are ∅ and M . A
subset A ⊂M is said to be a connected subset if it is a connected
topological space for the subspace topology. It is easily seen that
continuous maps carry connected sets to connected sets.

(7) Let (M, T ) be a topological space. A sequence {pn} inM is said to
converge to p ∈M if for each neighborhood V of p there exists an
N ∈ N for which pn ∈ V for n > N . If (M, T ) is Hausdorff, then
a convergent sequence has a unique limit. If in addition (M, T )
is second countable, then F ⊂ M is closed if and only if every
convergent sequence in F has limit in F , and K ⊂ M is compact
if and only if every sequence in K has a sublimit in K.

(8) IfM and N are topological spaces, the set of all Cartesian products
of open subsets of M by open subsets of N is a basis for a topology
on M × N , called the product topology. Note that with this
topology the canonical projections are continuous maps.

(9) An equivalence relation ∼ on a set M is a relation with the
following properties:
(i) reflexivity : p ∼ p for every p ∈M ;
(ii) symmetry : if p ∼ q then q ∼ p;
(iii) transitivity : if p ∼ q and q ∼ r then p ∼ r.
Given a point p ∈M , we define the equivalence class of p as the
set

[p] = {q ∈M | q ∼ p}.
Note that p ∈ [p] by reflexivity. Whenever we have an equivalence
relation ∼ on a set M , the corresponding set of equivalence classes
is called the quotient space, and is denoted by M/∼. There is a
canonical projection π :M →M/∼, which maps each element ofM
to its equivalence class. If M is a topological space, we can define
a topology on the quotient space (called the quotient topology)
by letting a subset V ⊂M/∼ be open if and only if the set π−1(V )
is open in M . The map π is then continuous for this topology.
We will be interested in knowing whether some quotient spaces are
Hausdorff. For that, the following definition will be helpful.

Definition 10.1. An equivalence relation ∼ on a topological
space M is called open if the map π : M → M/∼ is open, i.e., if
for every open set U ⊂M , the set [U ] := π(U) is open.

We then have
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Proposition 10.2. Let ∼ be an open equivalence relation on
M and let R = {(p, q) ∈M ×M | p ∼ q}. Then the quotient space
is Hausdorff if and only if R is closed in M ×M .

Proof. Assume that R is closed. Let [p], [q] ∈ M/∼ with
[p] 6= [q]. Then p ≁ q, and (p, q) /∈ R. As R is closed, there are open
sets U, V containing p, q, respectively, such that (U × V ) ∩R = ∅.
This implies that [U ] ∩ [V ] = ∅. In fact, if there were a point
[r] ∈ [U ] ∩ [V ], then r would be equivalent to points p′ ∈ U and
q′ ∈ V (that is p′ ∼ r and r ∼ q′). Therefore we would have
p′ ∼ q′ (implying that (p′, q′) ∈ R), and so (U × V ) ∩R would not
be empty. Since [U ] and [V ] are open (as ∼ is an open equivalence
relation), we conclude that M/∼ is Hausdorff.

Conversely, let us assume that M/∼ is Hausdorff. If (p, q) /∈ R,

then p ≁ q and [p] 6= [q], implying the existence of open sets Ũ , Ṽ ⊂
M/∼ containing [p] and [q], such that Ũ ∩ Ṽ = ∅. The sets U :=

π−1(Ũ) and V := π−1(Ṽ ) are open in M and (U × V )∩R = ∅. In
fact, if that was not so, there would exist points p′ ∈ U and q′ ∈ V
such that p′ ∼ q′. Then we would have [p′] = [q′], contradicting the

fact that Ũ ∩ Ṽ = ∅ (as [p′] ∈ π(U) = Ũ and [q′] ∈ π(V ) = Ṽ ).
Since (p, q) ∈ U×V ⊂ (M×M)\R and U×V is open, we conclude
that (M ×M) \R is open, and hence R is closed. �

10.2. Section 2.

(1) Let us begin by reviewing some facts about differentiability of maps
on Rn. A function f : U → R defined on an open subset U of
Rn is said to be continuously differentiable on U if all partial
derivatives ∂f

∂x1
, . . . , ∂f∂xn exist and are continuous on U . In this

book, the words differentiable and smooth will be used to mean

infinitely differentiable, that is, all partial derivatives ∂kf
∂xi1 ···∂xik

exist and are continuous on U . Similarly, a map f : U → Rm,
defined on an open subset of Rn, is said to be differentiable or
smooth if all coordinate functions f i have the same property, that
is, if they all possess continuous partial derivatives of all orders. If
the map f is differentiable on U , its derivative at each point of
U is the linear map Df : Rn → Rm represented in the canonical
bases of Rn and Rm by the Jacobian matrix

Df =




∂f1

∂x1
· · · ∂f1

∂xn
...

...
∂fm

∂x1
· · · ∂fm

∂xn


 .

A map f : A → Rm defined on an arbitrary set A ⊂ Rn (not
necessarily open) is said to be differentiable on A is there exists
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an open set U ⊃ A and a differentiable map f̃ : U → Rm such that

f = f̃ |A.
10.3. Section 4.

(1) Let E, B and F be smooth manifolds and π : E → B a differen-
tiable map. Then π : E → B is called a fiber bundle with basis
B, total space E and fiber F if
(i) the map π is surjective;
(ii) there is a covering of B by open sets {Uα} and diffeomorphisms

ψα : π−1(Uα) → Uα × F such that for every b ∈ Uα we have
ψα(π

−1(b)) = {b} × F .

10.4. Section 5.

(1) (The Inverse function theorem) Let f : U ⊂ Rn → Rn be a smooth
function and p ∈ U such that (df)p is a linear isomorphism. Then
there exists an open subset V ⊂ U containing p such that f |V :
V → f(V ) is a diffeomorphism. Moreover,

(d(f |V )−1)f(q) = ((d(f |V ))q)−1

for all q ∈ V .

10.5. Section 7.

(1) A group is a set G equipped with a binary operation · : G×G→ G
satisfying:
(i) Associativity: g1 · (g2 ·g3) = (g1 ·g2) ·g3 for all g1, g2, g3 ∈ G;
(ii) Existence of identity: There exists an element e ∈ G such

that e · g = g · e = g for all g ∈ G;
(iii) Existence of inverses: For all g ∈ G there exists g−1 ∈ G

such that g · g−1 = g−1 · g = e.
If the group operation is commutative, meaning that g1 ·g2 = g2 ·g1
for all g1, g2 ∈ G, the group is said to be abelian. A subset H ⊂ G
is said to be a subgroup of G if the restriction of · to H × H is
a binary operation on H, and H with this operation is a group.
A subgroup H ⊂ G is said to be normal if ghg−1 ∈ H for all
g ∈ G, h ∈ H. A map f : G → H between two groups G and H is
said to be a group homomorphism if f(g1 · g2) = f(g1) · f(g2)
for all g1, g2 ∈ G. An isomorphism is a bijective homomorphism.
The kernel of a group homomorphism f : G → H is the subset
ker(f) = {g ∈ G | f(g) = e}, and is easily seen to be a normal
subgroup of G.

(2) Let M and N be topological manifolds. A map f : M → N is
called proper if the preimage f−1(K) of any compact set K ⊂ N
is compact. If f is also continuous then f is closed, i.e. f maps
closed sets to closed sets. To see this, let F ⊂ M be a closed set,
and consider a convergent sequence {qn} in f(F ) with qn → q. It
is easily seen that the closure K of the set {qn | n ∈ N} is compact,
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and since f is proper, then so is f−1(K). For each n ∈ N choose
pn ∈ F such that f(pn) = qn. Then pn ∈ f−1(K), and so {pn} must
have a sublimit p ∈ F (since F is closed). If {pnk} is a subsequence
which converges to p we have qnk = f(pnk) → f(p) (because f is
continuous). Therefore q = f(p) ∈ f(F ), and f(F ) is closed.

(3) Let f, g : X → Y be two continuous maps between topological
spaces and let I = [0, 1]. We say that f is homotopic to g if
there exists a continuous map H : I ×X → Y such that H(0, x) =
f(x) and H(1, x) = g(x) for every x ∈ X. This map is called a
homotopy.

Homotopy of maps forms an equivalence relation in the set of
continuous maps between X and Y . As an application, let us fix a
base point p on a manifold M and consider the homotopy classes
of continuous maps f : I → M such that f(0) = f(1) = p (these
maps are called loops based at p), with the additional restriction
that H(t, 0) = H(t, 1) = p for all t ∈ I. This set of homotopy
classes is called the fundamental group ofM relative to the base
point p, and is denoted by π1(M,p). Among its elements there is
the class of the constant loop based at p, given by f(t) = p
for every t ∈ I. Note that the set π1(M,p) is indeed a group with
operation ∗ (composition of loops) defined by [f ]∗[g] := [h], where
h : I →M is given by

h(t) =

{
f(2t) if t ∈ [0, 12 ]
g(2t− 1) if t ∈ [12 , 1]

.

The identity element of this group is the equivalence class of the
constant loop based at p.

If M is connected and this is the only class in π1(M,p), M is
said to be simply connected. This means that every loop through
p can be continuously deformed to the constant loop. This property
does not depend on the choice of point p, and is equivalent to the
condition that any closed path may be continuously deformed to a
constant loop in M .

(4) Quaternions are a generalization of the complex numbers intro-
duced by Hamilton in 1843, when he considered numbers of the
form a+ bi+ cj + dk with a, b, c, d ∈ R and

i2 = j2 = k2 = ijk = −1.

Formally, the set H of quaternions is simply R4 with

1 = (1, 0, 0, 0)

i = (0, 1, 0, 0)

j = (0, 0, 1, 0)

k = (0, 0, 0, 1)
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and the bilinear associative product defined by the Hamilton formu-
las (and the assumption that 1 is the identity). With these defini-
tions, H is a division ring, that is, (H\{0}, ·) is a (non-commutative)
group and multiplication is distributive with respect to addition.

The real part of a quaternion a+ bi+ cj + ik is a, whereas its
vector part is bi+ cj+ dk. Quaternions with zero vector part are
identified with real numbers, while quaternions with zero real part
are identified with vectors in R3. The norm of a quaternion is the
usual Euclidean norm.

10.6. Bibliographical notes. The material in this chapter is com-
pletely standard, and can be found in almost any book on differential ge-
ometry (e.g. [Boo03, dC93, GHL04]). Immersions and embeddings are
the starting point of differential topology, which is studied in [GP73,
Mil97]. Lie groups and Lie algebras are a huge field of Mathematics, to
which we could not do justice. See for instance [BtD03, DK99, War83].
More details on the fundamental group and covering spaces can be found
for instance in [Mun00].





CHAPTER 2

Differential Forms

This chapter discusses integration on differentiable manifolds. Because
there is no canonical choice of local coordinates, there is no natural notion of
volume, and so only objects with appropriate transformation properties un-
der coordinate changes can be integrated. These objects, called differential
forms, were introduced by Élie Cartan in 1899; they come equipped with
natural algebraic and differential operations, making them a fundamental
tool of differential geometry.

Besides their role in integration, differential forms occur in many other
places in differential geometry and physics: for instance, they can be used
as a very efficient device for computing the curvature of Riemannian (Chap-
ter 4) or Lorentzian (Chapter 6) manifolds; to formulate Hamiltonian me-
chanics (Chapter 5); or to write Maxwell’s equations of electromagnetism in
a compact and elegant form.

The algebraic structure of differential forms is set up in Section 1, which
reviews the notions of tensors and tensor product, and introduces alter-
nating tensors and their exterior product.

Tensor fields, which are natural generalizations of vector fields, are
discussed in Section 2, where a new operation, the pull-back of a covariant
tensor field by a smooth map, is defined. Differential forms are introduced
in Section 3 as fields of alternating tensors, along with their exterior de-
rivative. Important ideas which will not be central to the remainder of this
book, such as the Poincaré lemma, de Rham cohomology or the Lie
derivative, are discussed in the exercises.

The integral of a differential form on a smooth manifold in defined in
Section 4. This makes use of another basic tool of differential geometry,
namely the existence of partitions of unity.

The celebrated Stokes theorem, generalizing the fundamental theo-
rems of vector calculus (Green’s theorem, the divergence theorem, and the
classical Stokes theorem for vector fields) is proved in Section 5. Some of its
consequences, such as invariance by homotopy of the integral of closed
forms, or Brouwer’s fixed point theorem, are explored in the exercises.

Finally, Section 6 studies the relation between orientability and the exis-
tence of special differential forms, called volume forms, which can be used
to define a notion of volume on orientable manifolds.
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1. Tensors

Let V be an n-dimensional vector space. A k-tensor on V is a real
multilinear function (meaning linear in each variable) defined on the product
V × · · · × V of k copies of V . The set of all k-tensors is itself a vector space
and is usually denoted by T k(V ∗).

Example 1.1.

(1) The space of 1-tensors T 1(V ∗) is equal to V ∗, the dual space of
V , that is, the space of real-valued linear functions on V .

(2) The usual inner product on Rn is an example of a 2-tensor.
(3) The determinant is an n-tensor on Rn.

Given a k-tensor T and an m-tensor S, we define their tensor product
as the (k +m)-tensor T ⊗ S given by

T ⊗ S(v1, . . . , vk, vk+1, . . . , vk+m) := T (v1, . . . , vk) · S(vk+1, . . . , vk+m).

This operation is bilinear and associative, but not commutative (cf. Exer-
cise 1.15.1).

Proposition 1.2. If {T1, . . . , Tn} is a basis for T 1(V ∗) = V ∗ (the dual
space of V ), then the set {Ti1 ⊗ · · · ⊗ Tik | 1 ≤ i1, . . . , ik ≤ n} is a basis of
T k(V ∗), and therefore dim T k(V ∗) = nk.

Proof. We will first show that the elements of this set are linearly
independent. If

T :=
∑

i1,··· ,ik
ai1···ikTi1 ⊗ · · · ⊗ Tik = 0,

then, taking the basis {v1, . . . , vn} of V dual to {T1, . . . , Tn}, meaning that
Ti(vj) = δij (cf. Section 7.1), we have T (vj1 , . . . , vjk) = aj1···jk = 0 for every
1 ≤ j1, . . . , jk ≤ n.

To show that {Ti1 ⊗ · · · ⊗ Tik | 1 ≤ i1, . . . , ik ≤ n} spans T k(V ∗), we
take any element T ∈ T k(V ∗) and consider the k-tensor S defined by

S :=
∑

i1,··· ,ik
T (vi1 , . . . , vik)Ti1 ⊗ · · · ⊗ Tik .

Clearly, S(vi1 , . . . , vik) = T (vi1 , . . . , vik) for every 1 ≤ i1, . . . , ik ≤ n, and so,
by linearity, S = T . �

If we consider k-tensors on V ∗, instead of V , we obtain the space T k(V )
(note that (V ∗)∗ = V , as it is shown in Section 7.1). These tensors are
called contravariant tensors on V , while the elements of T k(V ∗) are called
covariant tensors on V . Note that the contravariant tensors on V are the
covariant tensors on V ∗. The words covariant and contravariant are related
to the transformation behavior of the tensor components under a change of
basis in V , as explained in Section 7.1.

We can also consider mixed (k,m)-tensors on V , that is, multilinear
functions defined on the product V × · · · × V × V ∗ × · · · × V ∗ of k copies
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of V and m copies of V ∗. A (k,m)-tensor is then k times covariant and m
times contravariant on V . The space of all (k,m)-tensors on V is denoted
by T k,m(V ∗, V ).

Remark 1.3.

(1) We can identify the space T 1,1(V ∗, V ) with the space of linear maps
from V to V . Indeed, for each element T ∈ T 1,1(V ∗, V ), we define
the linear map from V to V , given by v 7→ T (v, ·). Note that
T (v, ·) : V ∗ → R is a linear function on V ∗, that is, an element of
(V ∗)∗ = V .

(2) Generalizing the above definition of tensor product to tensors de-
fined on different vector spaces, we can define the spaces T k(V ∗)⊗
T m(W ∗) generated by the tensor products of elements of T k(V ∗) by
elements of T m(W ∗). Note that T k,m(V ∗, V ) = T k(V ∗)⊗ T m(V ).
We leave it as an exercise to find a basis for this space.

A tensor is called alternating if, like the determinant, it changes sign
every time two of its variables are interchanged, that is, if

T (v1, . . . , vi, . . . , vj , . . . , vk) = −T (v1, . . . , vj , . . . , vi, . . . , vk).
The space of all alternating k-tensors is a vector subspace Λk(V ∗) of T k(V ∗).
Note that, for any alternating k-tensor T , we have T (v1, . . . , vk) = 0 if
vi = vj for some i 6= j.

Example 1.4.

(1) All 1-tensors are trivially alternating, that is, Λ1(V ∗) = T 1(V ∗) =
V ∗.

(2) The determinant is an alternating n-tensor on Rn.

Consider now Sk, the group of all possible permutations of {1, . . . , k}.
If σ ∈ Sk, we set σ(v1, . . . , vk) = (vσ(1), . . . , vσ(k)). Given a k-tensor T ∈
T k(V ∗) we can define a new alternating k-tensor, called Alt(T ), in the fol-
lowing way:

Alt(T ) :=
1

k!

∑

σ∈Sk
(sgnσ) (T ◦ σ),

where sgnσ is +1 or −1 according to whether σ is an even or an odd permu-
tation. We leave it as an exercise to show that Alt(T ) is in fact alternating.

Example 1.5. If T ∈ T 3(V ∗),

Alt(T )(v1, v2, v3) =
1
6 (T (v1, v2, v3) + T (v3, v1, v2) + T (v2, v3, v1)

−T (v1, v3, v2)− T (v2, v1, v3)− T (v3, v2, v1)) .

We will now define the wedge product between alternating tensors: if
T ∈ Λk(V ∗) and S ∈ Λm(V ∗), then T ∧ S ∈ Λk+m(V ∗) is given by

T ∧ S :=
(k +m)!

k!m!
Alt(T ⊗ S).
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Example 1.6. If T, S ∈ Λ1(V ∗) = V ∗, then

T ∧ S = 2 Alt(T ⊗ S) = T ⊗ S − S ⊗ T,

implying that T ∧ S = −S ∧ T and T ∧ T = 0.

It is easy to verify that this product is bilinear. To prove associativity
we need the following proposition.

Proposition 1.7.

(i) Let T ∈ T k(V ∗) and S ∈ T m(V ∗). If Alt(T ) = 0 then

Alt(T ⊗ S) = Alt(S ⊗ T ) = 0;

(ii) Alt(Alt(T ⊗ S)⊗R) = Alt(T ⊗ S ⊗R) = Alt(T ⊗Alt(S ⊗R)) for
any R ∈ T l(V ∗).

Proof.

(i) Let us consider

(k +m)! Alt(T ⊗ S)(v1, . . . , vk+m) =∑

σ∈Sk+m
(sgnσ)T (vσ(1), . . . , vσ(k))S(vσ(k+1), . . . , vσ(k+m)).

Taking the subgroupG of Sk+m formed by the permutations of {1, . . . , k +m}
that leave k + 1, . . . , k +m fixed, we have

∑

σ∈G
(sgnσ)T (vσ(1), . . . , vσ(k))S(vσ(k+1), . . . , vσ(k+m)) =

=

(∑

σ∈G
(sgnσ)T (vσ(1), . . . , vσ(k))

)
S(vk+1, . . . , vk+m)

= k! (Alt(T )⊗ S) (v1, . . . , vk+m) = 0.

Then, since G decomposes Sk+m into disjoint right cosets G·σ̃ := {σσ̃ |
σ ∈ G}, and for each coset

∑

σ∈G·σ̃
(sgnσ)(T ⊗ S)(vσ(1), . . . , vσ(k+m)) =

= (sgn σ̃)
∑

σ∈G
(sgnσ) (T ⊗ S)(vσ(σ̃(1)), . . . , vσ(σ̃(k+m)))

= (sgn σ̃)k! (Alt(T )⊗ S)(vσ̃(1), . . . , vσ̃(k+m)) = 0,

we have that Alt(T ⊗S) = 0. Similarly, we prove that Alt(S⊗T ) = 0.
(ii) By linearity of the operator Alt and the fact that Alt ◦Alt = Alt

(cf. Exercise 1.15.3), we have

Alt(Alt(S ⊗R)− S ⊗R) = 0.

Hence, by (i),

0 = Alt(T ⊗ (Alt(S ⊗R)− S ⊗R))

= Alt(T ⊗Alt(S ⊗R))−Alt(T ⊗ S ⊗R),
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and the result follows.

�

Using these properties we can show the following.

Proposition 1.8. For any T ∈ Λk(V ∗), S ∈ Λm(V ∗) and R ∈ Λl(V ∗),

(T ∧ S) ∧R = T ∧ (S ∧R).
Proof. By Proposition 1.7, we have

(T ∧ S) ∧R =
(k +m+ l)!

(k +m)! l!
Alt((T ∧ S)⊗R)

=
(k +m+ l)!

k!m! l!
Alt(T ⊗ S ⊗R)

and

T ∧ (S ∧R) =
(k +m+ l)!

k! (m+ l)!
Alt(T ⊗ (S ∧R))

=
(k +m+ l)!

k!m! l!
Alt(T ⊗ S ⊗R).

�

We can now prove the following theorem.

Theorem 1.9. If {T1, . . . , Tn} is a basis for V ∗, then the set

{Ti1 ∧ · · · ∧ Tik | 1 ≤ i1 < . . . < ik ≤ n}
is a basis for Λk(V ∗), and

dimΛk(V ∗) =

(
n
k

)
=

n!

k!(n− k)!
.

Proof. Let T ∈ Λk(V ∗) ⊂ T k(V ∗). By Proposition 1.2,

T =
∑

i1,...,ik

ai1···ikTi1 ⊗ · · · ⊗ Tik

and, since T is alternating,

T = Alt(T ) =
∑

i1,...,ik

ai1···ik Alt(Ti1 ⊗ · · · ⊗ Tik).

We can show by induction that Alt(Ti1 ⊗ · · · ⊗ Tik) =
1
k!Ti1 ∧ Ti2 ∧ · · · ∧ Tik .

Indeed, for k = 1, the result is trivially true, and, assuming it is true for k
basis tensors, we have, by Proposition 1.7, that

Alt(Ti1 ⊗ · · · ⊗ Tik+1
) = Alt(Alt(Ti1 ⊗ · · · ⊗ Tik)⊗ Tik+1

)

=
k!

(k + 1)!
Alt(Ti1 ⊗ · · · ⊗ Tik) ∧ Tik+1

=
1

(k + 1)!
Ti1 ∧ Ti2 ∧ · · · ∧ Tik+1

.



66 2. DIFFERENTIAL FORMS

Hence,

T =
1

k!

∑

i1,...,ik

ai1···ikTi1 ∧ Ti2 ∧ · · · ∧ Tik .

However, the tensors Ti1 ∧ · · · ∧ Tik are not linearly independent. Indeed,
due to anticommutativity, if two sequences (i1, . . . ik) and (j1, . . . jk) differ
only in their orderings, then Ti1 ∧ · · · ∧ Tik = ±Tj1 ∧ · · · ∧ Tjk . In addition,
if any two of the indices are equal, then Ti1 ∧ · · · ∧ Tik = 0. Hence, we can
avoid repeating terms by considering only increasing index sequences:

T =
∑

i1<···<ik
bi1···ikTi1 ∧ · · · ∧ Tik

and so the set {Ti1 ∧ · · · ∧ Tik | 1 ≤ i1 < . . . < ik ≤ n} spans Λk(V ∗).
Moreover, the elements of this set are linearly independent. Indeed, if

0 = T =
∑

i1<···<ik
bi1···ikTi1 ∧ · · · ∧ Tik ,

then, taking a basis {v1, . . . , vn} of V dual to {T1, . . . , Tn} and an increasing
index sequence (j1, . . . , jk), we have

0 = T (vj1 , . . . , vjk)= k!
∑

i1<···<ik
bi1···ik Alt(Ti1 ⊗ · · · ⊗ Tik)(vj1 , . . . , vjk)

=
∑

i1<···<ik
bi1···ik

∑

σ∈Sk
(sgnσ)Ti1(vjσ(1)) · · ·Tik(vjσ(k)).

Since (i1, . . . , ik) and (j1, . . . , jk) are both increasing, the only term of the
second sum that may be different from zero is the one for which σ = id.
Consequently,

0 = T (vj1 , . . . , vjk) = bj1···jk .

�

The following result is clear from the anticommutativity shown in Ex-
ample 1.6.

Proposition 1.10. If T ∈ Λk(V ∗) and S ∈ Λm(V ∗), then

T ∧ S = (−1)kmS ∧ T.

Proof. Exercise 1.15.4. �

Remark 1.11.

(1) Another consequence of Theorem 1.9 is that dim(Λn(V ∗)) = 1.
Hence, if V = Rn, any alternating n-tensor in Rn is a multiple of
the determinant.

(2) It is also clear that Λk(V ∗) = 0 if k > n. Moreover, the set Λ0(V ∗)
is defined to be equal to R (identified with the set of constant
functions on V ).
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A linear transformation F : V → W induces a linear transformation
F ∗ : T k(W ∗) → T k(V ∗) defined by

(F ∗T )(v1, . . . , vk) = T (F (v1), . . . , F (vk)).

This map has the following properties.

Proposition 1.12. Let V,W,Z be vector spaces, let F : V → W and
H : W → Z be linear maps, and let T ∈ T k(W ∗) and S ∈ T m(W ∗). We
have:

(1) F ∗(T ⊗ S) = (F ∗T )⊗ (F ∗S);
(2) If T is alternating then so is F ∗T ;
(3) F ∗(T ∧ S) = (F ∗T ) ∧ (F ∗S);
(4) (H ◦ F )∗ = F ∗ ◦H∗.

Proof. Exercise 1.15.5. �

Another important fact about alternating tensors is the following.

Theorem 1.13. Let F : V → V be a linear map and let T ∈ Λn(V ∗).
Then F ∗T = (detA)T , where A is any matrix representing F .

Proof. As Λn(V ∗) is 1-dimensional and F ∗ is a linear map, F ∗ is just
multiplication by some constant C. Let us consider an isomorphism H
between V and Rn. Then, H∗ det is an alternating n-tensor in V , and so
F ∗H∗ det = CH∗ det. Hence

(H−1)∗F ∗H∗ det = C det ⇔ (H ◦ F ◦H−1)∗ det = C det ⇔ A∗ det = C det,

where A is the matrix representation of F induced by H. Taking the stan-
dard basis in Rn, {e1, . . . , en}, we have

A∗ det (e1, . . . , en) = C det(e1, . . . , en) = C,

and so
det (Ae1, . . . , Aen) = C,

implying that C = detA. �

Remark 1.14. By the above theorem, if T ∈ Λn(V ∗) and T 6= 0, then
two ordered basis {v1, . . . , vn} and {w1, . . . , wn} are equivalently oriented if
and only if T (v1, . . . , vn) and T (w1, . . . , wn) have the same sign.

Exercises 1.15.

(1) Show that the tensor product is bilinear and associative but not
commutative.

(2) Find a basis for the space T k,m(V ∗, V ) of mixed (k,m)-tensors.
(3) If T ∈ T k(V ∗), show that

(a) Alt(T ) is an alternating tensor;
(b) if T is alternating then Alt(T ) = T ;
(c) Alt(Alt(T )) = Alt(T ).

(4) Prove Proposition 1.10.
(5) Prove Proposition 1.12.
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(6) Let T1, . . . , Tk ∈ V ∗. Show that

(T1 ∧ · · · ∧ Tk)(v1, . . . , vk) = det [Ti(vj)].

(7) Show that Let T1, . . . , Tk ∈ Λ1(V ∗) = V ∗ are linearly independent
if and only if T1 ∧ · · · ∧ Tk 6= 0.

(8) Let T ∈ Λk(V ∗) and let v ∈ V . We define contraction of T by v,
ι(v)T , as the (k − 1)-tensor given by

(ι(v)T )(v1, . . . , vk−1) = T (v, v1, . . . , vk−1).

Show that:
(a) ι(v1)(ι(v2)T ) = −ι(v2)(ι(v1)T );
(b) if T ∈ Λk(V ∗) and S ∈ Λm(V ∗) then

ι(v)(T ∧ S) = (ι(v)T ) ∧ S + (−1)kT ∧ (ι(v)S).

2. Tensor Fields

The definition of vector field can be generalized to tensor fields of general
type. For that, we denote by T ∗

pM the dual of the tangent space TpM at a
point p in M (usually called the cotangent space to M at p).

Definition 2.1. A (k,m)-tensor field is a map that to each point
p ∈M assigns a tensor T ∈ T k,m(T ∗

pM,TpM).

Example 2.2. A vector field is a (0, 1)-tensor field (or a 1-contravariant
tensor field), that is, a map that to each point p ∈ M assigns the 1-
contravariant tensor Xp ∈ TpM .

Example 2.3. Let f : M → R be a differentiable function. We can
define a (1, 0)-tensor field df which carries each point p ∈M to (df)p, where

(df)p : TpM → R

is the derivative of f at p. This tensor field is called the differential of f .
For any v ∈ TpM we have (df)p(v) = v · f (the directional derivative of f
at p along the vector v). Considering a coordinate system x : W → Rn, we
can write v =

∑n
i=1 v

i
(
∂
∂xi

)
p
, and so

(df)p(v) =
∑

i

vi
∂f̂

∂xi
(x(p)),

where f̂ = f ◦ x−1. Taking the coordinate functions xi : W → R, we can
obtain (1, 0)-tensor fields dxi defined on W . These satisfy

(dxi)p

((
∂

∂xj

)

p

)
= δij

and so they form a basis of each cotangent space T ∗
pM , dual to the coordinate

basis
{(

∂
∂x1

)
p
, · · · ,

(
∂
∂xn

)
p

}
of TpM . Hence, any (1, 0)-tensor field on W
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can be written as ω =
∑

i ωidx
i, where ωi : W → R is such that ωi(p) =

ωp(
(
∂
∂xi

)
p
). In particular, df can be written in the usual way

(df)p =
n∑

i=1

∂f̂

∂xi
(x(p))(dxi)p.

Remark 2.4. Similarly to what was done for the tangent bundle, we can
consider the disjoint union of all cotangent spaces and obtain the manifold

T ∗M =
⋃

p∈M
T ∗
pM

called the cotangent bundle of M . Note that a (1, 0)-tensor field is just a
map from M to T ∗M defined by

p 7→ ωp ∈ T ∗
pM.

This construction can be easily generalized for arbitrary tensor fields.

The space of (k,m)-tensor fields is clearly a vector space since linear
combinations of (k,m)-tensors are still (k,m)-tensors. If W is a coordinate
neighborhood of M , we know that

{
(dxi)p

}
is a basis for T ∗

pM and that{(
∂
∂xi

)
p

}
is a basis for TpM . Hence, the value of a (k,m)-tensor field T at

a point p ∈W can be written as the tensor

Tp =
∑

aj1···jmi1···ik (p)(dxi1)p ⊗ · · · ⊗ (dxik)p ⊗
(

∂

∂xj1

)

p

⊗ · · · ⊗
(

∂

∂xjm

)

p

where the aj1···jmi1···ik : W → R are functions which at each p ∈ W give us the
components of Tp relative to these bases of T ∗

pM and TpM . Just as we did
with vector fields, we say that a tensor field is differentiable if all these
functions are differentiable for all coordinate systems of the maximal atlas.
Again, we only need to consider the coordinate systems of an atlas, since all
overlap maps are differentiable (cf. Exercise 2.8.1).

Example 2.5. The differential of a smooth function f : M → R is

clearly a differentiable (1, 0)-tensor field, since its components ∂f̂
∂xi

◦ x on a
given coordinate system x :W → Rn are smooth.

An important operation on covariant tensors is the pull-back by a
smooth map.

Definition 2.6. Let f :M → N be a differentiable map between smooth
manifolds. Then, each differentiable k-covariant tensor field T on N defines
a k-covariant tensor field f∗T on M in the following way:

(f∗T )p(v1, . . . , vk) = Tf(p)((df)pv1, . . . , (df)pvk),

for v1, . . . , vk ∈ TpM .
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Remark 2.7. Notice that (f∗T )p is just the image of Tf(p) by the linear

map (df)∗p : T k(T ∗
f(p)N) → T k(T ∗

pM) induced by (df)p : TpM → Tf(p)N

(cf. Section 1). Therefore the properties f∗(αT + βS) = α(f∗T ) + β(f∗S)
and f∗(T ⊗ S) = (f∗T ) ⊗ (f∗S) hold for all α, β ∈ R and all appropriate
covariant tensor fields T, S. We will see in Exercise 2.8.2 that the pull-back of
a differentiable covariant tensor field is still a differentiable covariant tensor
field.

Exercises 2.8.

(1) Find the relation between coordinate functions of a tensor field in
two overlapping coordinate systems.

(2) Show that the pull-back of a differentiable covariant tensor field is
still a differentiable covariant tensor field.

(3) (Lie derivative of a tensor field) Given a vector field X ∈ X(M),
we define the Lie derivative of a k-covariant tensor field T
along X as

LXT :=
d

dt
(ψt

∗T )
|t=0

,

where ψt = F (·, t) with F the local flow of X at p.
(a) Show that

LX (T (Y1, . . . , Yk)) = (LXT )(Y1, . . . , Yk)

+ T (LXY1, . . . , Yk) + . . .+ T (Y1, . . . , LXYk),

i.e., show that

X · (T (Y1, . . . , Yk)) = (LXT )(Y1, . . . , Yk)

+ T ([X,Y1], . . . , Yk) + . . .+ T (Y1, . . . , [X,Yk]),

for all vector fields Y1, . . . , Yk (cf. Exercises 6.11.11 and 6.11.12
in Chapter 1).

(b) How would you define the Lie derivative of a (k,m)-tensor
field?

3. Differential Forms

Fields of alternating tensors are very important objects called forms.

Definition 3.1. Let M be a smooth manifold. A form of degree k
(or k-form) on M is a field of alternating k-tensors defined on M , that is,
a map ω that, to each point p ∈M , assigns an element ωp ∈ Λk(T ∗

pM).

The set of k-forms on M is clearly a vector space. By Theorem 1.9,
given a coordinate system x :W → Rn, any k-form on W can be written as

ω =
∑

I

ωIdx
I

where I = (i1, . . . , ik) denotes any increasing index sequence of integers
in {1, . . . , n}, dxI is the form dxi1 ∧ · · · ∧ dxik , and the ωI ’s are functions
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defined on W . It is easy to check that the components of ω in the basis
{dxi1 ⊗ · · · ⊗ dxik} are ±ωI . Therefore ω is a differentiable (k, 0)-tensor (in
which case it is called a differential form) if the functions ωI are smooth
for all coordinate systems of the maximal atlas. The set of differential k-
forms on M is represented by Ωk(M). From now on we will use the word
“form” to mean a differential form.

Given a smooth map f : M → N between differentiable manifolds, we
can induce forms on M from forms on N using the pull-back operation
(cf. Definition 2.6), since the pull-back of a field of alternating tensors is
still a field of alternating tensors.

Remark 3.2. If g : N → R is a 0-form, that is, a function, the pull-back
is defined as f∗g = g ◦ f .

It is easy to verify that the pull-back of forms satisfies the following
properties.

Proposition 3.3. Let f : M → N be a differentiable map and α, β
forms on N . Then,

(i) f∗(α+ β) = f∗α+ f∗β;
(ii) f∗(gα) = (g ◦ f)f∗α = (f∗g)(f∗α) for any function g ∈ C∞(N);
(iii) f∗(α ∧ β) = (f∗α) ∧ (f∗β);
(iv) g∗(f∗α) = (f ◦ g)∗α for any map g ∈ C∞(L,M), where L is a

differentiable manifold.

Proof. Exercise 3.8.1. �

Example 3.4. If f :M → N is differentiable and we consider coordinate
systems x : V → Rm, y : W → Rn respectively on M and N , we have yi =
f̂ i(x1, . . . , xm) for i = 1, . . . , n and f̂ = y ◦ f ◦ x−1 the local representation
of f . If ω =

∑
I ωIdy

I is a k-form on W , then by Proposition 3.3,

f∗ω = f∗
(∑

I

ωIdy
I

)
=
∑

I

(f∗ωI)(f
∗dyI) =

∑

I

(ωI◦f)(f∗dyi1)∧· · ·∧(f∗dyik).

Moreover, for v ∈ TpM ,

(f∗(dyi))p(v) = (dyi)f(p)((df)pv) =
(
d(yi ◦ f)

)
p
(v),

that is, f∗(dyi) = d(yi ◦ f). Hence,

f∗ω =
∑

I

(ωI ◦ f) d(yi1 ◦ f) ∧ · · · ∧ d(yik ◦ f)

=
∑

I

(ωI ◦ f) d(f̂ i1 ◦ x) ∧ · · · ∧ d(f̂ ik ◦ x).

If k = dimM = dimN = n, then the pull-back f∗ω can easily be computed
from Theorem 1.13, according to which

(4) (f∗(dy1 ∧ · · · ∧ dyn))p = det (df̂)x(p)(dx
1 ∧ · · · ∧ dxn)p.
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Given any form ω on M and a parameterization ϕ : U → M , we can
consider the pull-back of ω by ϕ and obtain a form defined on the open set
U , called the local representation of ω on that parameterization.

Example 3.5. Let x : W → Rn be a coordinate system on a smooth
manifold M and consider the 1-form dxi defined on W . The pull-back
ϕ∗dxi by the corresponding parameterization ϕ := x−1 is a 1-form on an
open subset U of Rn satisfying

(ϕ∗dxi)x(v) = (ϕ∗dxi)x




n∑

j=1

vj
(

∂

∂xj

)

x


 = (dxi)p




n∑

j=1

vj(dϕ)x

(
∂

∂xj

)

x




= (dxi)p




n∑

j=1

vj
(

∂

∂xj

)

p


 = vi = (dxi)x(v),

for x ∈ U , p = ϕ(x) and v =
∑n

j=1 v
j
(
∂
∂xj

)
x
∈ TxU . Hence, just as we had(

∂
∂xi

)
p
= (dϕ)x

(
∂
∂xi

)
x
, we now have (dxi)x = ϕ∗(dxi)p, and so (dxi)p is the

1-form in W whose local representation on U is (dxi)x.

If ω =
∑

I ωIdx
I is a k-form defined on an open subset of Rn, we define

a (k + 1)-form called exterior derivative of ω as

dω :=
∑

I

dωI ∧ dxI .

Example 3.6. Consider the form ω = − y
x2+y2

dx+ x
x2+y2

dy defined on

R2\{0}. Then,

dω = d

(
− y

x2 + y2

)
∧ dx+ d

(
x

x2 + y2

)
∧ dy

=
y2 − x2

(x2 + y2)2
dy ∧ dx+

y2 − x2

(x2 + y2)2
dx ∧ dy = 0.

The exterior derivative satisfies the following properties:

Proposition 3.7. If α, ω, ω1, ω2 are forms on Rn, then

(i) d(ω1 + ω2) = dω1 + dω2;
(ii) if ω is k-form, d(ω ∧ α) = dω ∧ α+ (−1)kω ∧ dα;
(iii) d(dω) = 0;
(iv) if f : Rm → Rn is smooth, d(f∗ω) = f∗(dω).

Proof. Property (i) is obvious. Using (i), it is enough to prove (ii) for
ω = aIdx

I and α = bJdx
J :

d(ω ∧ α) = d(aIbJ dx
I ∧ dxJ) = d(aIbJ) ∧ dxI ∧ dxJ

= (bJ daI + aI dbJ) ∧ dxI ∧ dxJ
= bJ daI ∧ dxI ∧ dxJ + aI dbJ ∧ dxI ∧ dxJ
= dω ∧ α+ (−1)kaIdx

I ∧ dbJ ∧ dxJ
= dω ∧ α+ (−1)kω ∧ dα.
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Again, to prove (iii), it is enough to consider forms ω = aIdx
I . Since

dω = daI ∧ dxI =
n∑

i=1

∂aI
∂xi

dxi ∧ dxI ,

we have

d(dω) =
n∑

j=1

n∑

i=1

∂2aI
∂xj∂xi

dxj ∧ dxi ∧ dxI

=
n∑

i=1

∑

j<i

(
∂2aI
∂xj∂xi

− ∂2aI
∂xi∂xj

)
dxj ∧ dxi ∧ dxI = 0.

To prove (iv), we first consider a 0-form g:

f∗(dg) = f∗
(

n∑

i=1

∂g

∂xi
dxi

)
=

n∑

i=1

(
∂g

∂xi
◦ f
)
df i=

m∑

j=1

n∑

i=1

((
∂g

∂xi
◦ f
)
∂f i

∂yj

)
dyj

=
m∑

j=1

∂(g ◦ f)
∂yj

dyj = d(g ◦ f) = d(f∗g).

Then, if ω = aIdx
I , we have

d(f∗ω) = d((f∗aI)df
I) = d(f∗aI) ∧ df I + (f∗aI)d(df

I) = d(f∗aI) ∧ df I

= (f∗daI) ∧ (f∗dxI) = f∗(daI ∧ dxI) = f∗(dω)

(where df I denotes the form df i1 ∧ · · · ∧ df ik), and the result follows. �

Suppose now that ω is a differential k-form on a smooth manifoldM . We
define the (k+1)-form dω as the smooth form that is locally represented by
dωα for each parameterization ϕα : Uα → M , where ωα := ϕ∗

αω is the local
representation of ω, that is, dω = (ϕ−1

α )∗(dωα) on ϕα(Uα). Given another
parameterization ϕβ : Uβ →M such that W := ϕα(Uα) ∩ ϕβ(Uβ) 6= ∅, it is
easy to verify that

(ϕ−1
α ◦ ϕβ)∗ωα = ωβ .

Setting f equal to ϕ−1
α ◦ ϕβ , we have

f∗(dωα) = d(f∗ωα) = dωβ .

Consequently,

(ϕ−1
β )∗dωβ = (ϕ−1

β )∗f∗(dωα)

= (f ◦ ϕ−1
β )∗(dωα)

= (ϕ−1
α )∗(dωα),

and so the two definitions agree on the overlapping set W . Therefore dω
is well defined. We leave it as an exercise to show that the exterior deriv-
ative defined for forms on smooth manifolds also satisfies the properties of
Proposition 3.7.
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Exercises 3.8.

(1) Prove Proposition 3.3.
(2) (Exterior derivative) LetM be a smooth manifold. Given a k-form

ω in M we can define its exterior derivative dω without using local
coordinates: given k + 1 vector fields X1, . . . , Xk+1 ∈ X(M),

dω(X1, . . . , Xk+1) :=
k+1∑

i=1

(−1)i−1Xi · ω(X1, . . . , X̂i, . . . , Xk+1)+

∑

i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1),

where the hat indicates an omitted variable.
(a) Show that dω defined above is in fact a (k + 1)-form in M ,

that is,
(i) dω(X1, . . . , Xi + Yi, . . . , Xk+1) =

dω(X1, . . . , Xi, . . . , Xk+1) + dω(X1, . . . , Yi, . . . , Xk+1);
(ii) dω(X1, . . . , fXj , . . . , Xk+1)=fdω(X1, . . . , Xk+1) for any

differentiable function f ;
(iii) dω is alternating;
(iv) dω(X1, . . . , Xk+1)(p) depends only on (X1)p, . . . , (Xk+1)p.

(b) Let x : W → Rn be a coordinate system of M and let ω =∑
I aIdx

i1 ∧ · · · ∧ dxik be the expression of ω in these coordi-
nates (where the aI ’s are smooth functions). Show that the
local expression of dω is the same as the one used in the local
definition of exterior derivative, that is,

dω =
∑

I

daI ∧ dxi1 ∧ · · · ∧ dxik .

(3) Show that the exterior derivative defined for forms on smooth man-
ifolds satisfies the properties of Proposition 3.7.

(4) Show that:
(a) if ω = f1dx+ f2dy + f3dz is a 1-form on R3 then

dω = g1dy ∧ dz + g2dz ∧ dx+ g3dx ∧ dy,
where (g1, g2, g3) = curl(f1, f2, f3);

(b) if ω = f1dy ∧ dz + f2dz ∧ dx + f3dx ∧ dy is a 2-form on R3,
then

dω = div(f1, f2, f3) dx ∧ dy ∧ dz.
(5) (De Rham cohomology) A k-form ω is called closed if dω = 0.

If it exists a (k − 1)-form β such that ω = dβ then ω is called
exact. Note that every exact form is closed. Let Zk be the set of
all closed k-forms on M and define a relation between forms on Zk

as follows: α ∼ β if and only if they differ by an exact form, that
is, if β − α = dθ for some (k − 1)-form θ.
(a) Show that this relation is an equivalence relation.



3. DIFFERENTIAL FORMS 75

(b) Let Hk(M) be the corresponding set of equivalence classes
(called the k-dimensional de Rham cohomology space of
M). Show that addition and scalar multiplication of forms
define indeed a vector space structure on Hk(M).

(c) Let f :M → N be a smooth map. Show that:
(i) the pull-back f∗ carries closed forms to closed forms and

exact forms to exact forms;
(ii) if α ∼ β on N then f∗α ∼ f∗β on M ;
(iii) f∗ induces a linear map on cohomology f ♯ : Hk(N) →

Hk(M) naturally defined by f ♯[ω] = [f∗ω];
(iv) if g : L → M is another smooth map, then (f ◦ g)♯ =

g♯ ◦ f ♯.
(d) Show that the dimension of H0(M) is equal to the number of

connected components of M .
(e) Show that Hk(M) = 0 for every k > dimM .

(6) Let M be a manifold of dimension n, let U be an open subset of
Rn and let ω be a k-form on R× U . Writing ω as

ω = dt ∧
∑

I

aIdx
I +

∑

J

bJdx
J ,

where I = (i1, . . . , ik−1) and J = (j1, . . . , jk) are increasing index
sequences, (x1, . . . , xn) are coordinates in U and t is the coordinate
in R, consider the operator Q defined by

Q(ω)(t,x) =
∑

I

(∫ t

t0

aIds

)
dxI ,

which transforms k-forms ω in R× U into (k − 1)-forms.
(a) Let f : V → U be a diffeomorphism between open subsets

of Rn. Show that the induced diffeomorphism f̃ := id×f :
R× V → R× U satisfies

f̃∗ ◦ Q = Q ◦ f̃∗.
(b) Using (a), construct an operator Q which carries k-forms on

R×M into (k−1)-forms and, for any diffeomorphism f :M →
N , the induced diffeomorphism f̃ := id×f : R×M → R×N

satisfies f̃∗ ◦ Q = Q ◦ f̃∗. Show that this operator is linear.
(c) Considering the operatorQ defined in (b) and the inclusion it0 :

M → R×M of M at the “level” t0, defined by it0(p) = (t0, p),
show that ω − π∗i∗t0ω = dQω +Qdω, where π : R ×M → M
is the projection on M .

(d) Show that the maps π♯ : Hk(M) → Hk(R × M) and i♯t0 :

Hk(R×M) → H(M) are inverses of each other (and soHk(M)
is isomorphic to Hk(R×M)).

(e) Use (d) to show that, for k > 0 and n > 0, every closed k-form
in Rn is exact, that is, Hk(Rn) = 0 if k > 0.
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(f) Use (d) to show that, if f, g : M → N are two smoothly
homotopic maps between smooth manifolds (meaning that
there exists a smooth mapH : R×M → N such thatH(t0, p) =
f(p) and H(t1, p) = g(p) for some fixed t0, t1 ∈ R), then
f ♯ = g♯.

(g) We say that M is contractible if the identity map id :M →
M is smoothly homotopic to a constant map. Show that Rn

is contractible.
(h) (Poincaré lemma) Let M be a contractible smooth manifold.

Show that every closed form onM is exact, that is, Hk(M) = 0
for all k > 0.

(Remark: This exercise is based on an exercise in [GP73]).
(7) (Lie derivative of a differential form) Given a vector field X ∈

X(M), we define the Lie derivative of a form ω along X as

LXω :=
d

dt
(ψt

∗ω)
|t=0

,

where ψt = F (·, t) with F the local flow of X at p (cf. Exer-
cise 2.8.3). Show that the Lie derivative satisfies the following
properties:
(a) LX(ω1 ∧ ω2) = (LXω1) ∧ ω2 + ω1 ∧ (LXω2);
(b) d(LXω) = LX(dω);
(c) Cartan formula: LXω = ι(X)dω + d(ι(X)ω);
(d) LX(ι(Y )ω) = ι(LXY )ω + ι(Y )LXω
(cf. Exercise 6.11.12 on Chapter 1 and Exercise 1.15.8).

4. Integration on Manifolds

Before we see how to integrate differential forms on manifolds, we will
start by studying the Rn case. For that let us consider an n-form ω defined
on an open subset U of Rn. We already know that ω can be written as

ωx = a(x) dx1 ∧ · · · ∧ dxn,
where a : U → R is a smooth function. The support of ω is, by definition,
the closure of the set where ω 6= 0 that is,

suppω = {x ∈ Rn | ωx 6= 0}.
We will assume that this set is compact (in which case ω is said to be
compactly supported). We define

∫

U
ω =

∫

U
a(x) dx1 ∧ · · · ∧ dxn :=

∫

U
a(x) dx1 · · · dxn,

where the integral on the right is a multiple integral on a subset of Rn. This
definition is almost well-behaved with respect to changes of variables in Rn.
Indeed, if f : V → U is a diffeomorphism of open sets of Rn, we have from
(4) that

f∗ω = (a ◦ f)(det df)dy1 ∧ · · · ∧ dyn,
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and so ∫

V
f∗ω =

∫

V
(a ◦ f)(det df)dy1 · · · dyn.

If f is orientation preserving, then det (df) > 0, and the integral on the
right is, by the change of variables theorem for multiple integrals in Rn

(cf. Section 7.2), equal to
∫
U ω. For this reason, we will only consider ori-

entable manifolds when integrating forms on manifolds. Moreover, we will
also assume that suppω is always compact to avoid convergence problems.

Let M be an oriented manifold, and let A = {(Uα, ϕα)} be an atlas
whose parameterizations are orientation-preserving. Suppose that suppω is
contained in some coordinate neighborhood Wα = ϕα(Uα). Then we define

∫

M
ω :=

∫

Uα

ϕ∗
αω =

∫

Uα

ωα.

Note that this does not depend on the choice of coordinate neighborhood: if
suppω is contained in some other coordinate neighborhood Wβ = ϕβ(Uβ),
then ωβ = f∗ωα, where f := ϕ−1

α ◦ ϕβ is orientation preserving, and hence
∫

Uβ

ωβ =

∫

Uβ

f∗ωα =

∫

Uα

ωα.

To define the integral in the general case we use a partition of unity
(cf. Section 7.2) subordinate to the cover {Wα} of M , i.e., a family of dif-
ferentiable functions on M , {ρi}i∈I , such that:

(i) for every point p ∈ M , there exists a neighborhood V of p such
that V ∩ supp ρi = ∅ except for a finite number of ρi’s;

(ii) for every point p ∈M ,
∑

i∈I ρi(p) = 1;
(iii) 0 ≤ ρi ≤ 1 and supp ρi ⊂Wαi for some element Wαi of the cover.

Because of property (i), suppω (being compact) intersects the supports of
only finitely many ρi’s. Hence we can assume that I is finite, and then

ω =

(∑

i∈I
ρi

)
ω =

∑

i∈I
ρiω =

∑

i∈I
ωi

with ωi := ρiω and suppωi ⊂Wαi . Consequently we define:
∫

M
ω :=

∑

i∈I

∫

M
ωi =

∑

i∈I

∫

Uαi

ϕ∗
αiωi.

Remark 4.1.

(1) When suppω is contained in one coordinate neighborhood W , the
two definitions above agree. Indeed,

∫

M
ω =

∫

W
ω =

∫

W

∑

i∈I
ωi =

∫

U
ϕ∗
(∑

i∈I
ωi

)

=

∫

U

∑

i∈I
ϕ∗ωi =

∑

i∈I

∫

U
ϕ∗ωi =

∑

i∈I

∫

M
ωi,
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where we used the linearity of the pull-back and of integration on
Rn.

(2) The definition of integral is independent of the choice of partition
of unity and the choice of cover. Indeed, if {ρ̃j}j∈J is another

partition of unity subordinate to another cover {W̃β} compatible
with the same orientation, we have by (1)

∑

i∈I

∫

M
ρiω =

∑

i∈I

∑

j∈J

∫

M
ρ̃jρiω

and ∑

j∈J

∫

M
ρ̃jω =

∑

j∈J

∑

i∈I

∫

M
ρiρ̃jω.

(3) It is also easy to verify the linearity of the integral, that is,∫

M
aω1 + bω2 = a

∫

M
ω1 + b

∫

M
ω2.

for a, b ∈ R and ω1, ω2 two n-forms on M .
(4) The definition of integral can easily be extended to oriented mani-

folds with boundary.

Exercises 4.2.

(1) Let M be an n-dimensional differentiable manifold. A subset N ⊂
M is said to have zero measure if the sets ϕ−1

α (N) ⊂ Uα have zero
measure for every parameterization ϕα : Uα → M in the maximal
atlas.
(a) Prove that in order to show that N ⊂ M has zero measure it

suffices to check that the sets ϕ−1
α (N) ⊂ Uα have zero measure

for the parameterizations in an arbitrary atlas.
(b) Suppose that M is oriented. Let ω ∈ Ωn(M) be compactly

supported and let W = ϕ(U) be a coordinate neighborhood
such that M \W has zero measure. Show that∫

M
ω =

∫

U
ϕ∗ω,

where the integral on the right-hand side is defined as above
and always exists.

(2) Let x, y, z be the restrictions of the Cartesian coordinate functions
in R3 to S2, oriented so that {(1, 0, 0); (0, 1, 0)} is a positively ori-
ented basis of T(0,0,1)S

2, and consider the 2-form

ω = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy ∈ Ω2(S2).

Compute the integral ∫

S2

ω

using the parameterizations corresponding to
(a) spherical coordinates;
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(b) stereographic projection.
(3) Consider the manifolds

S3 =
{
(x, y, z, w) ∈ R4 | x2 + y2 + z2 + w2 = 2

}
;

T 2 =
{
(x, y, z, w) ∈ R4 | x2 + y2 = z2 + w2 = 1

}
.

The submanifold T 2 ⊂ S3 splits S3 into two connected components.
Let M be one of these components and let ω be the 3-form

ω = zdx ∧ dy ∧ dw − xdy ∧ dz ∧ dw.
Compute the two possible values of

∫
M ω.

(4) Let M and N be n-dimensional manifolds, f : M → N an ori-
entation preserving diffeomorphism and ω ∈ Ωn(N) a compactly
supported form. Prove that

∫

N
ω =

∫

M
f∗ω.

5. Stokes Theorem

In this section we will prove a very important theorem.

Theorem 5.1. (Stokes) Let M be an n-dimensional oriented smooth
manifold with boundary, let ω be a (n − 1)-differential form on M with
compact support, and let i : ∂M →M be the inclusion of the boundary ∂M
in M . Then ∫

∂M
i∗ω =

∫

M
dω,

where we consider ∂M with the induced orientation (cf. Section 9 in Chap-
ter 1).

Proof. Let us take a partition of unity {ρi}i∈I subordinate to an open
cover of M by coordinate neighborhoods compatible with the orientation.
Then ω =

∑
i∈I ρiω, where we can assume I to be finite (ω is compactly

supported), and hence

dω = d
∑

i∈I
ρiω =

∑

i∈I
d(ρiω).

By linearity of the integral we then have,
∫

M
dω =

∑

i∈I

∫

M
d(ρiω) and

∫

∂M
i∗ω =

∑

i∈I

∫

∂M
i∗(ρiω).

Hence, to prove this theorem, it is enough to consider the case where suppω
is contained inside one coordinate neighborhood of the cover. Let us then
consider a (n − 1)-form ω with compact support contained in a coordinate
neighborhood W . Let ϕ : U → W be the corresponding parameterization,
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where we can assume U to be bounded (supp(ϕ∗ω) is compact). Then, the
representation of ω on U can be written as

ϕ∗ω =
n∑

j=1

aj dx
1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn,

(where each aj : U → R is a C∞-function), and

ϕ∗dω = dϕ∗ω =
n∑

j=1

(−1)j−1 ∂aj
∂xj

dx1 ∧ · · · ∧ dxn.

The functions aj can be extended to C∞-functions on Hn by letting

aj(x
1, · · · , xn) =

{
aj(x

1, · · · , xn) if (x1, . . . , xn) ∈ U
0 if (x1, . . . , xn) ∈ Hn\U.

If W ∩ ∂M = ∅, then i∗ω = 0. Moreover, if we consider a rectangle I in H
containing U defined by equations bj ≤ xj ≤ cj (j = 1, . . . , n), we have

∫

M
dω =

∫

U




n∑

j=1

(−1)j−1 ∂aj
∂xj


 dx1 · · · dxn =

n∑

j=1

(−1)j−1

∫

I

∂aj
∂xj

dx1 · · · dxn

=
n∑

j=1

(−1)j−1

∫

Rn−1

(∫ cj

bj

∂aj
∂xj

dxj

)
dx1 · · · dxj−1dxj+1 · · · dxn

=
n∑

j=1

(−1)j−1

∫

Rn−1

(
aj(x

1, . . . , xj−1, cj , x
j+1, . . . , xn)−

−aj(x1, . . . , xj−1, bj , x
j+1, . . . , xn)

)
dx1 · · · dxj−1dxj+1 · · · dxn = 0,

where we used the Fubini theorem (cf. Section 7.3), the fundamental theorem
of Calculus and the fact that the aj ’s are zero outside U . We conclude that,
in this case,

∫
∂M i∗ω =

∫
M dω = 0.

If, on the other hand, W ∩ ∂M 6= ∅ we take a rectangle I containing
U now defined by the equations bj ≤ xj ≤ cj for j = 1, . . . , n − 1, and
0 ≤ xn ≤ cn. Then, as in the preceding case, we have

∫

M
dω=

∫

U




n∑

j=1

(−1)j−1 ∂aj
∂xj


 dx1 · · · dxn =

n∑

j=1

(−1)j−1

∫

I

∂aj
∂xj

dx1 · · · dxn

= 0 + (−1)n−1

∫

Rn−1

(∫ cn

0

∂an
∂xn

dxn
)
dx1 · · · dxn−1

= (−1)n−1

∫

Rn−1

(
an(x

1, . . . , xn−1, cn)− an(x
1, . . . , xn−1, 0)

)
dx1 · · · dxn−1

= (−1)n
∫

Rn−1

an(x
1, . . . , xn−1, 0) dx1 · · · dxn−1.

To compute
∫
∂M i∗ω we need to consider a parameterization ϕ̃ of ∂M defined

on an open subset of Rn−1 which preserves the standard orientation on Rn−1
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when we consider the induced orientation on ∂M . For that, we can for
instance consider the set

Ũ = {(x1, . . . , xn−1) ∈ Rn−1 | ((−1)nx1, x2, . . . , xn−1, 0) ∈ U}
and the parameterization ϕ̃ : Ũ :→ ∂M given by

ϕ̃(x1, . . . , xn−1) := ϕ
(
(−1)nx1, x2, . . . , xn−1, 0

)
.

Recall that the orientation on ∂M obtained from ϕ by just dropping the last
coordinate is (−1)n times the induced orientation on ∂M (cf. Section 9 in
Chapter 1). Therefore ϕ̃ gives the correct orientation. The local expression

of i : ∂M → M on these coordinates (̂i : Ũ → U such that î = ϕ−1 ◦ i ◦ ϕ̃)
is given by

î(x1, . . . , xn−1) =
(
(−1)nx1, x2, . . . , xn−1, 0

)
.

Hence,∫

∂M
i∗ω =

∫

Ũ
ϕ̃∗i∗ω =

∫

Ũ
(i ◦ ϕ̃)∗ω =

∫

Ũ
(ϕ ◦ î)∗ω =

∫

Ũ
î∗ϕ∗ω.

Moreover,

î∗ϕ∗ω = î∗
n∑

j=1

aj dx
1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn

=
n∑

j=1

(aj ◦ î) dî1 ∧ · · · ∧ dîj−1 ∧ dîj+1 ∧ · · · ∧ dîn

= (−1)n(an ◦ î) dx1 ∧ · · · ∧ dxn−1,

since dî1 = (−1)ndx1, dîn = 0 and dîj = dxj , for j 6= 1 and j 6= n.
Consequently,∫

∂M
i∗ω = (−1)n

∫

Ũ
(an ◦ î) dx1 · · · dxn−1

= (−1)n
∫

Ũ
an
(
(−1)nx1, x2, . . . , xn−1, 0

)
dx1 · · · dxn−1

= (−1)n
∫

Rn−1

an(x
1, x2, . . . , xn−1, 0) dx1 · · · dxn−1 =

∫

M
dω

(where we have used the change of variables theorem). �

Remark 5.2. If M is an oriented n-dimensional differentiable manifold
(that is, a manifold with boundary ∂M = ∅), it is clear from the proof of
the Stokes theorem that ∫

M
dω = 0

for any (n−1)-differential form ω on M with compact support. This can be
viewed as a particular case of the Stokes theorem if we define the integral
over the empty set to be zero.

Exercises 5.3.
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(1) Use the Stokes theorem to confirm the result of Exercise 4.2.3.
(2) (Homotopy invariance of the integral) Recall that two maps f0, f1 :

M → N are said to be smoothly homotopic if there exists a dif-
ferentiable map H : R ×M → N such that H(0, p) = f0(p) and
H(1, p) = f1(p) (cf. Exercise 3.8.6). If M is a compact oriented
manifold of dimension n and ω is a closed n-form on N , show that

∫

M
f∗0ω =

∫

M
f∗1ω.

(3) (a) Let X ∈ X(Sn) be a vector field with no zeros. Show that

H(t, p) = cos(πt)p+ sin(πt)
Xp

‖Xp‖
is a smooth homotopy between the identity map and the an-
tipodal map, where we make use of the identification

Xp ∈ TpS
n ⊂ TpR

n+1 ∼= Rn+1.

(b) Using the Stokes theorem, show that
∫

Sn
ω > 0,

where

ω =
n+1∑

i=1

(−1)i+1xidx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1

and Sn = ∂{x ∈ Rn+1 | ‖x‖ ≤ 1} has the orientation induced
by the standard orientation of Rn+1.

(c) Show that if n is even then X cannot exist. What about when
n is odd?

(4) (Degree of a map) Let M , N be compact, connected oriented man-
ifolds of dimension n, and let f : M → N be a smooth map. It
can be shown that there exists a real number deg(f) (called the
degree of f) such that, for any n-form ω ∈ Ωn(N),

∫

M
f∗ω = deg(f)

∫

N
ω.

(a) Show that if f is not surjective then deg(f) = 0.
(b) Show that if f is an orientation-preserving diffeomorphism

then deg(f) = 1, and that if f is an orientation-reversing dif-
feomorphism then deg(f) = −1.

(c) Let f :M → N be surjective and let q ∈ N be a regular value
of f . Show that f−1(q) is a finite set and that there exists a
neighborhoodW of q inN such that f−1(W ) is a disjoint union
of opens sets Vi of M with f |Vi : Vi →W a diffeomorphism.
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(d) Admitting the existence of a regular value of f , show that
deg(f) is an integer. (Remark: The Sard theorem guarantees that the

set of critical values of a differentiable map f between manifolds with the same

dimension has zero measure, which in turn guarantees the existence of a regular

value of f).
(e) Given n ∈ N, indicate a smooth map f : S1 → S1 of degree n.
(f) Show that homotopic maps have the same degree.
(g) Let f : Sn → Sn be an orientation-preserving diffeomorphism

if n is even, or an orientation-reversing diffeomorphism if n is
odd. Prove that f has a fixed point, that is, a point p ∈ Sn

such that f(p) = p. (Hint: Show that if f had no fixed points then it

would be possible to construct an homotopy between f and the antipodal map).

6. Orientation and Volume Forms

In this section we will study the relation between orientation and differ-
ential forms.

Definition 6.1. A volume form (or volume element) on a manifold
M of dimension n is an n-form ω such that ωp 6= 0 for all p ∈M .

The existence of a volume form is equivalent to M being orientable.

Proposition 6.2. A manifold M of dimension n is orientable if and
only if there exists a volume form on M .

Proof. Let ω be a volume form onM , and consider an atlas {(Uα, ϕα)}.
We can assume without loss of generality that the open sets Uα are con-
nected. We will construct a new atlas from this one whose overlap maps
have derivatives with positive determinant. Indeed, considering the repre-
sentation of ω on one of these open sets Uα ⊂ Rn, we have

ϕ∗
αω = aαdx

1
α ∧ · · · ∧ dxnα,

where the function aα cannot vanish, and hence must have a fixed sign.
If aα is positive, we keep the corresponding parameterization. If not, we
construct a new parameterization by composing ϕα with the map

(x1, . . . , xn) 7→ (−x1, x2, . . . , xn).
Clearly, in these new coordinates, the new function aα is positive. Repeating
this for all coordinate neighborhoods we obtain a new atlas for which all the
functions aα are positive, which we will also denote by {(Uα, ϕα)}. Moreover,
whenever W := ϕα(Uα)∩ϕβ(Uβ) 6= ∅, we have ωα = (ϕ−1

β ◦ϕα)∗ωβ . Hence,
aαdx

1
α ∧ · · · ∧ dxnα = (ϕ−1

β ◦ ϕα)∗(aβ dx1β ∧ · · · ∧ dxnβ)
= (aβ ◦ ϕ−1

β ◦ ϕα)(det(d(ϕ−1
β ◦ ϕα))) dx1α ∧ · · · ∧ dxnα

and so det(d(ϕ−1
β ◦ ϕα)) > 0. We conclude that M is orientable.

Conversely, if M is orientable, we consider an atlas {(Uα, ϕα)} for which
the overlap maps ϕ−1

β ◦ ϕα are such that det d(ϕ−1
β ◦ ϕα) > 0. Taking a
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partition of unity {ρi}i∈I subordinate to the cover ofM by the corresponding
coordinate neighborhoods, we may define the forms

ωi := ρidx
1
i ∧ · · · ∧ dxni

with suppωi = supp ρi ⊂ ϕαi(Uαi). Extending these forms to M by making
them zero outside supp ρi, we may define the form ω :=

∑
i∈I ωi. Clearly

ω is a well defined n-form on M so we just need to show that ωp 6= 0
for all p ∈ M . Let p be a point in M . There is an i ∈ I such that
ρi(p) > 0, and so there exist linearly independent vectors v1, . . . , vn ∈ TpM
such that (ωi)p(v1, . . . , vn) > 0. Moreover, for all other j ∈ I\{i} we have
(ωj)p(v1, . . . , vn) ≥ 0. Indeed, if p /∈ ϕαj (Uαj ), then (ωj)p(v1, . . . , vn) = 0.
On the other hand, if p ∈ ϕαj (Uαj ), then by (4)

dx1j ∧ · · · ∧ dxnj = det(d(ϕ−1
αj ◦ ϕαi))dx1i ∧ · · · ∧ dxni

and hence

(ωj)p(v1, . . . , vn) =
ρj(p)

ρi(p)
(det(d(ϕ−1

αj ◦ ϕαi)))(ωi)p(v1, . . . , vn) ≥ 0.

Consequently, ωp(v1, . . . , vn) > 0, and so ω is a volume form. �

Remark 6.3. Sometimes we call a volume form an orientation. In this
case the orientation on M is the one for which a basis {v1, . . . , vn} of TpM
is positive if and only if ωp(v1, . . . , vn) > 0.

If we fix a volume form ω ∈ Ωn(M) on an orientable manifoldM , we can
define the integral of any compactly supported function f ∈ C∞(M,R) as

∫

M
f :=

∫

M
fω

(where the orientation ofM is determined by ω). IfM is compact, we define
its volume to be

vol(M) :=

∫

M
1 =

∫

M
ω.

Exercises 6.4.

(1) Show that M × N is orientable if and only if both M and N are
orientable.

(2) Let M be a compact oriented manifold with volume element ω ∈
Ωn(M). Prove that if f > 0 then

∫
M fω > 0. (Remark: In particular,

the volume of a compact manifold is always positive).
(3) Let M be a compact orientable manifold of dimension n, and let ω

be an (n− 1)-form in M .
(a) Show that there exists a point p ∈M for which (dω)p = 0.

(b) Prove that there exists no immersion f : S1 → R of the unit
circle into R.
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(4) Let f : Sn → Sn be the antipodal map. Recall that the n-
dimensional projective space is the differential manifold RPn =
Sn/Z2, where the group Z2 = {1,−1} acts on Sn through 1 · x = x
and (−1) · x = f(x). Let π : Sn → RPn be the natural projection.
(a) Prove that ω ∈ Ωk(Sn) is of the form ω = π∗θ for some θ ∈

Ωk(RPn) if and only if f∗ω = ω.
(b) Show that RPn is orientable if and only if n is odd, and that

in this case,
∫

Sn
π∗θ = 2

∫

RPn
θ.

(c) Show that for n even the sphere Sn is the orientable double
covering of RPn (cf. Exercise 8.6.9 in Chapter 1).

(5) Let M be a compact oriented manifold with boundary and ω ∈
Ωn(M) a volume element. The divergence of a vector field X ∈
X(M) is the function div(X) such that

LXω = (div(X))ω

(cf. Exercise 3.8.7). Show that
∫

M
div(X) =

∫

∂M
ι(X)ω.

(6) (Brouwer fixed point theorem)
(a) Let M be an n-dimensional compact orientable manifold with

boundary ∂M 6= ∅. Show that there exists no smooth map
f :M → ∂M satisfying f |∂M = id.

(b) Prove the Brouwer fixed point theorem: Any smooth map
g : B → B of the closed ball B := {x ∈ Rn | ‖x‖ ≤ 1} to itself
has a fixed point, that is, a point p ∈ B such that g(p) = p.
(Hint: For each point x ∈ B, consider the ray rx starting at g(x) and passing

through x. There is only one point f(x) different from g(x) on rx∩∂B. Consider

the map f : B → ∂B).

7. Notes on Chapter 2

7.1. Section 1.

(1) Given a finite dimensional vector space V we define its dual space
as the space of linear functionals on V .

Proposition 7.1. If {v1, . . . , vn} is a basis for V then there is
a unique basis {T1, . . . , Tn} of V ∗ dual to {v1, . . . , vn}, that is, such
that Ti(vj) = δij.

Proof. By linearity, the equations Ti(vj) = δij define a unique
set of functionals Ti ∈ V ∗. Indeed, for any v ∈ V , we have v =
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∑n
j=1 ajvj and so

Ti(v) =
n∑

j=1

ajTi(vj) =
n∑

j=1

ajδij = ai.

Moreover, these uniquely defined functionals are linearly indepen-
dent. In fact, if

T :=
n∑

i=1

biTi = 0,

then, for each j = 1, . . . , n, we have

0 = T (vj) =
n∑

i=1

biTi(vj) = bj .

To show that {T1, . . . , Tn} generates V ∗, we take any S ∈ V ∗ and
set bi := S(vi). Then, defining T :=

∑n
i=1 biTi, we see that S(vj) =

T (vj) for all j = 1, . . . , n. Since {v1, . . . , vn} is a basis for V , we
have S = T . �

Moreover, if {v1, . . . , vn} is a basis for V and {T1, . . . , Tn} is its
dual basis, then, for any v =

∑
ajvj ∈ V and T =

∑
biTi ∈ V ∗, we

have

T (v) =
n∑

j=i

biTi(v) =
n∑

i,j=1

ajbiTi(vj) =
n∑

i,j=1

ajbiδij =
n∑

i=1

aibi.

If we now consider a linear functional F on V ∗, that is, an element
of (V ∗)∗, we have F (T ) = T (v0) for some fixed vector v0 ∈ V .
Indeed, let {v1, . . . , vn} be a basis for V and let {T1, . . . , Tn} be its
dual basis. Then if T =

∑n
i=1 biTi, we have F (T ) =

∑n
i=1 biF (Ti).

Denoting the values F (Ti) by ai, we get F (T ) =
∑n

i=1 aibi = T (v0)
for v0 =

∑n
i=1 aivi. This establishes a one-to-one correspondence

between (V ∗)∗ and V , and allows us to view V as the space of linear
functionals on V ∗. For v ∈ V and T ∈ V ∗, we write v(T ) = T (v).

(2) Changing from a basis {v1, . . . , vn} to a new basis {v′1, . . . , v′n} in
V , we obtain a change of basis matrix S, whose jth column is
the vector of coordinates of the new basis vector v′j in the old basis.
We can then write the symbolic matrix equation

(v′1, . . . , v
′
n) = (v1, . . . , vn)S.

The coordinate (column) vectors a and b of a vector v ∈ V (a
contravariant 1-tensor on V ) with respect to the old basis and to
the new basis are related by

b =




b1
...
bn


 = S−1




a1
...
an


 = S−1a,
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since we must have (v′1, . . . , v
′
n)b = (v1, . . . , vn)a = (v′1, . . . , v

′
n)S

−1a.
On the other hand, if {T1, . . . , Tn} and {T ′

1, . . . , T
′
n} are the dual

bases of {v1, . . . , vn} and {v′1, . . . , v′n}, we have



T1
...
Tn


 (v1, . . . , vn) =




T ′
1
...
T ′
n



(
v′1, . . . , v

′
n

)
= I

(where, in the symbolic matrix multiplication above, each coordi-
nate is obtained by applying the covectors to the vectors). Hence,



T1
...
Tn



(
v′1, . . . , v

′
n

)
S−1 = I ⇔ S−1




T1
...
Tn



(
v′1, . . . , v

′
n

)
= I,

implying that



T ′
1
...
T ′
n


 = S−1




T1
...
Tn


 .

The coordinate (row) vectors a = (a1, . . . , an) and b = (b1, . . . , bn)
of a 1-tensor T ∈ V ∗ (a covariant 1-tensor on V ) with respect to
the old basis {T1, . . . , Tn} and to the new basis {T ′

1, . . . , T
′
n} are

related by

a




T1
...
Tn


 = b




T ′
1
...
T ′
n


 ⇔ aS




T ′
1
...
T ′
n


 = b




T ′
1
...
T ′
n




and so b = aS. Note that the coordinate vectors of the covariant 1-
tensors on V transform like the basis vectors of V (that is, by means
of the matrix S) whereas the coordinate vectors of the contravariant
1-tensors on V transform by means of the inverse of this matrix.
This is the origin of the terms “covariant” and “contravariant”.

7.2. Section 4.

(1) (Change of variables theorem) Let U, V ⊂ Rn be open sets, let
g : U → V be a diffeomorphism and let f : V → R be an integrable
function. Then

∫

V
f =

∫

U
(f ◦ g)| det dg|.

(2) To define smooth objects on manifolds it is often useful to define
them first on coordinate neighborhoods and then glue the pieces
together by means of a partition of unity.



88 2. DIFFERENTIAL FORMS

Theorem 7.2. Let M be a smooth manifold and V an open
cover of M . Then there is a family of differentiable functions on
M , {ρi}i∈I , such that:
(i) for every point p ∈M , there exists a neighborhood U of p such

that U ∩ supp ρi = ∅ except for a finite number of ρi’s;
(ii) for every point p ∈M ,

∑
i∈I ρi(p) = 1;

(iii) 0 ≤ ρi ≤ 1 and supp ρi ⊂ V for some element V ∈ V.

Remark 7.3. This collection ρi of smooth functions is called
partition of unity subordinate to the cover V .

Proof. Let us first assume that M is compact. For every
point p ∈ M we consider a coordinate neighborhood Wp = ϕp(Up)
around p contained in an element Vp of V , such that ϕp(0) = p and
B3(0) ⊂ Up (where B3(0) denotes the ball of radius 3 around 0).
Then we consider the C∞-functions (cf. Figure 1)

λ : R → R

x 7→
{
e

1
(x−1)(x−2) if 1 < x < 2

0 otherwise
,

h : R → R

x 7→
∫ 2
x λ(t) dt∫ 2
1 λ(t) dt

,

β : Rn → R

x 7→ h(‖x‖) .

Notice that h is a decreasing function with values 0 ≤ h(x) ≤ 1,
equal to zero for x ≥ 2 and equal to 1 for x ≤ 1. Hence, we can
consider bump functions γp :M → [0, 1] defined by

γp(q) =





β(ϕ−1
p (q)) if q ∈ ϕp(Up)

0 otherwise.

Then supp γp = ϕp(B2(0)) ⊂ ϕp(B3(0)) ⊂ Wp is contained inside
an element Vp of the cover. Moreover, {ϕp(B1(0))}p∈M is an open

cover ofM and so we can consider a finite subcover {ϕpi(B1(0))}ki=1

such that M = ∪ki=1ϕpi(B1(0)). Finally we take the functions

ρi =
γpi∑k
j=1 γpj

.
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x

λ

h

1 2

Figure 1.

Note that
∑k

j=1 γpj (q) 6= 0 since q is necessarily contained inside

some ϕpi(B1(0)) and so γi(q) 6= 0. Moreover, 0 ≤ ρi ≤ 1,
∑
ρi = 1

and supp ρi = supp γpi ⊂ Vpi .
If M is not compact we can use a compact exhaustion, that

is, a sequence {Ki}i∈N of compact subsets of M such that Ki ⊂
intKi+1 and M = ∪∞

i=1Ki. The partition of unity is then obtained
as follows. The family {ϕp(B1(0))}p∈M is a cover of K1, so we can
consider a finite subcover of K1,{

ϕp1(B1(0)), . . . , ϕpk1 (B1(0))
}
.

By induction, we obtain a finite number of points such that
{
ϕpi1

(B1(0)), . . . , ϕpi
ki

(B1(0))
}

covers Ki\ intKi−1 (a compact set). Then, for each i, we consider
the corresponding bump functions

γpi1
, . . . , γpi

ki

:M → [0, 1].

Note that γp1i+ · · ·+γpi
ki

> 0 for every q ∈ Ki\ intKi−1 (as there is

always one of these functions which is different from zero). As in the
compact case, we can choose these bump functions so that supp γpij
is contained in some element of V . We will also choose them so that
supp γpij

⊂
∫
Ki+1 \Ki−2 (an open set). Hence, {γpij}i∈N,1≤j≤ki is

locally finite, meaning that, given a point p ∈ M , there exists
an open neighborhood V of p such that only a finite number of
these functions is different from zero in V . Consequently, the sum∑∞

i=1

∑ki
j=1 γpij

is a positive, differentiable function on M . Finally,
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making

ρij =
γpij∑∞

i=1

∑ki
j=1 γpij

,

we obtain the desired partition of unity (subordinate to V). �

Remark 7.4. Compact exhaustions always exist on manifolds.
In fact, if U is a bounded open set of Rn, one can easily construct
a compact exhaustion {Ki}i∈N for U by setting

Ki =

{
x ∈ U | dist(x, ∂U) ≥ 1

n

}
.

If M is a differentiable manifold, one can always take a countable
atlas A = {(Uj , ϕj)}j∈N such that each Uj is a bounded open set,

thus admitting a compact exhaustion {Kj
i }i∈N. Therefore



⋃

i+j=l

ϕj

(
Kj
i

)



l∈N

is a compact exhaustion of M .

7.3. Section 5. (Fubini theorem) Let A ⊂ Rn and B ⊂ Rm be compact
intervals and let f : A×B → R be a continuous function. Then

∫

A×B
f =

∫

A

(∫

B
f(x, y)dy1 · · · dym

)
dx1 · · · dxn

=

∫

B

(∫

A
f(x, y)dx1 · · · dxn

)
dy1 · · · dym.

7.4. Bibliographical notes. The material in this chapter can be found
in most books on differential geometry (e.g. [Boo03, GHL04]). A text en-
tirely dedicated to differential forms and their applications is [dC94]. The
study of de Rham cohomology leads to a beautiful and powerful theory,
whose details can be found for instance in [BT82].



CHAPTER 3

Riemannian Manifolds

The metric properties of Rn (distances and angles) are determined by
the canonical Cartesian coordinates. In a general differentiable manifold,
however, there are no such preferred coordinates; to define distances and
angles one must add more structure by choosing a special 2-tensor field,
called aRiemannian metric (much in the same way as a volume form must
be selected to determine a notion of volume). This idea was introduced by
Riemann in his 1854 habilitation lecture “On the hypotheses which underlie
geometry”, following the discovery (around 1830) of non-Euclidean geometry
by Gauss, Bolyai and Lobachevsky (in fact, it was Gauss who suggested the
subject of Riemann’s lecture). It proved to be an extremely fruitful concept,
having led, among other things, to the development of Einstein’s general
theory of relativity.

This chapter initiates the study of Riemannian geometry. Section 1
introduces Riemannian metrics as tensor fields determining an inner product
at each tangent space. This naturally leads to a number of concepts, such
as the length of a vector (or a curve), the angle between two vectors, the
Riemannian volume form (which assigns unit volume to any orthonormal
basis), and the gradient of a function.

Section 2 discusses differentiation of vector fields. This concept also re-
quires introducing some additional structure, called an affine connection,
since vector fields on a differentiable manifold do not have preferred Carte-
sian components to be differentiated. It provides a notion of parallelism of
vectors along curves, and consequently of geodesics, that is, curves whose
tangent vector is parallel. Riemannian manifolds come equipped with a
special affine connection, called the Levi-Civita connection (Section 3),
whose geodesics have distance-minimizing properties (Section 4). This is
in line with the intuitive idea that the shortest distance route between two
points is one that does not turn.

Finally, the Hopf-Rinow theorem, relating the properties of a Rie-
mannian manifold as a metric space to the properties of its geodesics, is
proved in Section 5. This theorem completely characterizes the important
class of complete Riemannian manifolds.

1. Riemannian Manifolds

To define Riemannian manifolds we must first take a closer look at 2-
tensors.

91
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Definition 1.1. A tensor g ∈ T 2(T ∗
pM) is said to be

(i) symmetric if g(v, w) = g(w, v) for all v, w ∈ TpM ;
(ii) nondegenerate if g(v, w) = 0 for all w ∈ TpM implies v = 0;
(iii) positive definite if g(v, v) > 0 for all v ∈ TpM \ {0}.

A covariant 2-tensor field g is said to be symmetric, nondegenerate or
positive definite if gp is symmetric, nondegenerate or positive definite for all
p ∈M . If x : V → Rn is a local chart, we have

g =
n∑

i,j=1

gijdx
i ⊗ dxj

in V , where

gij = g

(
∂

∂xi
,
∂

∂xj

)
.

It is easy to see that g is symmetric, nondegenerate or positive definite if
and only if the matrix (gij) has these properties (see Exercise 1.10.1).

Definition 1.2. A Riemannian metric on a smooth manifold M is
a symmetric positive definite smooth covariant 2-tensor field g. A smooth
manifold M equipped with a Riemannian metric g is called a Riemannian
manifold, and is denoted by (M, g).

A Riemannian metric is therefore a smooth assignment of an inner prod-
uct to each tangent space. It is usual to write

gp(v, w) = 〈v, w〉p.

Example 1.3. (Euclidean n-space) It should be clear that M = Rn

and

g =
n∑

i=1

dxi ⊗ dxi

define a Riemannian manifold.

Proposition 1.4. Let (N, g) be a Riemannian manifold and f :M → N
an immersion. Then f∗g is a Riemannian metric in M (called the induced
metric).

Proof. We just have to prove that f∗g is symmetric and positive defi-
nite. Let p ∈M and v, w ∈ TpM . Since g is symmetric,

(f∗g)p(v, w) = gf(p)((df)pv, (df)pw) = gf(p)((df)pw, (df)pv) = (f∗g)p(w, v).

On the other hand, it is clear that (f∗g)p(v, v) ≥ 0, and

(f∗g)p(v, v) = 0 ⇒ gf(p)((df)pv, (df)pv) = 0 ⇒ (df)pv = 0 ⇒ v = 0

(as (df)p is injective). �
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In particular, any submanifold M of a Riemannian manifold (N, g) is
itself a Riemannian manifold. Notice that, in this case, the induced metric
at each point p ∈ M is just the restriction of gp to TpM ⊂ TpN . Since Rn

is a Riemannian manifold (cf. Example 1.3), we see that any submanifold of
Rn is a Riemannian manifold. The Whitney theorem then implies that any
manifold admits a Riemannian metric.

It was proved in 1954 by John Nash [Nas56] that any compact n-
dimensional Riemannian manifold can be isometrically embedded in RN

for N = n(3n+11)
2 (that is, embedded in such a way that its metric is induced

by the Euclidean metric of RN ). Gromov [GR70] later proved that one

can take N = (n+2)(n+3)
2 . Notice that, for n = 2, Nash’s result gives an

isometric embedding of any compact surface in R17, and Gromov’s in R10.
In fact, Gromov has further showed that any surface isometrically embeds
in R5. This result cannot be improved, as the real projective plane with the
standard metric (see Exercise 1.10.3) cannot be isometrically embedded into
R4.

Example 1.5. The standard metric on

Sn = {x ∈ Rn+1 | ‖x‖ = 1}
is the metric induced on Sn by the Euclidean metric on Rn+1. A parame-
terization of the open set

U = {x ∈ Sn | xn+1 > 0}
is for instance

ϕ(x1, . . . , xn) =
(
x1, . . . , xn,

√
1− (x1)2 − . . .− (xn)2

)
,

and the corresponding coefficients of the metric tensor are

gij =

〈
∂ϕ

∂xi
,
∂ϕ

∂xj

〉
= δij +

xixj

1− (x1)2 − . . .− (xn)2
.

Two Riemannian manifolds will be regarded as the same if they are
isometric.

Definition 1.6. Let (M, g) and (N, h) be Riemannian manifolds. A
diffeomorphism f :M → N is said to be an isometry if f∗h = g. Similarly,
a local diffeomorphism f :M → N is said to be a local isometry if f∗h = g.

A Riemannian metric allows us to compute the length ‖v‖ = 〈v, v〉 1
2

of any vector v ∈ TM (as well as the angle between two vectors with the
same base point). Therefore we can measure the length of curves.

Definition 1.7. If (M, 〈·, ·〉) is a Riemannian manifold and c : [a, b] →
M is a differentiable curve, the length of c is

l(c) =

∫ b

a
‖ċ(t)‖dt.
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The length of a curve segment does not depend on the parameterization
(see Exercise 1.10.5).

Recall that ifM is an orientable n-dimensional manifold then it possesses
volume elements, that is, differential forms ω ∈ Ωn(M) such that ωp 6= 0
for all p ∈ M . Clearly, there are as many volume elements as differentiable
functions f ∈ C∞(M) without zeros.

Definition 1.8. If (M, g) is an orientable Riemannian manifold, ω ∈
Ωn(M) is said to be a Riemannian volume element if

ωp(v1, . . . , vn) = ±1

for any orthonormal basis {v1, . . . , vn} of TpM and all p ∈M .

Notice that ifM is connected there exist exactly two Riemannian volume
elements (one for each choice of orientation). Moreover, if ω is a Riemannian
volume element and x : V → Rn is a chart compatible with the orientation
induced by ω, one has

ω = fdx1 ∧ . . . ∧ dxn

for some positive function

f = ω

(
∂

∂x1
, . . . ,

∂

∂xn

)
.

If S is the matrix whose columns are the components of ∂
∂x1

, . . . , ∂
∂xn on

some orthonormal basis with the same orientation, we have

f = detS =
(
det
(
S2
)) 1

2 =
(
det
(
StS

)) 1
2 = (det(gij))

1
2

since clearly StS is the matrix whose (i, j)-th entry is the inner product
g
(
∂
∂xi
, ∂
∂xj

)
= gij .

A Riemannian metric 〈·, ·〉 on M determines a linear isomorphism Φg :
TpM → T ∗

pM for all p ∈M defined by Φg(v)(w) = 〈v, w〉 for all v, w ∈ TpM .

This extends to an isomorphism between X(M) and Ω1(M). In particular,
we have

Definition 1.9. Let (M, g) be a Riemannian manifold and f :M → R
a smooth function. The gradient of f is the vector field grad f associated
to the 1-form df through the isomorphism determined by g.

Exercises 1.10.

(1) Let g =
∑n

i,j=1 gij dx
i ⊗ dxj ∈ T 2(T ∗

pM). Show that:

(a) g is symmetric if and only if gij = gji (i, j = 1, . . . , n);
(b) g is nondegenerate if and only if det(gij) 6= 0;
(c) g is positive definite if and only if (gij) is a positive definite

matrix;
(d) if g is nondegenerate, the map Φg : TpM → T ∗

pM given by
Φg(v)(w) = g(v, w) for all v, w ∈ TpM is a linear isomorphism;

(e) if g is positive definite then g is nondegenerate.
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(2) Prove that any differentiable manifold admits a Riemannian struc-
ture without invoking the Whitney theorem. (Hint: Use partitions of

unity).
(3) (a) Let (M, g) be a Riemannian manifold and let G be a dis-

crete Lie group acting freely and properly onM by isometries.
Show that M/G has a natural Riemannian structure (called
the quotient structure).

(b) How would you define the flat square metric on the n-torus
Tn = Rn/Zn?

(c) How would you define the standard metric on the real pro-
jective n-space RPn = Sn/Z2?

(4) Recall that given a Lie group G and x ∈ G, the left translation by
x is the diffeomorphism Lx : G → G given by Lx(y) = xy for all
y ∈ G. A Riemannian metric g on G is said to be left-invariant
if Lx is an isometry for all x ∈ G. Show that:
(a) g(·, ·) ≡ 〈·, ·〉 is left-invariant if and only if

〈v, w〉x = 〈(dLx−1)x v, (dLx−1)xw〉e
for all x ∈ G and v, w ∈ TxG, where e ∈ G is the identity and
〈·, ·〉e is an inner product on the Lie algebra g = TeG;

(b) the standard metric on S3 ∼= SU(2) is left-invariant;
(c) the metric induced onO(n) by the Euclidean metric ofMn×n ∼=

Rn
2
is left-invariant.

(5) We say that a differentiable curve γ : [α, β] →M is obtained from
the curve c : [a, b] → M by reparameterization if there exists a
smooth bijection f : [α, β] → [a, b] (the reparameterization) such
that γ = c ◦ f . Show that if γ is obtained from c by reparameteri-
zation then l(γ) = l(c).

(6) Let (M, g) be a Riemannian manifold and f ∈ C∞(M). Show that
if a ∈ R is a regular value of f then grad(f) is orthogonal to the
submanifold f−1(a).

2. Affine Connections

If X and Y are vector fields in Euclidean space, we can define the direc-
tional derivative of Y alongX. This definition, however, uses the existence
of Cartesian coordinates, which no longer holds in a general manifold. To
overcome this difficulty we must introduce more structure:

Definition 2.1. Let M be a differentiable manifold. An affine con-
nection on M is a map ∇ : X(M)× X(M) → X(M) such that

(i) ∇fX+gY Z = f∇XZ + g∇Y Z;
(ii) ∇X(Y + Z) = ∇XY +∇XZ;
(iii) ∇X(fY ) = (X · f)Y + f∇XY

for all X,Y, Z ∈ X(M) and f, g ∈ C∞(M,R) (we write ∇XY := ∇(X,Y )).
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The vector field ∇XY is sometimes known as the covariant derivative
of Y along X.

Proposition 2.2. Let ∇ be an affine connection onM , let X,Y ∈ X(M)
and p ∈ M . Then (∇XY )p ∈ TpM depends only on Xp and on the values
of Y along a curve tangent to X at p. Moreover, if x : W → Rn are local
coordinates on some open set W ⊂M and

X =
n∑

i=1

Xi ∂

∂xi
, Y =

n∑

i=1

Y i ∂

∂xi

on this set, we have

(5) ∇XY =
n∑

i=1


X · Y i +

n∑

j,k=1

ΓijkX
jY k


 ∂

∂xi

where the n3 differentiable functions Γijk : W → R, called the Christoffel
symbols, are defined by

(6) ∇ ∂

∂xj

∂

∂xk
=

n∑

i=1

Γijk
∂

∂xi
.

Proof. It is easy to show that an affine connection is local, that is, if

X,Y ∈ X(M) coincide with X̃, Ỹ ∈ X(M) in some open set W ⊂ M then

∇XY = ∇
X̃
Ỹ on W (see Exercise 2.6.1). Consequently, we can compute

∇XY for vector fields X,Y defined onW only. LetW be a coordinate neigh-
borhood for the local coordinates x : W → Rn, and define the Christoffel
symbols associated with these local coordinates through (6). Writing out

∇XY = ∇(∑n
i=1X

i ∂

∂xi

)




n∑

j=1

Y j ∂

∂xj




and using the properties listed in definition (2.1) yields (5). This formula
shows that (∇XY )p depends only on Xi(p), Y i(p) and (X ·Y i)(p). Moreover,

Xi(p) and Y i(p) depend only on Xp and Yp, and (X ·Y i)(p) = d
dtY

i(c(t))|t=0

depends only on the values of Y i (or Y ) along a curve c whose tangent vector
at p = c(0) is Xp. �

Remark 2.3. Locally, an affine connection is uniquely determined by
specifying its Christoffel symbols on a coordinate neighborhood. However,
the choices of Christoffel symbols on different charts are not independent,
as the covariant derivative must agree on the overlap.

A vector field defined along a differentiable curve c : I →M is a
differentiable map V : I → TM such that V (t) ∈ Tc(t)M for all t ∈ I. An
obvious example is the tangent vector ċ(t). If V is a vector field defined along
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the differentiable curve c : I → M with ċ 6= 0, its covariant derivative
along c is the vector field defined along c given by

DV

dt
(t) := ∇ċ(t)V = (∇XY )c(t)

for any vector fields X,Y ∈ X(M) such that Xc(t) = ċ(t) and Yc(s) = V (s)
with s ∈ (t− ε, t+ ε) for some ε > 0. Note that if ċ(t) 6= 0 such extensions
always exist. Proposition 2.2 guarantees that (∇XY )c(t) does not depend
on the choice of X,Y . In fact, if in local coordinates x : W → Rn we have
xi(t) := xi(c(t)) and

V (t) =
n∑

i=1

V i(t)

(
∂

∂xi

)

c(t)

,

then

DV

dt
(t) =

n∑

i=1


V̇ i(t) +

n∑

j,k=1

Γijk(c(t))ẋ
j(t)V k(t)



(
∂

∂xi

)

c(t)

.

Definition 2.4. A vector field V defined along a curve c : I → M is
said to be parallel along c if

DV

dt
(t) = 0

for all t ∈ I. The curve c is called a geodesic of the connection ∇ if ċ is
parallel along c, i.e., if

Dċ

dt
(t) = 0

for all t ∈ I.

In local coordinates x : W → Rn, the condition for V to be parallel
along c is written as

(7) V̇ i +
n∑

j,k=1

Γijk ẋ
jV k = 0 (i = 1, . . . , n).

This is a system of first order linear ODEs for the components of V . By
the Picard-Lindelöf theorem, together with the global existence theorem for
linear ODEs [Arn92], given a curve c : I → M , a point p ∈ c(I) and a
vector v ∈ TpM , there exists a unique vector field V : I → TM parallel
along c such that V (0) = v, which is called the parallel transport of v
along c.

Moreover, the geodesic equations are

(8) ẍi +
n∑

j,k=1

Γijk ẋ
j ẋk = 0 (i = 1, . . . , n).

This is a system of second order (nonlinear) ODEs for the coordinates of c(t).
Therefore the Picard-Lindelöf theorem implies that, given a point p ∈ M
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and a vector v ∈ TpM , there exists a unique geodesic c : I →M , defined on
a maximal open interval I such that 0 ∈ I, satisfying c(0) = p and ċ(0) = v.

We will now define the torsion of an affine connection ∇. For that, we
note that, in local coordinates x :W → Rn, we have

∇XY −∇YX =
n∑

i=1


X · Y i − Y ·Xi +

n∑

j,k=1

Γijk

(
XjY k − Y jXk

)

 ∂

∂xi

= [X,Y ] +

n∑

i,j,k=1

(
Γijk − Γikj

)
XjY k ∂

∂xi
.

Definition 2.5. The torsion operator of a connection ∇ on M is the
operator T : X(M)× X(M) → X(M) given by

T (X,Y ) = ∇XY −∇YX − [X,Y ],

for all X,Y ∈ X(M). The connection is said to be symmetric if T = 0.

The local expression of T (X,Y ) makes it clear that T (X,Y )p depends
linearly on Xp and Yp. In other words, T is the (2, 1)-tensor field on M
given in local coordinates by

T =
n∑

i,j,k=1

(
Γijk − Γikj

)
dxj ⊗ dxk ⊗ ∂

∂xi

(recall from Remark 1.3 in Chapter 2 that any (2, 1)-tensor T ∈ T 2,1(V ∗, V )
is naturally identified with a bilinear map ΦT : V ∗×V ∗ → V ∼= V ∗∗ through
ΦT (v, w)(α) := T (v, w, α) for all v, w ∈ V, α ∈ V ∗).

Notice that the connection is symmetric if and only if ∇XY −∇YX =
[X,Y ] for all X,Y ∈ X(M). In local coordinates, the condition for the
connection to be symmetric is

Γijk = Γikj (i, j, k = 1, . . . , n)

(hence the name).

Exercises 2.6.

(1) (a) Show that ifX,Y ∈ X(M) coincide with X̃, Ỹ ∈ X(M) in some

open set W ⊂ M then ∇XY = ∇
X̃
Ỹ on W . (Hint: Use bump

functions with support contained on W and the properties listed in definition

(2.1)).
(b) Obtain the local coordinate expression (5) for ∇XY .
(c) Obtain the local coordinate equations (7) for the parallel trans-

port law.
(d) Obtain the local coordinate equations (8) for the geodesics of

the connection ∇.
(2) Determine all affine connections on Rn. Of these, determine the

connections whose geodesics are straight lines c(t) = at + b (with
a, b ∈ Rn).
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(3) Let ∇ be an affine connection onM . If ω ∈ Ω1(M) and X ∈ X(M),
we define the covariant derivative of ω along X, ∇Xω ∈ Ω1(M),
by

∇Xω(Y ) = X · (ω(Y ))− ω(∇XY )

for all Y ∈ X(M).
(a) Show that this formula defines indeed a 1-form, i.e., show that

(∇Xω(Y )) (p) is a linear function of Yp.
(b) Show that

(i) ∇fX+gY ω = f∇Xω + g∇Y ω;
(ii) ∇X(ω + η) = ∇Xω +∇Xη;
(iii) ∇X(fω) = (X · f)ω + f∇Xω
for all X,Y ∈ X(M), f, g ∈ C∞(M) and ω, η ∈ Ω1(M).

(c) Let x :W → Rn be local coordinates on an open set W ⊂M ,
and take

ω =
n∑

i=1

ωidx
i.

Show that

∇Xω =
n∑

i=1


X · ωi −

n∑

j,k=1

ΓkjiX
jωk


 dxi.

(d) Define the covariant derivative ∇XT for an arbitrary tensor
field T in M , and write its expression in local coordinates.

3. Levi-Civita Connection

In the case of a Riemannian manifold, there is a particular choice of con-
nection, called the Levi-Civita connection, with special geometric prop-
erties.

Definition 3.1. A connection ∇ in a Riemannian manifold (M, 〈·, ·〉)
is said to be compatible with the metric if

X · 〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉
for all X,Y, Z ∈ X(M).

If ∇ is compatible with the metric, then the inner product of two vector
fields V1 and V2, parallel along a curve, is constant along the curve:

d

dt
〈V1(t), V2(t)〉 =

〈
∇ċ(t)V1(t), V2(t)

〉
+
〈
V1(t),∇ċ(t)V2(t)

〉
= 0.

In particular, parallel transport preserves lengths of vectors and angles be-
tween vectors. Therefore, if c : I → M is a geodesic, then ‖ċ(t)‖ = k is
constant. If a ∈ I, the length s of the geodesic between a and t is

s =

∫ t

a
‖ċ(u)‖ du =

∫ t

a
k du = k(t− a).
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In other words, t is an affine function of the arclength s (and is therefore
called an affine parameter). In particular, this shows that the parameters
of two geodesics with the same image are affine functions of each other).

Theorem 3.2. (Levi-Civita) If (M, 〈·, ·〉) is a Riemannian manifold then
there exists a unique connection ∇ on M which is symmetric and compatible
with 〈·, ·〉. In local coordinates (x1, . . . , xn), the Christoffel symbols for this
connection are

Γijk =
1

2

n∑

l=1

gil
(
∂gkl
∂xj

+
∂gjl
∂xk

− ∂gjk
∂xl

)
(9)

where
(
gij
)
= (gij)

−1.

Proof. Let X,Y, Z ∈ X(M). If the Levi-Civita connection exists then
we must have

X · 〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉;
Y · 〈X,Z〉 = 〈∇YX,Z〉+ 〈X,∇Y Z〉;

−Z · 〈X,Y 〉 = −〈∇ZX,Y 〉 − 〈X,∇ZY 〉,
as ∇ is compatible with the metric. Moreover, since ∇ is symmetric, we
must also have

−〈[X,Z], Y 〉 = −〈∇XZ, Y 〉+ 〈∇ZX,Y 〉;
−〈[Y, Z], X〉 = −〈∇Y Z,X〉+ 〈∇ZY,X〉;
〈[X,Y ], Z〉 = 〈∇XY, Z〉 − 〈∇YX,Z〉.

Adding these six equalities, we obtain the Koszul formula

2〈∇XY, Z〉 = X · 〈Y, Z〉+ Y · 〈X,Z〉 − Z · 〈X,Y 〉
− 〈[X,Z], Y 〉 − 〈[Y, Z], X〉+ 〈[X,Y ], Z〉.

Since 〈·, ·〉 is nondegenerate and Z is arbitrary, this formula determines
∇XY . Thus, if the Levi-Civita connection exists, it must be unique.

To prove existence, we define ∇XY through the Koszul formula. It is
not difficult to show that this indeed defines a connection (cf. Exercise 3.3.1).
Also, using this formula, we obtain

2〈∇XY −∇YX,Z〉 = 2〈∇XY, Z〉 − 2〈∇YX,Z〉 = 2〈[X,Y ], Z〉
for all X,Y, Z ∈ X(M), and hence ∇ is symmetric. Finally, again using the
Koszul formula, we have

2〈∇XY, Z〉+ 2〈Y,∇XZ〉 = 2X · 〈Y, Z〉
and therefore the connection defined by this formula is compatible with the
metric.

Choosing local coordinates (x1, . . . , xn), we have
[
∂

∂xi
,
∂

∂xj

]
= 0 and

〈
∂

∂xi
,
∂

∂xj

〉
= gij .
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Therefore the Koszul formula yields

2

〈
∇ ∂

∂xj

∂

∂xk
,
∂

∂xl

〉
=

∂

∂xj
· gkl +

∂

∂xk
· gjl −

∂

∂xl
· gjk

⇔
〈

n∑

i=1

Γijk
∂

∂xi
,
∂

∂xl

〉
=

1

2

(
∂gkl
∂xj

+
∂gjl
∂xk

− ∂gjk
∂xl

)

⇔
n∑

i=1

gilΓ
i
jk =

1

2

(
∂gkl
∂xj

+
∂gjl
∂xk

− ∂gjk
∂xl

)
.

This linear system is easily solved to give (9). �

Exercises 3.3.

(1) Show that the Koszul formula defines a connection.
(2) We introduce in R3, with the usual Euclidean metric 〈·, ·〉, the con-

nection ∇ defined in Cartesian coordinates (x1, x2, x3) by

Γijk = ωεijk,

where ω : R3 → R is a smooth function and

εijk =





+1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3)
0 otherwise.

Show that:
(a) ∇ is compatible with 〈·, ·〉;
(b) the geodesics of ∇ are straight lines;
(c) the torsion of ∇ is not zero in all points where ω 6= 0 (therefore

∇ is not the Levi-Civita connection unless ω ≡ 0);
(d) the parallel transport equation is

V̇ i +
3∑

j,k=1

ωεijkẋ
jV k = 0 ⇔ V̇ + ω(ẋ× V ) = 0

(where × is the cross product in R3); therefore, a vector paral-
lel along a straight line rotates about it with angular velocity
−ωẋ.

(3) Let (M, g) and (N, g̃) be isometric Riemannian manifolds with Levi-

Civita connections ∇ and ∇̃, and let f : M → N be an isometry.
Show that:
(a) f∗∇XY = ∇̃f∗Xf∗Y for all X,Y ∈ X(M);
(b) if c : I →M is a geodesic then f ◦ c : I → N is also a geodesic.

(4) Consider the usual local coordinates (θ, ϕ) in S2 ⊂ R3 defined by
the parameterization φ : (0, π)× (0, 2π) → R3 given by

φ(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ).

(a) Using these coordinates, determine the expression of the Rie-
mannian metric induced on S2 by the Euclidean metric of R3.
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(b) Compute the Christoffel symbols for the Levi-Civita connec-
tion in these coordinates.

(c) Show that the equator is the image of a geodesic.
(d) Show that any rotation about an axis through the origin in R3

induces an isometry of S2.
(e) Show that the images of geodesics of S2 are great circles.
(f) Find a geodesic triangle (i.e. a triangle whose sides are im-

ages of geodesics) whose internal angles add up to 3π
2 .

(g) Let c : R → S2 be given by c(t) = (sin θ0 cos t, sin θ0 sin t, cos θ0),
where θ0 ∈

(
0, π2

)
(therefore c is not a geodesic). Let V be a

vector field parallel along c such that V (0) = ∂
∂θ ( ∂∂θ is well

defined at (sin θ0, 0, cos θ0) by continuity). Compute the an-
gle by which V is rotated when it returns to the initial point.
(Remark: The angle you have computed is exactly the angle by which the

oscillation plane of the Foucault pendulum rotates during a day in a place at

latitude π
2
− θ0, as it tries to remain fixed with respect to the stars in a rotating

Earth).
(h) Use this result to prove that no open set U ⊂ S2 is isometric

to an open set W ⊂ R2 with the Euclidean metric.
(i) Given a geodesic c : R → R2 of R2 with the Euclidean metric

and a point p /∈ c(R), there exists a unique geodesic c̃ : R → R2

(up to reparameterization) such that p ∈ c̃(R) and c(R) ∩
c̃(R) = ∅ (parallel postulate). Is this true in S2?

(5) Recall that identifying each point in

H = {(x, y) ∈ R2 | y > 0}
with the invertible affine map h : R → R given by h(t) = yt + x
induces a Lie group structure on H (cf. Exercise 7.17.3 in Chap-
ter 1).
(a) Show that the left-invariant metric induced by the Euclidean

inner product dx⊗ dx+ dy ⊗ dy in h = T(0,1)H is

g =
1

y2
(dx⊗ dx+ dy ⊗ dy)

(cf. Exercise 1.10.4). (Remark: H endowed with this metric is called the

hyperbolic plane).
(b) Compute the Christoffel symbols of the Levi-Civita connection

in the coordinates (x, y).
(c) Show that the curves α, β : R → H given in these coordinates

by

α(t) =
(
0, et

)

β(t) =

(
tanh t,

1

cosh t

)

are geodesics. What are the sets α(R) and β(R)?
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(d) Determine all images of geodesics.
(e) Show that, given two points p, q ∈ H, there exists a unique

geodesic through them (up to reparameterization).
(f) Give examples of connected Riemannian manifolds contain-

ing two points through which there are (i) infinitely many
geodesics (up to reparameterization); (ii) no geodesics.

(g) Show that no open set U ⊂ H is isometric to an open set V ⊂
R2 with the Euclidean metric. (Hint: Show that in any neighborhood

of any point p ∈ H there is always a geodesic quadrilateral whose internal angles

add up to less than 2π).
(h) Does the parallel postulate hold in the hyperbolic plane?

(6) Let (M, 〈·, ·〉) be a Riemannian manifold with Levi-Civita connec-

tion ∇̃, and let (N, 〈〈·, ·〉〉) be a submanifold with the induced met-
ric and Levi-Civita connection ∇.
(a) Show that

∇XY =
(
∇̃
X̃
Ỹ
)⊤

for all X,Y ∈ X(N), where X̃, Ỹ are any extensions of X,Y
to X(M) and ⊤ : TM |N → TN is the orthogonal projection.

(b) Use this result to indicate curves that are, and curves that are
not, geodesics of the following surfaces in R3:

(i) the sphere S2;
(ii) the torus of revolution;
(iii) the surface of a cone;
(iv) a general surface of revolution.

(c) Show that if two surfaces in R3 are tangent along a curve,
then the parallel transport of vectors along this curve in both
surfaces coincides.

(d) Use this result to compute the angle ∆θ by which a vector
V is rotated when it is parallel transported along a circle on
the sphere. (Hint: Consider the cone which is tangent to the sphere along

the circle (cf. Figure 1); notice that the cone minus a ray through the vertex is

isometric to an open set of the Euclidean plane).
(7) Let (M, g) be a Riemannian manifold with Levi-Civita connection

∇. Show that g is parallel along any curve, i.e., show that

∇Xg = 0

for all X ∈ X(M) (cf. Exercise 2.6.3).
(8) Let (M, g) be a Riemannian manifold with Levi-Civita connection

∇, and let ψt :M →M be a 1-parameter group of isometries. The
vector field X ∈ X(M) defined by

Xp :=
d

dt |t=0

ψt(p)

is called the Killing vector field associated to ψt. Show that:
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V0

V0

V0

V

V

∆θ

Figure 1. Parallel transport along a circle on the sphere.

(a) LXg = 0 (cf. Exercise 2.8.3 in Chapter 2);
(b) X satisfies 〈∇YX,Z〉 + 〈∇ZX,Y 〉 = 0 for all vector fields

Y, Z ∈ X(M);
(c) if c : I →M is a geodesic then

〈
ċ(t), Xc(t)

〉
is constant.

(9) Recall that if M is an oriented differential manifold with volume
element ω ∈ Ωn(M), the divergence of X is the function div(X)
such that

LXω = (div(X))ω

(cf. Exercise 6.4.5 in Chapter 2). Suppose thatM has a Riemannian
metric and that ω is a Riemannian volume element. Show that at
each point p ∈M ,

div(X) =
n∑

i=1

〈∇YiX,Yi〉,

where {Y1, . . . , Yn} is an orthonormal basis of TpM and ∇ is the
Levi-Civita connection.

4. Minimizing Properties of Geodesics

Let M be a differentiable manifold with an affine connection ∇. As we
saw in Section 2, given a point p ∈M and a tangent vector v ∈ TpM , there
exists a unique geodesic cv : I → M , defined on a maximal open interval
I ⊂ R, such that 0 ∈ I, cv(0) = p and ċv(0) = v. Consider now the curve
γ : J →M defined by γ(t) = cv(at), where a ∈ R and J is the inverse image
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of I by the map t 7→ at. We have

γ̇(t) = aċv(at),

and consequently

∇γ̇ γ̇ = ∇aċv(aċv) = a2∇ċv ċv = 0.

Thus γ is also a geodesic. Since γ(0) = cv(0) = p and γ̇(0) = aċv(0) = av,
we see that γ is the unique geodesic with initial velocity av ∈ TpM (that
is, γ = cav). Therefore, we have cav(t) = cv(at) for all t ∈ I. This property
is sometimes referred to as the homogeneity of geodesics. Notice that we
can make the interval J arbitrarily large by making a sufficiently small. If
1 ∈ I, we define expp(v) = cv(1). By homogeneity of geodesics, we can
define expp(v) for v in some open neighborhood U of the origin in TpM .
The map expp : U ⊂ TpM → M thus obtained is called the exponential
map at p.

M

TpM

v

p

expp(v)

Figure 2. The exponential map.

Proposition 4.1. There exists an open set U ⊂ TpM containing the
origin such that expp : U → M is a diffeomorphism onto some open set
V ⊂M containing p (called a normal neighborhood).

Proof. The exponential map is clearly differentiable as a consequence
of the smooth dependence of the solution of an ODE on its initial data
(cf. [Arn92]). If v ∈ TpM is such that expp(v) is defined, we have, by
homogeneity, that expp(tv) = ctv(1) = cv(t). Consequently,

(
d expp

)
0
v =

d

dt
expp(tv)|t=0

=
d

dt
cv(t)|t=0

= v.
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We conclude that
(
d expp

)
0
: T0(TpM) ∼= TpM → TpM is the identity map.

By the inverse function theorem, expp is then a diffeomorphism of some
open neighborhood U of 0 ∈ TpM onto some open set V ⊂ M containing
p = expp(0). �

Example 4.2. Consider the Levi-Civita connection in S2 with the stan-
dard metric, and let p ∈ S2. Then expp(v) is well defined for all v ∈ TpS

2,
but it is not a diffeomorphism, as it is clearly not injective. However, its
restriction to the open ball Bπ(0) ⊂ TpS

2 is a diffeomorphism onto S2\{−p}.
Now let (M, 〈·, ·〉) be a Riemannian manifold and ∇ its Levi-Civita con-

nection. Since 〈·, ·〉 defines an inner product in TpM , we can think of TpM
as the Euclidean n-space Rn. Let E be the vector field defined on TpM \{0}
by

Ev =
v

‖v‖ ,

and define X := (expp)∗E on V \ {p}, where V ⊂ M is a normal neighbor-
hood. We have

Xexpp(v)
=
(
d expp

)
v
Ev =

d

dt
expp

(
v + t

v

‖v‖

)

|t=0

=
d

dt
cv

(
1 +

t

‖v‖

)

|t=0

=
1

‖v‖ ċv(1).

Since ‖ċv(1)‖ = ‖ċv(0)‖ = ‖v‖, we see that Xexpp(v)
is the unit tangent

vector to the geodesic cv. In particular, X must satisfy

∇XX = 0.

For ε > 0 such that Bε(0) ⊂ U := exp−1
p (V ), we define the normal ball

with center p and radius ε as the open set Bε(p) := expp(Bε(0)), and
the normal sphere of radius ε centered at p as the compact submani-
fold Sε(p) := expp(∂Bε(0)). We will now prove that X is (and hence the
geodesics through p are) orthogonal to normal spheres. For that, we choose
a local parameterization ϕ :W ⊂ Rn−1 → Sn−1 ⊂ TpM , and use it to define
a parameterization ϕ̃ : (0,+∞)×W → TpM through

ϕ̃(r, θ1, . . . , θn−1) = rϕ(θ1, . . . , θn−1)

(hence (r, θ1, . . . , θn−1) are spherical coordinates on TpM). Notice that

∂

∂r
= E,

since

Eϕ̃(r,θ) = Erϕ(θ) = ϕ(θ) =
∂ϕ̃

∂r
(r, θ),

and so

(10) X = (expp)∗
∂

∂r
.
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Since ∂
∂θi

is tangent to {r = ε}, the vector fields

(11) Yi := (expp)∗
∂

∂θi

are tangent to Sε(p). Notice also that
∥∥ ∂
∂θi

∥∥ =
∥∥∥ ∂ϕ̃∂θi

∥∥∥ = r
∥∥∥ ∂ϕ∂θi

∥∥∥ is propor-

tional to r, and consequently ∂
∂θi

→ 0 as r → 0, implying that (Yi)q → 0p
as q → p. Since expp is a local diffeomorphism, the vector fields X and Yi
are linearly independent at each point. Also,

[X,Yi] =

[
(expp)∗

∂

∂r
, (expp)∗

∂

∂θi

]
= (expp)∗

[
∂

∂r
,
∂

∂θi

]
= 0

(cf. Exercise 6.11.9 in Chapter 1), or, since the Levi-Civita connection is
symmetric,

∇XYi = ∇YiX.

To prove that X is orthogonal to the normal spheres Sε(p), we show that
X is orthogonal to each of the vector fields Yi. In fact, since ∇XX = 0 and
‖X‖ = 1, we have

X · 〈X,Yi〉 = 〈∇XX,Yi〉+ 〈X,∇XYi〉 = 〈X,∇YiX〉 = 1

2
Yi · 〈X,X〉 = 0,

and hence 〈X,Yi〉 is constant along each geodesic through p. Consequently,

〈X,Yi〉(expp v) =
〈
Xexpp(v)

, (Yi)expp(v)

〉
= lim

t→0

〈
Xexpp(tv)

, (Yi)expp(tv)

〉
= 0

(as ‖X‖ = 1 and (Yi)q → 0p as q → p), and so every geodesic through p
is orthogonal to all normal spheres centered at p. Using this we obtain the
following result.

Proposition 4.3. Let γ : [0, 1] →M be a differentiable curve such that
γ(0) = p and γ(1) ∈ Sε(p), where Sε(p) is a normal sphere. Then l(γ) ≥ ε,
and l(γ) = ε if and only if γ is a reparameterized geodesic.

Proof. We can assume that γ(t) 6= p for all t ∈ (0, 1), since otherwise
we could easily construct a curve γ̃ : [0, 1] → M with γ̃(0) = p, γ̃(1) =
γ(1) ∈ Sε(p) and l(γ̃) < l(γ). For the same reason, we can assume that
γ([0, 1)) ⊂ Bε(p). We can then write

γ(t) := expp(r(t)n(t)),

where r(t) ∈ (0, ε] and n(t) ∈ Sn−1 are well defined for t ∈ (0, 1]. Note that
r(t) can be extended to [0, 1] as a smooth function. Then

γ̇(t) = (expp)∗ (ṙ(t)n(t) + r(t)ṅ(t)) .

Since 〈n(t), n(t)〉 = 1, we have 〈ṅ(t), n(t)〉 = 0, and consequently ṅ(t) is
tangent to ∂Br(t)(0). Noticing that n(t) =

(
∂
∂r

)
r(t)n(t)

, we conclude that

γ̇(t) = ṙ(t)Xγ(t) + Y (t),
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where X = (expp)∗
∂
∂r and Y (t) = r(t)(expp)∗ṅ(t) is tangent to Sr(t)(p), and

hence orthogonal to Xγ(t). Consequently,

l(γ) =

∫ 1

0

〈
ṙ(t)Xγ(t) + Y (t), ṙ(t)Xγ(t) + Y (t)

〉 1
2 dt

=

∫ 1

0

(
ṙ(t)2 + ‖Y (t)‖2

) 1
2 dt

≥
∫ 1

0
ṙ(t)dt = r(1)− r(0) = ε.

It should be clear that l(γ) = ε if and only if ‖Y (t)‖ ≡ 0 and ṙ(t) ≥ 0
for all t ∈ [0, 1]. In this case, ṅ(t) = 0 (implying that n is constant), and
γ(t) = expp(r(t)n) = cr(t)n(1) = cn(r(t)) is, up to reparameterization, the
geodesic through p with initial condition n ∈ TpM . �

Definition 4.4. A piecewise differentiable curve is a continuous
map c : [a, b] → M such that the restriction of c to [ti−1, ti] is differentiable
for i = 1, . . . , n, where a = t0 < t1 < · · · < tn−1 < tn = b. We say that c
connects p ∈M to q ∈M if c(a) = p and c(b) = q.

The definition of length of a piecewise differentiable curve offers no
difficulties. It should also be clear that Proposition 4.3 easily extends to
piecewise differentiable curves, if we now allow for piecewise differentiable
reparameterizations. Using this extended version of Proposition 4.3 as well
as the properties of the exponential map and the invariance of length under
reparameterization, one easily shows the following result.

Theorem 4.5. Let (M, 〈·, ·〉) be a Riemannian manifold, p ∈ M and
Bε(p) a normal ball centered at p. Then, for each point q ∈ Bε(p), there
exists a geodesic c : I → M connecting p to q. Moreover, if γ : J → M is
any other piecewise differentiable curve connecting p to q, then l(γ) ≥ l(c),
and l(γ) = l(c) if and only if γ is a reparameterization of c. �

Conversely, we have

Theorem 4.6. Let (M, 〈·, ·〉) be a Riemannian manifold and p, q ∈ M .
If c : I → M is a piecewise differentiable curve connecting p to q and
l(c) ≤ l(γ) for any piecewise differentiable curve γ : J →M connecting p to
q then c is a reparameterized geodesic.

Proof. To prove this theorem, we need the following definition.

Definition 4.7. A normal neighborhood V ⊂ M is called a totally
normal neighborhood if there exists ε > 0 such that V ⊂ Bε(p) for all
p ∈ V .

We will now prove that totally normal neighborhoods always exist. To do
so, we recall that local coordinates (x1, . . . , xn) onM yield local coordinates
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(x1, . . . , xn, v1, . . . , vn) on TM labeling the vector

v1
∂

∂x1
+ . . .+ vn

∂

∂xn
.

The geodesic equations,

ẍi +
n∑

j,k=1

Γijkẋ
j ẋk = 0 (i = 1, . . . , n),

correspond to the system of first order ODEs
{
ẋi = vi

v̇i = −∑n
j,k=1 Γ

i
jkv

jvk
(i = 1, . . . , n).

These equations define the local flow of the vector field X ∈ X(TM) given
in local coordinates by

X =

n∑

i=1

vi
∂

∂xi
−

n∑

i,j,k=1

Γijkv
jvk

∂

∂vi
,

called the geodesic flow. As it was seen in Chapter 1, for each point
v ∈ TM there exists an open neighborhood W ⊂ TM and an open interval
I ⊂ R containing 0 such that the local flow F : W × I → TM of X is
well defined. In particular, for each point p ∈ M we can choose an open
neighborhood U containing p and ε > 0 such that the geodesic flow is well
defined in W × I with

W = {v ∈ TqM | q ∈ U, ‖v‖ < ε}.
Using homogeneity of geodesics, we can make the interval I as large as we
want by making ε sufficiently small. Therefore, for ε small enough we can
define a map G : W → M ×M by G(v) := (q, expq(v)). Since expq(0) = q,

the matrix representation of (dG)0 in the above local coordinates is
(
I 0
I I

)
,

and hence G is a local diffeomorphism. Reducing U and ε if necessary, we
can therefore assume that G is a diffeomorphism onto its image G(W ), which
contains the point (p, p) = G(0p). Choosing an open neighborhood V of p
such that V ×V ⊂ G(W ), it is clear that V is a totally normal neighborhood:
for each point q ∈ V we have {q} × expq(Bε(0)) = G(W ) ∩ ({q} ×M) ⊃
{q} × V , that is, expq(Bε(0)) ⊃ V .

Notice that given any two points p, q in a totally normal neighborhood
V , there exists a geodesic c : I → M connecting p to q such that any
other piecewise differentiable curve γ : J → M connecting p to q satisfies
l(γ) ≥ l(c) (and l(γ) = l(c) if and only if γ is a reparameterization of c).
The proof of Theorem 4.6 is now an immediate consequence of the following
observation: if c : I →M is a piecewise differentiable curve connecting p to
q such that l(c) ≤ l(γ) for any curve γ : J → M connecting p to q, then c
must be a reparameterized geodesic in each totally normal neighborhood it
intersects. �

Exercises 4.8.
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(1) Let (M, g) be a Riemannian manifold and f : M → R a smooth
function. Show that if ‖ grad(f)‖ ≡ 1 then the integral curves of
grad(f) are geodesics, using:
(a) the definition of geodesic;
(b) the minimizing properties of geodesics.

(2) LetM be a Riemannian manifold and∇ the Levi-Civita connection
on M . Given p ∈M and a basis {v1, . . . , vn} for TpM , we consider
the parameterization ϕ : U ⊂ Rn → M of a normal neighborhood
given by

ϕ(x1, . . . , xn) = expp(x
1v1 + . . .+ xnvn)

(the local coordinates (x1, . . . , xn) are called normal coordinates).
Show that:
(a) in these coordinates, Γijk(p) = 0 (Hint: Consider the geodesic equa-

tion);
(b) if {v1, . . . , vn} is an orthonormal basis then gij(p) = δij .

(3) Let G be a Lie group endowed with a bi-invariant Riemannian
metric (i.e., such that Lg and Rg are isometries for all g ∈ G), and
let i : G→ G be the diffeomorphism defined by i(g) = g−1.
(a) Compute (di)e and show that

(di)g =
(
dRg−1

)
e
(di)e

(
dLg−1

)
g

for all g ∈ G. Conclude that i is an isometry.
(b) Let v ∈ g = TeG and cv be the geodesic satisfying cv(0) =

e and ċv(0) = v. Show that if t is sufficiently small then

cv(−t) = (cv(t))
−1. Conclude that cv is defined in R and

satisfies cv(t + s) = cv(t)cv(s) for all t, s ∈ R. (Hint: Recall

that any two points in a totally normal neighborhood are connected by a unique

geodesic in that neighborhood).
(c) Show that the geodesics of G are the integral curves of left-

invariant vector fields, and that the maps exp (the Lie group
exponential) and expe (the geodesic exponential at the iden-
tity) coincide.

(d) Let ∇ be the Levi-Civita connection of the bi-invariant metric
and X,Y two left-invariant vector fields. Show that

∇XY =
1

2
[X,Y ].

(e) Check that the left-invariant metrics Exercise 1.10.4 are actu-
ally bi-invariant.

(f) Show that any compact Lie group admits a bi-invariant metric.
(Hint: Take the average a left-invariant metric over all right translations).

(4) Use Theorem 4.6 to prove that if f : M → N is an isometry and
c : I →M is a geodesic then f ◦ c : I → N is also a geodesic.
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(5) Let f : M → M be an isometry whose set of fixed points is a
connected 1-dimensional submanifold N ⊂M . Show that N is the
image of a geodesic.

(6) Let (M, 〈·, ·〉) be a Riemannian manifold whose geodesics can be
extended for all values of their parameters, and let p ∈M .
(a) Let X and Yi be the vector fields defined on a normal ball

centered at p as in (10) and (11). Show that Yi satisfies the
Jacobi equation

∇X∇XYi = R(X,Yi)X,

where R : X(M)× X(M)× X(M) → X(M), defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

is called the curvature operator (cf. Chapter 4). (Remark:

It can be shown that (R(X,Y )Z)p depends only on Xp, Yp, Zp).
(b) Consider a geodesic c : R →M parameterized by the arclength

such that c(0) = p. A vector field Y along c is called a Jacobi
field if it satisfies the Jacobi equation along c,

D2Y

dt2
= R(ċ, Y ) ċ.

Show that Y is a Jacobi field with Y (0) = 0 if and only if

Y (t) =
∂

∂s
expp(tv(s))|s=0

with v : (−ε, ε) → TpM satisfying v(0) = ċ(0).
(c) A point q ∈ M is said to be conjugate to p if it is a critical

value of expp. Show that q is conjugate to p if and only if there
exists a nonzero Jacobi field Y along a geodesic c connecting
p = c(0) to q = c(b) such that Y (0) = Y (b) = 0. Conclude
that if q is conjugate to p then p is conjugate to q.

(d) The manifold M is said to have nonpositive curvature if
〈R(X,Y )X,Y 〉 ≥ 0 for all X,Y ∈ X(M). Show that for such
a manifold no two points are conjugate.

(e) Given a geodesic c : I → M parameterized by the arclength
such that c(0) = p, let tc be the supremum of the set of values
of t such that c is the minimizing curve connecting p to c(t)
(hence tc > 0). The cut locus of p is defined to be the set of
all points of the form c(tc) for tc < +∞. Determine the cut
locus of a given point p ∈M when M is:

(i) the torus Tn with the flat square metric;
(ii) the sphere Sn with the standard metric;
(iii) the projective space RPn with the standard metric.

Check in these examples that any point in the cut locus is
either conjugate to p or joined to p by two geodesics with
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the same length but different images. (Remark: This is a general

property of the cut locus – see [dC93] or [GHL04] for a proof).

5. Hopf-Rinow Theorem

Let (M, g) be a Riemannian manifold. The existence of totally normal
neighborhoods implies that it is always possible to connect two sufficiently
close points p, q ∈ M by a minimizing geodesic. We now address the same
question globally.

Example 5.1.

(1) Given two distinct points p, q ∈ Rn there exists a unique (up to
reparameterization) geodesic for the Euclidean metric connecting
them.

(2) Given two distinct points p, q ∈ Sn there exist at least two geodesics
for the standard metric connecting them which are not reparame-
terizations of each other.

(3) If p 6= 0 then there exists no geodesic for the Euclidean metric in
Rn \ {0} connecting p to −p.

In many cases (for example in Rn \ {0}) there exist geodesics which
cannot be extended for all values of its parameter. In other words, expp(v)
is not defined for all v ∈ TpM .

Definition 5.2. A Riemannian manifold (M, 〈·, ·〉) is said to be geodesi-
cally complete if, for every point p ∈M , the map expp is defined in TpM .

There exists another notion of completeness of a connected Riemannian
manifold, coming from the fact that any such manifold is naturally a metric
space.

Definition 5.3. Let (M, 〈·, ·〉) be a connected Riemannian manifold and
p, q ∈M . The distance between p and q is defined as

d(p, q) = inf{l(γ) | γ is a piecewise differentiable curve connecting p to q}.

Notice that if there exists a minimizing geodesic c connecting p to q then
d(p, q) = l(c). The function d : M ×M → [0,+∞) is indeed a distance, as
stated in the following proposition.

Proposition 5.4. (M,d) is a metric space, that is, d satisfies:

(i) Positivity: d(p, q) ≥ 0 and d(p, q) = 0 if and only if p = q;
(ii) Symmetry: d(p, q) = d(q, p);
(iii) Triangle inequality: d(p, r) ≤ d(p, q) + d(q, r),

for all p, q, r ∈ M . The metric space topology induced on M coincides with
the topology of M as a differentiable manifold.

Proof. Exercise 5.8.1. �
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Therefore, we can discuss the completeness ofM as a metric space (that
is, whether Cauchy sequences converge). The fact that completeness and
geodesic completeness are equivalent is the content of the following theorem.

Theorem 5.5. (Hopf-Rinow) Let (M, 〈·, ·〉) be a connected Riemannian
manifold and p ∈M . The following assertions are equivalent:

(i) M is geodesically complete;
(ii) (M,d) is a complete metric space;
(iii) expp is defined in TpM .

Moreover, if (M, 〈·, ·〉) is geodesically complete then for all q ∈ M there
exists a geodesic c connecting p to q with l(c) = d(p, q).

Proof. It is clear that (i) ⇒ (iii).
We begin by showing that if (iii) holds then for all q ∈ M there exists

a geodesic c connecting p to q with l(c) = d(p, q). Let d(p, q) = ρ. If ρ = 0
then q = p and there is nothing to prove. If ρ > 0, let ε ∈ (0, ρ) be such
that Sε(p) is a normal sphere (which is a compact submanifold of M). The
continuous function x 7→ d(x, q) will then have a minimum point x0 ∈ Sε(p).
Moreover, x0 = expp(εv), where ‖v‖ = 1. Let us consider the geodesic
cv(t) = expp(tv). We will show that q = cv(ρ). For that, we consider the set

A = {t ∈ [0, ρ] | d(cv(t), q) = ρ− t}.
Since the map t 7→ d(cv(t), q) is continuous, A is a closed set. Moreover,

p

r

q

x0

y0

Figure 3. Proof of the Hopf-Rinow theorem.

A 6= ∅, as clearly 0 ∈ A. We will now show that no point t0 ∈ [0, ρ) can be
the maximum of A, which implies that the maximum of A must be ρ (hence
d(cv(ρ), q) = 0, that is, cv(ρ) = q, and so cv connects p to q and l(cv) = ρ).
Let t0 ∈ A∩ [0, ρ), r = cv(t0) and δ ∈ (0, ρ− t0) such that Sδ(r) is a normal
sphere. Let y0 be a minimum point of the continuous function y 7→ d(y, q)
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on the compact set Sδ(r). We will show that y0 = cv(t0 + δ). In fact, we
have

ρ− t0 = d(r, q) = δ + min
y∈Sδ(r)

d(y, q) = δ + d(y0, q),

and so

(12) d(y0, q) = ρ− t0 − δ.

The triangle inequality then implies that

d(p, y0) ≥ d(p, q)− d(y0, q) = ρ− (ρ− t0 − δ) = t0 + δ,

and, since the piecewise differentiable curve which connects p to r through
cv and r to y0 through a geodesic has length t0 + δ, we conclude that this is
a minimizing curve, hence a (reparameterized) geodesic. Thus, as promised,
y0 = cv(t0 + δ). Consequently, equation (12) can be written as

d(cv(t0 + δ), q) = ρ− (t0 + δ),

implying that t0 + δ ∈ A, and so t0 cannot be the maximum of A.
We can now prove that (iii) ⇒ (ii). To do so, we begin by showing that

any bounded closed subset K ⊂ M is compact. Indeed, if K is bounded
then K ⊂ BR(p) for some R > 0, where

BR(p) = {q ∈M | d(p, q) < R}.
As we have seen, p can be connected to any point in BR(p) by a geodesic

of length smaller than R, and so BR(p) ⊂ expp

(
BR(0)

)
. Since expp :

TpM →M is continuous and BR(0) is compact, the set expp

(
BR(0)

)
is also

compact. Therefore K is a closed subset of a compact set, hence compact.
Now, if {pn} is a Cauchy sequence in M , then its closure is bounded, hence
compact. Thus {pn} must have a convergent subsequence, and therefore
must itself converge.

Finally, we show that (ii) ⇒ (i). Let c be a geodesic defined for t < t0,
which we can assume without loss of generality to be normalized, that is,
‖ċ(t)‖ = 1. Let {tn} be an increasing sequence of real numbers converging to
t0. Since d(c(tm), c(tn)) ≤ |tm−tn|, we see that {c(tn)} is a Cauchy sequence.
As we are assuming M to be complete, we conclude that c(tn) → p ∈ M ,
and it is easily seen that c(t) → p as t → t0. Let Bε(p) be a normal ball
centered at p. Then c can be extended past t0 in this normal ball. �

Corollary 5.6. If M is compact then M is geodesically complete.

Proof. Any compact metric space is complete. �

Corollary 5.7. If M is a closed connected submanifold of a complete
connected Riemannian manifold with the induced metric thenM is complete.

Proof. Let M be a closed connected submanifold of a complete con-
nected Riemannian manifold N . Let d be the distance determined by the
metric on N , and let d∗ be the distance determined by the induced metric



6. NOTES ON CHAPTER 3 115

on M . Then d ≤ d∗, as any curve on M is also a curve on N . Let {pn} be
a Cauchy sequence on (M,d∗). Then {pn} is a Cauchy sequence on (N, d),
and consequently converges in N to a point p ∈ M (as N is complete and
M is closed). Since the topology of M is induced by the topology of N , we
conclude that pn → p on M . �

Exercises 5.8.

(1) Prove Proposition 5.4.
(2) Consider R2 \ {(x, 0) | −3 ≤ x ≤ 3} with the Euclidean metric.

Determine B7(0, 4).
(3) (a) Prove that a connected Riemannian manifold is complete if

and only if the compact sets are the closed bounded sets.
(b) Give an example of a connected Riemannian manifold contain-

ing a noncompact closed bounded set.
(4) A Riemannian manifold (M, 〈·, ·〉) is said to be homogeneous if,

given any two points p, q ∈M , there exists an isometry f :M →M
such that f(p) = q. Show that:
(a) any homogeneous Riemannian manifold is complete;
(b) if G is a Lie group admitting a bi-invariant metric (cf. Exer-

cise 4.8.3) then the exponential map exp : g → G is surjective;
(c) SL(2,R) does not admit a bi-invariant metric.

(5) Let (M, g) be a complete Riemannian manifold. Show that:
(a) (Ambrose theorem) if (N, h) is a Riemannian manifold and

f :M → N is a local isometry then f is a covering map;
(b) there exist surjective local isometries which are not covering

maps;
(c) (Cartan-Hadamard theorem) if (M, g) has nonpositive curva-

ture (cf. Exercise 4.8.6) then for each point p ∈ M the expo-
nential map expp : TpM → M is a covering map. (Remark: In

particular, if M is simply connected then M must be diffeomorphic to Rn).

6. Notes on Chapter 3

6.1. Section 5. In this section we use several definitions and results
about metric spaces, which we now discuss. A metric space is a pair
(M,d), where M is a set and d :M ×M → [0,+∞) is a map satisfying the
properties enumerated in Proposition 5.4. The set

Bε(p) = {q ∈M | d(p, q) < ε}
is called the open ball with center p and radius ε. The family of all such
balls is a basis for a Hausdorff topology onM , called the metric topology.
Notice that in this topology pn → p if and only if d(pn, p) → 0. Although a
metric space (M,d) is not necessarily second countable, it is still true that
F ⊂ M is closed if and only if every convergent sequence in F has limit in
F , and K ⊂M is compact if and only if every sequence in K has a sublimit
in K.
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A sequence {pn} in M is said to be a Cauchy sequence if for all ε > 0
there exists N ∈ N such that d(pn, pm) < ε for all m,n > N . It is easily
seen that all convergent sequences are Cauchy sequences. The converse,
however, is not necessarily true (but if a Cauchy sequence has a convergent
subsequence then it must converge). A metric space is said to be complete
if all its Cauchy sequences converge. A closed subset of a complete metric
space is itself complete.

A set is said to be bounded if it is a subset of some ball. For instance,
the set of all terms of a Cauchy sequence is bounded. It is easily shown that
if K ⊂M is compact then K must be bounded and closed (but the converse
is not necessarily true). A compact metric space is necessarily complete.

6.2. Bibliographical notes. The material in this chapter can be found
in most books on Riemannian geometry (e.g. [Boo03, dC93, GHL04]).
For more details on general affine connections, see [KN96]. Bi-invariant
metrics on a Lie group are examples of symmetric spaces, whose beautiful
theory is studied for instance in [Hel01].



CHAPTER 4

Curvature

The local geometry of a general Riemannian manifold differs from the
flat geometry of the Euclidean space Rn: for example, the internal angles
of a geodesic triangle in the 2-sphere S2 (with the standard metric) always
add up to more than π. A measure of this difference is provided by the
notion of curvature, introduced by Gauss in his 1827 paper “General in-
vestigations of curved surfaces”, and generalized to arbitrary Riemannian
manifolds by Riemann himself (in 1854). It can appear under many guises:
the rate of deviation of geodesics, the degree of non-commutativity of co-
variant derivatives along different vector fields, the difference between the
sum of the internal angles of a geodesic triangle and π, or the angle by which
a vector is rotated when parallel-transported along a closed curve.

This chapter addresses the various characterizations and properties of
curvature. Section 1 introduces the curvature operator of a general affine
connection, and, for Riemannian manifolds, the equivalent (more geometric)
notion of sectional curvature. The Ricci curvature tensor and the
scalar curvature, obtained from the curvature tensor by contraction,
are also defined. These quantities are fundamental in general relativity to
formulate Einstein’s equation (Chapter 6).

Section 2 establishes the Cartan structure equations, a powerful
computational method which employs differential forms to calculate the cur-
vature. These equations are used in Section 3 to prove the Gauss-Bonnet
theorem, relating the curvature of a compact surface to its topology. This
theorem provides a simple example of how the curvature of a complete Rie-
mannian manifold can constrain its topology.

Complete Riemannian manifolds with constant curvature are dis-
cussed in Section 4. These provide important examples of curved geometries,
including the negatively curved non-Euclidean geometry of Gauss, Bolyai
and Lobachevsky.

Finally, the relation between the curvature of a Riemannian manifold
and the curvature of a submanifold (with the induced metric) is studied
in Section 5. This generalizes Gauss’s investigations of curved surfaces,
including his celebrated Theorema Egregium.

1. Curvature

As we saw in Exercise 3.3.4 of Chapter 3, no open set of the 2-sphere
S2 with the standard metric is isometric to an open set of the Euclidean

117
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plane. The geometric object that locally distinguishes these two Riemannian
manifolds is the so-called curvature operator, which appears in many
other situations (cf. Exercise 4.8.6 in Chapter 3).

Definition 1.1. The curvature R of a connection ∇ is a correspon-
dence that to each pair of vector fields X,Y ∈ X(M) associates the map
R(X,Y ) : X(M) → X(M) defined by

R(X,Y )Z = ∇X ∇Y Z −∇Y ∇X Z −∇[X,Y ] Z.

Hence, R is a way of measuring the non-commutativity of the connection.
We leave it as an exercise to show that this defines a (3, 1)-tensor (called
the Riemann tensor), since

(i) R(fX1 + gX2, Y )Z = fR(X1, Y )Z + gR(X2, Y )Z,
(ii) R(X, fY1 + gY2)Z = fR(X,Y1)Z + gR(X,Y2)Z,
(iii) R(X,Y )(fZ1 + gZ2) = fR(X,Y )Z1 + gR(X,Y )Z2,

for all vector fields X,X1, X2, Y, Y1, Y2, Z, Z1, Z2 ∈ X(M) and all smooth
functions f, g ∈ C∞(M) (cf. Exercise 1.12.1). Choosing a coordinate system
x : V → Rn on M , this tensor can be locally written as

R =

n∑

i,j,k,l=1

R l
ijk dx

i ⊗ dxj ⊗ dxk ⊗ ∂

∂xl
,

where each coefficientR l
ijk is the l-coordinate of the vector fieldR( ∂

∂xi
, ∂
∂xj

) ∂
∂xk

,
that is,

R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
=

n∑

l=1

R l
ijk

∂

∂xl
.

Using the fact that [ ∂
∂xi
, ∂
∂xj

] = 0, we have

R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
= ∇ ∂

∂xi
∇ ∂

∂xj

∂

∂xk
−∇ ∂

∂xj
∇ ∂

∂xi

∂

∂xk

= ∇ ∂

∂xi

(
n∑

m=1

Γmjk
∂

∂xm

)
−∇ ∂

∂xj

(
n∑

m=1

Γmik
∂

∂xm

)

=
n∑

m=1

(
∂

∂xi
· Γmjk −

∂

∂xj
· Γmik

)
∂

∂xm
+

n∑

l,m=1

(ΓmjkΓ
l
im − ΓmikΓ

l
jm)

∂

∂xl

=
n∑

l=1

(
∂Γljk
∂xi

− ∂Γlik
∂xj

+
n∑

m=1

ΓmjkΓ
l
im −

n∑

m=1

ΓmikΓ
l
jm

)
∂

∂xl
,

and so

R l
ijk =

∂Γljk
∂xi

− ∂Γlik
∂xj

+
n∑

m=1

ΓmjkΓ
l
im −

n∑

m=1

ΓmikΓ
l
jm.

Example 1.2. ConsiderM = Rn with the Euclidean metric and the cor-
responding Levi-Civita connection (that is, with Christoffel symbols Γkij ≡
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0). Then R l
ijk = 0, and the curvature R is zero. Thus, we can also interpret

the curvature as a measure of how much a connection on a given manifold
differs from the Levi-Civita connection of the Euclidean space.

When the connection is symmetric (as in the case of the Levi-Civita
connection), the tensor R satisfies the so-called Bianchi identity.

Proposition 1.3. (Bianchi identity) If M is a manifold with a sym-
metric connection then the associated curvature satisfies

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0.

Proof. This property is a direct consequence of the Jacobi identity of
vector fields. Indeed,

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = ∇X ∇Y Z −∇Y ∇X Z −∇[X,Y ] Z

+∇Y ∇Z X −∇Z ∇Y X −∇[Y,Z]X +∇Z ∇X Y −∇X ∇Z Y −∇[Z,X] Y

= ∇X (∇Y Z −∇Z Y ) +∇Y (∇Z X −∇X Z) +∇Z (∇X Y −∇Y X)

−∇[X,Y ] Z −∇[Y,Z]X −∇[Z,X] Y,

and so, since the connection is symmetric, we have

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y

= ∇X [Y, Z] +∇Y [Z,X] +∇Z [X,Y ]−∇[Y,Z]X −∇[Z,X] Y −∇[X,Y ] Z

= [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

�

We will assume from this point on that (M, g) is a Riemannian manifold
and ∇ its Levi-Civita connection. We can define a new covariant 4-tensor,
known as the curvature tensor:

R(X,Y, Z,W ) := g(R(X,Y )Z,W ).

Notice that because the metric is nondegenerate the curvature tensor con-
tains the same information as the Riemann tensor. Again, choosing a coor-
dinate system x : V → Rn on M , we can write this tensor as

R(X,Y, Z,W ) =




n∑

i,j,k,l=1

Rijkl dx
i ⊗ dxj ⊗ dxk ⊗ dxl


 (X,Y, Z,W )

where

Rijkl = g

(
R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
,
∂

∂xl

)
= g

(
n∑

m=1

R m
ijk

∂

∂xm
,
∂

∂xl

)
=

n∑

m=1

R m
ijk gml.

This tensor satisfies the following symmetry properties.

Proposition 1.4. If X,Y, Z,W are vector fields in M and ∇ is the
Levi-Civita connection, then

(i) R(X,Y, Z,W ) +R(Y, Z,X,W ) +R(Z,X, Y,W ) = 0;
(ii) R(X,Y, Z,W ) = −R(Y,X,Z,W );
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(iii) R(X,Y, Z,W ) = −R(X,Y,W,Z);
(iv) R(X,Y, Z,W ) = R(Z,W,X, Y ).

Proof. Property (i) is an immediate consequence of the Bianchi iden-
tity, and property (ii) holds trivially.

Property (iii) is equivalent to showing that R(X,Y, Z, Z) = 0. Indeed,
if (iii) holds then clearly R(X,Y, Z, Z) = 0. Conversely, if this is true, we
have

R(X,Y, Z +W,Z +W ) = 0 ⇔ R(X,Y, Z,W ) +R(X,Y,W,Z) = 0.

Now, using the fact that the Levi-Civita connection is compatible with the
metric, we have

X · 〈∇Y Z,Z〉 = 〈∇X ∇Y Z,Z〉+ 〈∇Y Z,∇X Z〉
and

[X,Y ] · 〈Z,Z〉 = 2〈∇[X,Y ] Z,Z〉.
Hence,

R(X,Y, Z, Z) = 〈∇X ∇Y Z,Z〉 − 〈∇Y ∇X Z,Z〉 − 〈∇[X,Y ] Z,Z〉
= X · 〈∇Y Z,Z〉 − 〈∇Y Z,∇X Z〉 − Y · 〈∇X Z,Z〉

+ 〈∇X Z,∇Y Z〉 −
1

2
[X,Y ] · 〈Z,Z〉

=
1

2
X · (Y · 〈Z,Z〉)− 1

2
Y · (X · 〈Z,Z〉)− 1

2
[X,Y ] · 〈Z,Z〉

=
1

2
[X,Y ] · 〈Z,Z〉 − 1

2
[X,Y ] · 〈Z,Z〉 = 0.

To show (iv), we use (i) to get

R(X,Y, Z,W ) + R(Y, Z,X,W ) + R(Z,X, Y,W ) = 0
R(Y, Z,W,X) + R(Z,W, Y,X) + R(W,Y,Z,X) = 0
R(Z,W,X, Y ) + R(W,X,Z, Y ) + R(X,Z,W, Y ) = 0
R(W,X, Y, Z) + R(X,Y,W,Z) + R(Y,W,X,Z) = 0

and so, adding these and using (iii), we have

R(Z,X, Y,W ) +R(W,Y,Z,X) +R(X,Z,W, Y ) +R(Y,W,X,Z) = 0.

Using (ii) and (iii), we obtain

2R(Z,X, Y,W )− 2R(Y,W,Z,X) = 0.

�

An equivalent way of encoding the information about the curvature of
a Riemannian manifold is by considering the following definition.

Definition 1.5. Let Π be a 2-dimensional subspace of TpM and let
Xp, Yp be two linearly independent elements of Π. Then, the sectional
curvature of Π is defined as

K(Π) := − R(Xp, Yp, Xp, Yp)

‖Xp‖2‖Yp‖2 − 〈Xp, Yp〉2
.
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Note that ‖Xp‖2‖Yp‖2 − 〈Xp, Yp〉2 is the square of the area of the paral-
lelogram in TpM spanned by Xp, Yp, and so the above definition of sectional
curvature does not depend on the choice of the linearly independent vec-
tors Xp, Yp. Indeed, when we change of basis on Π, both R(Xp, Yp, Xp, Yp)
and ‖Xp‖2‖Yp‖2 − 〈Xp, Yp〉2 change by the square of the determinant of the
change of basis matrix (cf. Exercise 1.12.4.). We will now see that knowing
the sectional curvature of every section of TpM completely determines the
curvature tensor on this space.

Proposition 1.6. The Riemannian curvature tensor at p is uniquely
determined by the values of the sectional curvatures of sections (that is, 2-
dimensional subspaces) of TpM .

Proof. Let us consider two covariant 4-tensors R1, R2 on TpM sat-
isfying the symmetry properties of Proposition 1.4. Then the tensor T :=
R1−R2 also satisfies these symmetry properties. We will see that, if the val-
ues R1(Xp, Yp, Xp, Yp) and R2(Xp, Yp, Xp, Yp) agree for every Xp, Yp ∈ TpM
(that is, if T (Xp, Yp, Xp, Yp) = 0 for every Xp, Yp ∈ TpM), then R1 = R2

(that is, T ≡ 0). Indeed, for all vectors Xp, Yp, Zp ∈ TpM , we have

0 = T (Xp + Zp, Yp, Xp + Zp, Yp) = T (Xp, Yp, Zp, Yp) + T (Zp, Yp, Xp, Yp)

= 2T (Xp, Yp, Zp, Yp),

and so

0 = T (Xp, Yp +Wp, Zp, Yp +Wp) = T (Xp, Yp, Zp,Wp) + T (Xp,Wp, Zp, Yp)

= T (Zp,Wp, Xp, Yp)− T (Wp, Xp, Zp, Yp),

that is, T (Zp,Wp, Xp, Yp) = T (Wp, Xp, Zp, Yp). Hence T is invariant by
cyclic permutations of the first three elements and so, by the Bianchi identity,
we have 3T (Xp, Yp, Zp,Wp) = 0. �

A Riemannian manifold is called isotropic at a point p ∈ M if its
sectional curvature is a constant Kp for every section Π ⊂ TpM . Moreover,
it is called isotropic if it is isotropic at all points. Note that every 2-
dimensional manifold is trivially isotropic. Its sectional curvature K(p) :=
Kp is called the Gauss curvature.

Remark 1.7. As we will see later, the Gauss curvature measures how
much the local geometry of the surface differs from the geometry of the
Euclidean plane. For instance, its integral over a disk D on the surface gives
the angle by which a vector is rotated when parallel-transported around
the boundary of D (cf. Exercise 2.8.7). Alternatively, its integral over the
interior of a geodesic triangle ∆ is equal to the difference between the sum
of the inner angles of ∆ and π (cf. Exercise 3.6.6). We will also see that
the sectional curvature of an n-dimensional Riemannian manifold is actually
the Gauss curvature of special 2-dimensional submanifolds, formed by the
geodesics tangent to the sections (cf. Exercise 5.7.5).
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Proposition 1.8. If M is isotropic at p and x : V → Rn is a coordinate
system around p, then the coefficients of the Riemannian curvature tensor
at p are given by

Rijkl(p) = −Kp(gik gjl − gil gjk).

Proof. We first define a covariant 4-tensor A on TpM as

A :=
n∑

i,j,k,l=1

−Kp( gik gjl − gil gjk) dx
i ⊗ dxj ⊗ dxk ⊗ dxl.

We leave it as an exercise to check that A satisfies the symmetry properties
of Proposition 1.4. Moreover,

A(Xp, Yp, Xp, Yp) =
n∑

i,j,k,l=1

−Kp( gik gjl − gil gjk)X
i
p Y

j
p X

k
p Y

l
p

= −Kp

(
〈Xp, Xp〉〈Yp, Yp〉 − 〈Xp, Yp〉2

)

= R(Xp, Yp, Xp, Yp),

and so we conclude from Proposition 1.6 that A = R. �

Definition 1.9. A Riemannian manifold is called a manifold of con-
stant curvature if it is isotropic and Kp is the same at all points of M .

Example 1.10. The Euclidean space is a manifold of constant curvature
Kp ≡ 0. We will see the complete classification of (complete, connected)
manifolds of constant curvature in Section 4.

Another geometric object, very important in General Relativity, is the
so-called Ricci tensor.

Definition 1.11. The Ricci curvature tensor is the covariant 2-
tensor locally defined as

Ric(X,Y ) :=
n∑

k=1

dxk
(
R

(
∂

∂xk
, X

)
Y

)
.

The above definition is independent of the choice of coordinates. In-
deed, we can see Ricp(Xp, Yp) as the trace of the linear map from TpM to
TpM given by Zp 7→ R(Zp, Xp)Yp, hence independent of the choice of basis.
Moreover, this tensor is symmetric. In fact, choosing an orthonormal basis
{E1 . . . , En} of TpM we have

Ricp(Xp, Yp) =
n∑

k=1

〈R(Ek, Xp)Yp, Ek〉 =
n∑

k=1

R(Ek, Xp, Yp, Ek)

=
n∑

k=1

R(Yp, Ek, Ek, Xp) =
n∑

k=1

R(Ek, Yp, Xp, Ek) = Ricp(Yp, Xp).
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Locally, we can write

Ric =
n∑

i,j=1

Rijdx
i ⊗ dxj

where the coefficients Rij are given by

Rij := Ric

(
∂

∂xi
,
∂

∂xj

)
=

n∑

k=1

dxk
(
R

(
∂

∂xk
,
∂

∂xi

)
∂

∂xj

)
=

n∑

k=1

R k
kij ,

that is, Rij =
∑n

k=1R
k

kij .

Incidentally, note that we obtained a (2, 0)-tensor from a (3, 1)-tensor.
This is an example of a general procedure called contraction, where we
obtain a (k − 1,m − 1)-tensor from a (k,m)-tensor. To do so, we choose
two indices on the components of the (k,m)-tensor, one covariant and other
contravariant, set them equal and then sum over them, thus obtaining the
components of a (k − 1,m− 1)-tensor. On the example of the Ricci tensor,

we took the (3, 1)-tensor R̃ defined by the curvature,

R̃(X,Y, Z, ω) = ω(R(X,Y )Z),

chose the first covariant index and the first contravariant index, set them
equal and summed over them:

Ric(X,Y ) =
n∑

k=1

R̃

(
∂

∂xk
, X, Y, dxk

)
.

Similarly, we can use contraction to obtain a function (0-tensor) from
the Ricci tensor (a covariant 2-tensor). For that, we first need to define a
new (1, 1)-tensor field T using the metric,

T (X,ω) := Ric(X,Y ),

where Y is such that ω(Z) = 〈Y, Z〉 for every vector field Z. Then, we
set the covariant index equal to the contravariant one and add, obtaining
a function S : M → R called the scalar curvature. Locally, choosing a
coordinate system x : V → Rn, we have

S(p) :=
n∑

k=1

T

(
∂

∂xk
, dxk

)
=

n∑

k=1

Ric

(
∂

∂xk
, Yk

)
,

where, for every vector field Z on V ,

Zk = dxk(Z) = 〈Z, Yk〉 =
n∑

i,j=1

gijZ
iY j
k .
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Therefore, we must have Y j
k = gjk (where (gij) = (gij)

−1), and hence Yk =∑n
i=1 g

ik ∂
∂xi

. We conclude that the scalar curvature is locally given by

S(p) =
n∑

k=1

Ric

(
∂

∂xk
,
n∑

i=1

gik
∂

∂xi

)
=

n∑

i,k=1

Rkig
ik =

n∑

i,k=1

gikRik.

(since Ric is symmetric).

Exercises 1.12.

(1) (a) Show that the curvature operator satisfies
(i) R(fX1 + gX2, Y )Z = fR(X1, Y )Z + gR(X2, Y )Z;
(ii) R(X, fY1 + gY2)Z = fR(X,Y1)Z + gR(X,Y2)Z;
(iii) R(X,Y )(fZ1 + gZ2) = fR(X,Y )Z1 + gR(X,Y )Z2,

for all vector fields X,X1, X2, Y, Y1, Y2, Z, Z1, Z2 ∈ X(M) and
smooth functions f, g ∈ C∞(M).

(b) Show that (R(X,Y )Z)p ∈ TpM depends only on Xp, Yp, Zp.
Conclude that R defines a (3, 1)-tensor. (Hint: Choose local coor-

dinates around p ∈M).
(2) Let (M, g) be an n-dimensional Riemannian manifold and p ∈ M .

Show that if (x1, . . . , xn) are normal coordinates centered at p
(cf. Exercise 4.8.2 in Chapter 3) then

Rijkl(p) =
1

2

(
∂2gjl
∂xi∂xk

− ∂2gil
∂xj∂xk

− ∂2gjk
∂xi∂xl

+
∂2gik
∂xj∂xl

)
(p).

(3) Recall that if G is a Lie group endowed with a bi-invariant Rie-
mannian metric, ∇ is the Levi-Civita connection and X,Y are two
left-invariant vector fields then

∇XY =
1

2
[X,Y ]

(cf. Exercise 4.8.3 in Chapter 3). Show that if Z is also left-
invariant, then

R(X,Y )Z =
1

4
[Z, [X,Y ]].

(4) Show that ‖Xp‖2‖Yp‖2 − 〈Xp, Yp〉2 gives us the square of the area
of the parallelogram in TpM spanned by Xp, Yp. Conclude that the
sectional curvature does not depend on the choice of the linearly
independent vectors Xp, Yp, that is, when we change of basis on Π,
both R(Xp, Yp, Xp, Yp) and ‖Xp‖2‖Yp‖2 − 〈Xp, Yp〉2 change by the
square of the determinant of the change of basis matrix.

(5) Show that Ric is the only independent contraction of the curvature
tensor: choosing any other two indices and contracting, one either
gets ±Ric or 0.

(6) Let M be a 3-dimensional Riemannian manifold. Show that the
curvature tensor is entirely determined by the Ricci tensor.
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(7) Let (M, g) be an n-dimensional isotropic Riemannian manifold with
sectional curvature K. Show that Ric = (n − 1)Kg and S =
n(n− 1)K.

(8) Let g1, g2 be two Riemannian metrics on a manifold M such that
g1 = ρg2, for some constant ρ > 0. Show that:
(a) the corresponding sectional curvaturesK1 andK2 satisfyK1(Π) =

ρ−1K2(Π) for any 2-dimensional section of a tangent space of
M ;

(b) the corresponding Ricci curvature tensors satisfy Ric1 = Ric2;
(c) the corresponding scalar curvatures satisfy S1 = ρ−1S2.

(9) If ∇ is not the Levi-Civita connection can we still define the Ricci
curvature tensor Ric? Is it necessarily symmetric?

2. Cartan Structure Equations

In this section we will reformulate the properties of the Levi-Civita con-
nection and of the Riemannian curvature tensor in terms of differential
forms. For that we will take an open subset V of M where we have de-
fined a field of frames {X1, . . . , Xn}, that is, a set of n vector fields that,
at each point p of V , form a basis for TpM (for example, we can take a

coordinate neighborhood V and the vector fields Xi =
∂
∂xi

; however, in gen-
eral, the Xi are not associated to a coordinate system). Then we consider
a field of dual coframes, that is, 1-forms {ω1, . . . , ωn} on V such that
ωi(Xj) = δij . Note that, at each point p ∈ V , {ω1

p, . . . , ω
n
p } is a basis for

T ∗
pM . From the properties of a connection, in order to define ∇X Y we just

have to establish the values of

∇Xi Xj =
n∑

k=1

ΓkijXk,

where Γkij is defined as the kth component of the vector field ∇Xi Xj on the

basis {Xi}ni=1. Note that if the Xi are not associated to a coordinate system
then the Γkij cannot be computed using formula (9), and, in general, they are

not even symmetric in the indices i, j (cf. Exercise 2.8.1). Given the values
of the Γkij on V , we can define 1-forms ωkj (j, k = 1, . . . , n) in the following
way:

(13) ωkj :=

n∑

i=1

Γkijω
i.

Conversely, given these forms, we can obtain the values of Γkij through

Γkij = ωkj (Xi).
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The connection is then completely determined from these forms: given two
vector fields X =

∑n
i=1 a

iXi and Y =
∑n

i=1 b
iXi, we have

∇X Xj = ∇∑n
i=1 a

iXi Xj =
n∑

i=1

ai∇Xi Xj =
n∑

i,k=1

ai Γkij Xk(14)

=
n∑

i,k=1

ai ωkj (Xi)Xk =
n∑

k=1

ωkj (X)Xk

and hence

∇XY = ∇X

(
n∑

i=1

biXi

)
=

n∑

i=1

(
(X · bi)Xi + bi∇XXi

)
(15)

=
n∑

j=1

(
X · bj +

n∑

i=1

biωji (X)

)
Xj .

Note that the values of the forms ωkj at X are the components of ∇X Xj

relative to the field of frames, that is,

(16) ωij(X) = ωi (∇XXj) .

The ωkj are called the connection forms. For the Levi-Civita connection,
these forms cannot be arbitrary. Indeed, they have to satisfy certain equa-
tions corresponding to the properties of symmetry and compatibility with
the metric.

Theorem 2.1. (Cartan) Let V be an open subset of a Riemannian man-
ifold M on which we have defined a field of frames {X1, . . . , Xn}. Let
{ω1, . . . , ωn} be the corresponding field of coframes. Then the connection
forms of the Levi-Civita connection are the unique solution of the equations

(i) dωi =
∑n

j=1 ω
j ∧ ωij,

(ii) dgij =
∑n

k=1(gkj ω
k
i + gki ω

k
j ),

where gij = 〈Xi, Xj〉.
Proof. We begin by showing that the Levi-Civita connection forms,

defined by (13), satisfy (i) and (ii). For this, we will use the following
property of 1-forms (cf. Exercise 3.8.2 of Chapter 2):

dω(X,Y ) = X · (ω(Y ))− Y · (ω(X))− ω([X,Y ]).

We have

∇Y X = ∇Y




n∑

j=1

ωj(X)Xj


 =

n∑

j=1

(
Y · ωj(X)Xj + ωj(X)∇Y Xj

)
,

which implies

(17) ωi(∇YX) = Y · ωi(X) +
n∑

j=1

ωj(X)ωi(∇YXj).
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Using (16) and (17), we have



n∑

j=1

ωj ∧ ωij


 (X,Y ) =

n∑

j=1

(
ωj(X)ωij(Y )− ωj(Y )ωij(X)

)

=
n∑

j=1

(
ωj(X)ωi(∇Y Xj)− ωj(Y )ωi(∇X Xj)

)

= ωi(∇Y X)− Y · (ωi(X))− ωi(∇X Y ) +X · (ωi(Y )),

and so
dωi −

n∑

j=1

ωj ∧ ωij


 (X,Y ) =

= X · (ωi(Y ))− Y · (ωi(X))− ωi ([X,Y ])−




n∑

j=1

ωj ∧ ωij


 (X,Y )

= ωi (∇X Y −∇Y X − [X,Y ]) = 0.

Note that equation (i) is equivalent to symmetry of the connection. To show
that (ii) holds, we notice that

dgij(Y ) = Y · 〈Xi, Xj〉,
and that, on the other hand,
(

n∑

k=1

gkj ω
k
i + gki ω

k
j

)
(Y ) =

n∑

k=1

gkj ω
k
i (Y ) + gki ω

k
j (Y )

=

〈
n∑

k=1

ωki (Y )Xk, Xj

〉
+

〈
n∑

k=1

ωkj (Y )Xk, Xi

〉

= 〈∇Y Xi, Xj〉+ 〈∇Y Xj , Xi〉.
Hence, equation (ii) is equivalent to

Y · 〈Xi, Xj〉 = 〈∇Y Xi, Xj〉+ 〈Xi,∇YXj〉,
for every i, j, that is, it is equivalent to compatibility with the metric (cf. Ex-
ercise 2.8.2). We conclude that the Levi-Civita connection forms satisfy (i)
and (ii).

To prove unicity, we take 1-forms ωji (i, j = 1, . . . , n) satisfying (i) and
(ii). Using (15), we can define a connection, which is necessarily symmetric
and compatible with the metric. By uniqueness of the Levi-Civita connec-

tion, we have uniqueness of the set of forms ωji satisfying (i) and (ii) (note
that each connection determines a unique set of n2 connection forms and
vice versa). �

Remark 2.2. Given a field of frames on some open set, we can perform
Gram-Schmidt orthogonalization to obtain a smooth field of orthonormal
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frames {E1, . . . , En}. Then, as gij = 〈Ei, Ej〉 = δij , equations (i) and (ii)
above become

(i) dωi =
∑n

j=1 ω
j ∧ ωij ,

(ii) ωji + ωij = 0.

In addition to connection forms, we can also define curvature forms.
Again we consider an open subset V of M where we have a field of frames
{X1, . . . , Xn} (hence a corresponding field of dual coframes {ω1, . . . , ωn}).
We then define 2-forms Ωlk (k, l = 1, . . . , n) by

Ωlk(X,Y ) := ωl(R(X,Y )Xk),

for all vector fields X,Y in V (i.e., R(X,Y )Xk =
∑n

l=1Ω
l
k(X,Y )Xl). Using

the basis {ωi ∧ ωj}i<j for 2-forms, we have

Ωlk =
∑

i<j

Ωlk(Xi, Xj)ω
i ∧ ωj =

∑

i<j

ωl(R(Xi, Xj)Xk)ω
i ∧ ωj

=
∑

i<j

R l
ijk ω

i ∧ ωj = 1

2

n∑

i,j=1

R l
ijk ω

i ∧ ωj ,

where the R l
ijk are the coefficients of the curvature relative to these frames:

R(Xi, Xj)Xk =

n∑

l=1

R l
ijk Xl.

The curvature forms satisfy the following equation.

Proposition 2.3. In the above notation,

(iii) Ωji = dωji −
∑n

k=1 ω
k
i ∧ ω

j
k, for every i, j = 1, . . . , n.

Proof. We will show that

R(X,Y )Xi =
n∑

j=1

Ωji (X,Y )Xj =
n∑

j=1

((
dωji −

n∑

k=1

ωki ∧ ωjk

)
(X,Y )

)
Xj .
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Indeed,

R(X,Y )Xi = ∇X ∇Y Xi −∇Y ∇X Xi −∇[X,Y ]Xi =

= ∇X

(
n∑

k=1

ωki (Y )Xk

)
−∇Y

(
n∑

k=1

ωki (X)Xk

)
−

n∑

k=1

ωki ([X,Y ])Xk

=
n∑

k=1

(
X · (ωki (Y ))− Y · (ωki (X))− ωki ([X,Y ])

)
Xk +

+
n∑

k=1

ωki (Y )∇X Xk −
n∑

k=1

ωki (X)∇Y Xk

=
n∑

k=1

dωki (X,Y )Xk +
n∑

k,j=1

(
ωki (Y )ωjk(X)Xj − ωki (X)ωjk(Y )Xj

)

=
n∑

j=1

(
dωji (X,Y )−

n∑

k=1

(ωki ∧ ωjk)(X,Y )

)
Xj .

�

Equations (i), (ii) and (iii) are known as the Cartan structure equa-
tions. We list these equations below, as well as the main definitions.

(i) dωi =
∑n

j=1 ω
j ∧ ωij ,

(ii) dgij =
∑n

k=1(gkj ω
k
i + gki ω

k
j ),

(iii) dωji = Ωji +
∑n

k=1 ω
k
i ∧ ω

j
k,

where ωi(Xj) = δij , ω
k
j =

∑n
i=1 Γ

k
ijω

i and Ωji =
∑

k<lR
j

kli ωk ∧ ωl.

Remark 2.4. If we consider a field of orthonormal frames {E1, . . . , En},
the above equations become:

(i) dωi =
∑n

j=1 ω
j ∧ ωij ,

(ii) ωji + ωij = 0,

(iii) dωji = Ωji +
∑n

k=1 ω
k
i ∧ ω

j
k (and so Ωji +Ωij = 0).

Example 2.5. For a field of orthonormal frames in Rn with the Eu-
clidean metric, the curvature forms must vanish (as R = 0), and we obtain
the following structure equations:

(i) dωi =
∑n

j=1 ω
j ∧ ωij ,

(ii) ωji + ωij = 0,

(iii) dωji =
∑n

k=1 ω
k
i ∧ ω

j
k.

To finish this section, we will consider in detail the special case of a 2-
dimensional Riemannian manifold. In this case, the structure equations for
a field of orthonormal frames are particularly simple: equation (ii) implies
that there is only one independent connection form (ω1

1 = ω2
2 = 0 and
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ω1
2 = −ω2

1), which can be computed from equation (i):

dω1 = −ω2 ∧ ω2
1;

dω2 = ω1 ∧ ω2
1.

Equation (iii) then yields that there is only one independent curvature form
Ω2
1 = dω2

1. This form is closely related to the Gauss curvature of the mani-
fold.

Proposition 2.6. If M is a 2-dimensional manifold, then for an or-
thonormal frame we have Ω2

1 = −Kω1 ∧ ω2, where the function K is the
Gauss curvature of M (that is, its sectional curvature).

Proof. Let p be a point in M and let us choose an open set containing
p where we have defined a field of orthonormal frames {E1, E2}. Then

K = −R(E1, E2, E1, E2) = −R1212,

and consequently

Ω2
1 = Ω2

1(E1, E2)ω
1 ∧ ω2 = ω2(R(E1, E2)E1)ω

1 ∧ ω2

= 〈R(E1, E2)E1, E2〉ω1 ∧ ω2 = R1212 ω
1 ∧ ω2 = −K ω1 ∧ ω2.

�

Note that K does not depend on the choice of the field of frames, since it
is a sectional curvature (cf. Definition 1.5), and, since ω1∧ω2 is a Riemannian
volume form, neither does the curvature form (up to a sign). However, the
connection forms do. Let {E1, E2}, {F1, F2} be two fields of orthonormal
frames on an open subset V of M . Then

(
F1 F2

)
=
(
E1 E2

)
S

where S : V → O(2) has values in the orthogonal group of 2 × 2 matrices.
Note that S has one of the following two forms

S =

(
a −b
b a

)
or S =

(
a b
b −a

)
,

where a, b : V → R are such that a2 + b2 = 1. The determinant of S is then
±1 depending on whether the two frames have the same orientation. We
have the following proposition.

Proposition 2.7. If {E1, E2} and {F1, F2} have the same orientation
then, denoting by ω2

1 and ω2
1 the corresponding connection forms, we have

ω2
1 − ω2

1 = σ, where σ := a db− b da.

Proof. Denoting by {ω1, ω2} and {ω1, ω2} the fields of dual coframes
corresponding to {E1, E2} and {F1, F2}, we define the column vectors of
1-forms

ω :=

(
ω1

ω2

)
and ω :=

(
ω1

ω2

)
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and the matrices of 1-forms

A :=

(
0 −ω2

1

ω2
1 0

)
and Ā :=

(
0 −ω2

1

ω2
1 0

)
.

The relation between the frames can be written as

ω = S−1ω ⇔ ω = S ω

(cf. Section 7.1 in Chapter 2), and the Cartan structure equations as

dω = −A ∧ ω and dω = −Ā ∧ ω.
Therefore

dω = S dω + dS ∧ ω = −SĀ ∧ ω + dS ∧ S−1ω

= −SĀ ∧ S−1ω + dS ∧ S−1ω = −
(
SĀS−1 − dS S−1

)
∧ ω,

and unicity of solutions of the Cartan structure equations implies

A = SĀS−1 − dSS−1.

Writing this out in full one obtains
(

0 −ω2
1

ω2
1 0

)
=

(
0 −ω2

1

ω2
1 0

)
−
(
a da+ b db b da− a db
a db− b da a da+ b db

)
,

and the result follows (we also obtain a da + b db = 0, which is clear from
detS = a2 + b2 = 1). �

Let us now give a geometric interpretation of σ := a db − b da. Locally,
we can define at each point p ∈M the angle θ(p) between (E1)p and (F1)p.
Then the change of basis matrix S has the form

(
a −b
b a

)
=

(
cos θ − sin θ
sin θ cos θ

)
.

Hence,

σ = a db− b da = cos θ d (sin θ)− sin θ d (cos θ)

= cos2 θ dθ + sin2 θ dθ = dθ.

Therefore, integrating σ along a curve yields the angle by which F1 rotates
with respect to E1 along the curve.

In particular, notice that σ is closed. This is also clear from

dσ = dω2
1 − dω2

1 = −K ω1 ∧ ω2 +Kω1 ∧ ω2 = 0

(ω1∧ω2 = ω1∧ω2 since the two fields of frames have the same orientation).
We can use the connection form ω2

1 to define the geodesic curvature
of a curve on an oriented Riemannian 2-manifold M . Let c : I → M be a
smooth curve inM parameterized by its arclength s (hence ‖ċ(s)‖ = 1). Let
V be a neighborhood of a point c(s) in this curve where we have a field of
positively oriented orthonormal frames {E1, E2} satisfying (E1)c(s) = ċ(s).
Note that it is always possible to consider such a field of frames: we start
by extending the vector field ċ(s) to a unit vector field E1 defined on a
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neighborhood of c(s), and then consider a unit vector field E2 orthogonal to
the first, such that {E1, E2} is positively oriented. Since

∇E1E1 = ω1
1(E1)E1 + ω2

1(E1)E2 = ω2
1(E1)E2,

the covariant acceleration of c is

∇ċ(s)ċ(s) = ∇E1(s)E1(s) = ω2
1(E1(s))E2(s).

We define the geodesic curvature of the curve c to be

kg(s) := ω2
1(E1(s))

(thus |kg(s)| = ‖∇ċ(s)ċ(s)‖). It is a measure of how much the curve fails to
be a geodesic at c(s). In particular, c is a geodesic if and only if its geodesic
curvature vanishes.

Exercises 2.8.

(1) Let {X1, . . . , Xn} be a field of frames on an open set V of a Rie-
mannian manifold (M, 〈·, ·〉) with Levi-Civita connection ∇. The
associated structure functions Ckij are defined by

[Xi, Xj ] =
n∑

k=1

CkijXk.

Show that:
(a) Cijk = Γijk − Γikj ;

(b) Γijk =
1
2

∑n
l=1 g

il (Xj · gkl +Xk · gjl −Xl · gjk)
+1

2C
i
jk − 1

2

∑n
l,m=1 g

il
(
gjmC

m
kl + gkmC

m
jl

)
;

(c) dωi+ 1
2

∑n
j,k=1C

i
jkω

j ∧ωk = 0, where {ω1, . . . , ωn} is the field
of dual coframes.

(2) Let {X1, . . . , Xn} be a field of frames on an open set V of a Rie-
mannian manifold (M, 〈·, ·〉). Show that a connection ∇ on M is
compatible with the metric on V if and only if

Xk · 〈Xi, Xj〉 = 〈∇Xk Xi, Xj〉+ 〈Xi,∇XkXj〉
for all i, j, k.

(3) Compute the Gauss curvature of:
(a) the sphere S2 with the standard metric;
(b) the hyperbolic plane, i.e., the upper half-plane

H = {(x, y) ∈ R2 | y > 0}
with the metric

g =
1

y2
(dx⊗ dx+ dy ⊗ dy)

(cf. Exercise 3.3.5 of Chapter 3).
(4) Determine all surfaces of revolution with constant Gauss curvature.
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(5) Let M be the image of the parameterization ϕ : (0,+∞)×R → R3

given by

ϕ(u, v) = (u cos v, u sin v, v),

and let N be the image of the parameterization ψ : (0,+∞)×R →
R3 given by

ψ(u, v) = (u cos v, u sin v, log u).

Consider in both M and N the Riemannian metric induced by the
Euclidean metric of R3. Show that the map f :M → N defined by

f(ϕ(u, v)) = ψ(u, v)

preserves the Gauss curvature but is not a local isometry.
(6) Consider the metric

g = A2(r)dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θ dϕ⊗ dϕ

on M = I × S2, where r is a local coordinate on I ⊂ R and (θ, ϕ)
are spherical local coordinates on S2.
(a) Compute the Ricci tensor and the scalar curvature of this met-

ric.
(b) What happens when A(r) = (1 − r2)−

1
2 (that is, when M is

locally isometric to S3)?

(c) And when A(r) = (1 + r2)−
1
2 (that is, when M is locally

isometric to the hyperbolic 3-space)?
(d) For which functions A(r) is the scalar curvature constant?

(7) Let M be an oriented Riemannian 2-manifold and let p be a point
inM . Let D be a neighborhood of p inM homeomorphic to a disc,
with a smooth boundary ∂D. Consider a point q ∈ ∂D and a unit
vector Xq ∈ TqM . Let X be the parallel transport of Xq along ∂D
in the positive direction. When X returns to q it makes an angle
∆θ with the initial vector Xq. Using fields of positively oriented
orthonormal frames {E1, E2} and {F1, F2} such that F1 = X, show
that

∆θ =

∫

D
K.

Conclude that the Gauss curvature of M at p satisfies

K(p) = lim
D→p

∆θ

vol(D)
.

(8) Compute the geodesic curvature of a positively oriented circle on:
(a) R2 with the Euclidean metric and the usual orientation;
(b) S2 with the usual metric and orientation.

(9) Let c be a smooth curve on an oriented 2-manifold M as in the
definition of geodesic curvature. Let X be a vector field parallel
along c and let θ be the angle between X and ċ(s) along c in the
given orientation. Show that the geodesic curvature of c, kg, is
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equal to dθ
ds . (Hint: Consider two fields of orthonormal frames {E1, E2} and

{F1, F2} positively oriented such that E1 = X
‖X‖ and F1 = ċ).

3. Gauss-Bonnet Theorem

We will now use the Cartan structure equations to prove the Gauss-
Bonnet theorem, relating the curvature of a compact surface to its topol-
ogy. Let M be a compact, oriented, 2-dimensional manifold and X a vector
field on M .

Definition 3.1. A point p ∈ M is said to be a singular point of X
if Xp = 0. A singular point is said to be an isolated singularity if there
exists a neighborhood V ⊂ M of p such that p is the only singular point of
X in V .

Since M is compact, if all the singularities of X are isolated then they
are in finite number (as otherwise they would accumulate on a non-isolated
singularity).

To each isolated singularity p ∈ V of X ∈ X(M) one can associate an
integer number, called the index of X at p, as follows:

(i) fix a Riemannian metric in M ;
(ii) choose a positively oriented orthonormal frame {F1, F2}, defined on

V \ {p}, such that

F1 =
X

‖X‖ ,

let {ω1, ω2} be the dual coframe and let ω2
1 be the corresponding con-

nection form;
(iii) possibly shrinking V , choose a positively oriented orthonormal frame

{E1, E2}, defined on V , with dual coframe {ω1, ω2} and connection
form ω2

1;
(iv) take a neighborhood D of p in V , homeomorphic to a disc, with a

smooth boundary ∂D, endowed with the induced orientation, and de-
fine the index Ip of X at p as

2πIp =

∫

∂D
σ,

where σ := ω2
1 − ω2

1 is the form in Proposition 2.7.

Recall that σ satisfies σ = dθ, where θ is the angle between E1 and F1.
Therefore Ip must be an integer. Intuitively, the index of a vector field
X measures the number of times that X rotates as one goes around the
singularity anticlockwise, counted positively if X itself rotates anticlockwise,
and negatively otherwise.

Example 3.2. In M = R2 the following vector fields have isolated sin-
gularities at the origin with the indicated indices (cf. Figure 1):

(1) X(x,y) = (x, y) has index 1;
(2) Y(x,y) = (−y, x) has index 1;
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(3) Z(x,y) = (y, x) has index −1;
(4) W(x,y) = (x,−y) has index −1.

(1) (2)

(3) (4)

θ
E1 =

∂
∂x

F1 =
X

‖X‖ F1 =
Y

‖Y ‖

F1 =
Z

‖Z‖ F1 =
W

‖W‖

Figure 1. Computing the indices of the vector fields X, Y ,
Z and W .

We will now check that the index is well defined. We begin by observing
that, since σ is closed, Ip does not depend on the choice of D. Indeed, the
boundaries of any two such discs are necessarily homotopic (cf. Exercise 5.3.2
in Chapter 2). Next we prove that Ip does not depend on the choice of the
frame {E1, E2}. More precisely, we will show that

Ip = lim
r→0

1

2π

∫

Sr(p)
ω2
1,

where Sr(p) is the normal sphere of radius r centered at p. Indeed, if r1 >
r2 > 0 are radii of normal spheres, one has

(18)

∫

Sr1 (p)
ω2
1 −

∫

Sr2 (p)
ω2
1 =

∫

∆12

dω2
1 = −

∫

∆12

Kω1 ∧ ω2 = −
∫

∆12

K,

where ∆12 = Br1(p) \Br2(p). Since K is continuous, we see that
(∫

Sr1 (p)
ω2
1 −

∫

Sr2 (p)
ω2
1

)
−→ 0
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as r1 → 0. Therefore, if {rn} is a decreasing sequence of positive numbers
converging to zero, the sequence

{∫

Srn (p)
ω2
1

}

is a Cauchy sequence, and therefore converges. Let

Ip := lim
r→0

1

2π

∫

Sr(p)
ω2
1.

Taking the limit as r2 → 0 in (18) one obtains
∫

Sr1 (p)
ω2
1−2πIp = −

∫

Br1 (p)
K = −

∫

Br1 (p)
Kω1∧ω2 =

∫

Br1 (p)
dω2

1 =

∫

Sr1 (p)
ω2
1,

and hence

2πIp =

∫

Sr1 (p)
σ =

∫

Sr1 (p)
ω2
1 − ω2

1 = 2πIp.

Finally, we show that Ip does not depend on the choice of Riemannian
metric. Indeed, if 〈·, ·〉0, 〈·, ·〉1 are two Riemannian metrics on M , it is easy
to check that

〈·, ·〉t := (1− t)〈·, ·〉0 + t〈·, ·〉1
is also a Riemannian metric on M , and that the index Ip(t) computed using
the metric 〈·, ·〉t is a continuous function of t (cf. Exercise 3.6.1). Since Ip(t)
is an integer for all t ∈ [0, 1], we conclude that Ip(0) = Ip(1).

Therefore Ip depends only on the vector field X ∈ X(M). We are now
ready to state the Gauss-Bonnet theorem:

Theorem 3.3. (Gauss-Bonnet) LetM be a compact, oriented, 2-dimensional
manifold and let X be a vector field inM with isolated singularities p1, . . . , pk.
Then

(19)

∫

M
K = 2π

k∑

i=1

Ipi

for any Riemannian metric on M , where K is the Gauss curvature.

Proof. We consider the positively oriented orthonormal frame {F1, F2},
with

F1 =
X

‖X‖ ,

defined on M \ ∪ki=1{pi}, with dual coframe {ω1, ω2} and connection form

ω2
1. For r > 0 sufficiently small, we take Bi := Br(pi) such that Bi∩Bj = ∅
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for i 6= j and note that∫

M\∪ki=1Bi

K =

∫

M\∪ki=1Bi

K ω1 ∧ ω2 = −
∫

M\∪ki=1Bi

dω2
1

=

∫

∪ki=1∂Bi

ω2
1 =

k∑

i=1

∫

∂Bi

ω2
1,

where the ∂Bi have the orientation induced by the orientation of Bi. Taking
the limit as r → 0 one obtains

∫

M
K = 2π

k∑

i=1

Ipi .

�

Remark 3.4.

(1) Since the right-hand side of (19) does not depend on the metric,
we conclude that

∫
M K is the same for all Riemannian metrics on

M .
(2) Since the left-hand side of (19) does not depend on the vector field

X, we conclude that χ(M) :=
∑k

i=1 Ipi is the same for all vector
fields on M with isolated singularities. This is the so-called Euler
characteristic of M .

(3) Recall that a triangulation of M is a decomposition of M in a
finite number of triangles (i.e., images of Euclidean triangles by
parameterizations) such that the intersection of any two triangles
is either a common edge, a common vertex or empty (it is pos-
sible to prove that such a triangulation always exists). Given a
triangulation, one can construct a vector field X with the following
properties (cf. Figure 2):
(a) each vertex is a singularity which is a sink, that is,

X = −x ∂
∂x

− y
∂

∂y

for certain local coordinates (x, y) centered at the singularity;
(b) the interior of each 2-dimensional face contains exactly one

singularity which is a source, that is

X = x
∂

∂x
+ y

∂

∂y

for certain local coordinates (x, y) centered at the singularity;
(c) each edge is formed by integral curves of the vector field and

contains exactly one singularity which is not a vertex.
It is easy to see that all singularities are isolated, that the singular-
ities at the vertices and 2-dimensional faces have index 1 and that
the singularities at the edges have index −1. Therefore,

χ(M) = V − E + F,



138 4. CURVATURE

where V is the number of vertices, E is the number of edges and
F is the number of 2-dimensional faces on any triangulation. This
is the definition we used in Exercise 1.8.5 of Chapter 1.

Figure 2. Vector field associated to a triangulation.

Example 3.5.

(1) Choosing the standard metric in S2, we have

χ(S2) =
1

2π

∫

S2

1 =
1

2π
vol(S2) = 2.

From this we can derive a number of conclusions:
(a) there is no zero curvature metric on S2, for this would imply

χ(S2) = 0;
(b) there is no vector field on S2 without singularities, as this

would also imply χ(S2) = 0;
(c) for any triangulation of S2, one has V − E + F = 2. In par-

ticular, this proves Euler’s formula for convex polyhedra with
triangular 2-dimensional faces, as these clearly yield triangu-
lations of S2.

(2) As we will see in Section 4, the torus T 2 has a zero curvature metric,
and hence χ(T 2) = 0. This can also be seen from the fact that there
exist vector fields on T 2 without singularities.

Exercises 3.6.

(1) Show that if 〈·, ·〉0, 〈·, ·〉1 are two Riemannian metrics on M then

〈·, ·〉t := (1− t)〈·, ·〉0 + t〈·, ·〉1
is also a Riemannian metric on M , and that the index Ip(t) com-
puted using the metric 〈·, ·〉t is a continuous function of t.
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(2) (Gauss-Bonnet theorem for non-orientable manifolds) Let (M, g)
be a compact, non-orientable, 2-dimensional Riemannian manifold
and let π : M → M be its orientable double covering (cf. Exer-
cise 8.6.9 in Chapter 1). Show that:
(a) χ(M) = 2χ(M);
(b) K = π∗K, where K is the Gauss curvature of the Riemannian

metric g := π∗g on M ;

(c) 2πχ(M) = 1
2

∫

M
K.

(Remark: Even though M is not orientable, we can still define the integral of a

function f on M through

∫

M

f = 1
2

∫

M

π∗f ; with this definition, the Gauss-Bonnet

theorem holds for non-orientable Riemannian 2-manifolds).
(3) (Gauss-Bonnet theorem for manifolds with boundary) Let M be

a compact, oriented, 2-dimensional manifold with boundary and
let X be a vector field in M transverse to ∂M (i.e., such that
Xp 6∈ Tp∂M for all p ∈ ∂M), with isolated singularities p1, . . . , pk ∈
M \ ∂M . Prove that

∫

M
K +

∫

∂M
kg = 2π

k∑

i=1

Ipi

for any Riemannian metric on M , where K is the Gauss curvature
of M and kg is the geodesic curvature of ∂M .

(4) Let (M, g) be a compact orientable 2-dimensional Riemannian man-
ifold, with positive Gauss curvature. Show that any two non-self-
intersecting closed geodesics must intersect each other.

(5) Let M be a differentiable manifold and f : M → R a smooth
function.
(a) (Hessian) Let p ∈ M be a critical point of f (i.e. (df)p = 0).

The Hessian of f at p is the map (Hf)p : TpM × TpM → R
given by

(Hf)p(v, w) =
∂2

∂t∂s |s=t=0

(f ◦ γ)(s, t),

where γ : U ⊂ R2 → M is such that γ(0, 0) = p, ∂γ∂s (0, 0) = v

and ∂γ
∂t (0, 0) = w. Show that (Hf)p is a well-defined symmetric

2-tensor.
(b) (Morse theorem) If (Hf)p is nondegenerate then p is called a

nondegenerate critical point. Assume that M is compact
and f is a Morse function, i.e. all its critical points are non-
degenerate. Prove that there is only a finite number of critical
points. Moreover, show that if M is 2-dimensional then

χ(M) = m− s+ n,
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where m,n and s are the numbers of maxima, minima and
saddle points respectively. (Hint: Choose a Riemannian metric on M

and consider the vector field X := grad f).
(6) Let (M, g) be a 2-dimensional Riemannian manifold and ∆ ⊂M a

geodesic triangle, i.e., an open set homeomorphic to an Euclidean
triangle whose sides are images of geodesic arcs. Let α, β, γ be the
inner angles of ∆, i.e., the angles between the geodesics at the
intersection points contained in ∂∆. Prove that for small enough
∆ one has

α+ β + γ = π +

∫

∆
K,

where K is the Gauss curvature of M , using:
(a) the fact that

∫
∆K is the angle by which a vector parallel-

transported once around ∂∆ rotates;
(b) the Gauss-Bonnet theorem for manifolds with boundary.
(Remark: We can use this result to give another geometric interpretation of the

Gauss curvature: K(p) = lim∆→p
α+β+γ−π

vol(∆)
).

(7) Let (M, g) be a simply connected 2-dimensional Riemannian mani-
fold with nonpositive Gauss curvature. Show that any two geodesics
intersect at most in one point. (Hint: Note that if two geodesics intersected

in more than one point then there would exist a geodesic biangle, i.e., an open set

homeomorphic to a disc whose boundary is formed by the images of two geodesic arcs).

4. Manifolds of Constant Curvature

Recall that a manifold is said to have constant curvature if all sectional
curvatures at all points have the same constant value K. There is an easy
way to identify these manifolds using their curvature forms.

Lemma 4.1. If M is a manifold of constant curvature K, then, around

each point p ∈M , all curvature forms Ωji satisfy

(20) Ωji = −Kωi ∧ ωj ,
where {ω1, . . . , ωn} is any field of orthonormal coframes defined on a neigh-
borhood of p. Conversely, if on a neighborhood of each point of M there is
a field of orthonormal frames {E1, . . . , En} such that the corresponding field
of coframes {ω1, . . . , ωn} satisfies (20) for some constant K, then M has
constant curvature K.

Proof. If M has constant curvature K then

Ωji =
∑

k<l

Ωji (Ek, El)ω
k ∧ ωl =

∑

k<l

ωj(R(Ek, El)Ei)ω
k ∧ ωl

=
∑

k<l

〈R(Ek, El)Ei, Ej〉ωk ∧ ωl =
∑

k<l

Rklij ω
k ∧ ωl

= −
∑

k<l

K(δkiδlj − δkjδli)ω
k ∧ ωl = −Kωi ∧ ωj .
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Conversely, let us assume that there is a constant K such that on a neigh-

borhood of each point p ∈ M we have Ωji = −Kωi ∧ ωj . Then, for every
section Π of the tangent space TpM , the corresponding sectional curvature
is given by

K(Π) = −R(X,Y,X, Y )

where X,Y are two linearly independent vectors spanning Π (which we
assume to span a parallelogram of unit area). Using the field of orthonormal
frames around p, we have X =

∑n
i=1X

iEi and Y =
∑n

i=1 Y
iEi and so,

K(Π) = −
n∑

i,j,k,l=1

XiY jXkY lR(Ei, Ej , Ek, El)

= −
n∑

i,j,k,l=1

XiY jXkY l Ωlk(Ei, Ej)

= K
n∑

i,j,k,l=1

XiY jXkY l ωk ∧ ωl(Ei, Ej)

= K
n∑

i,j,k,l=1

XiY jXkY l
(
ωk(Ei)ω

l(Ej)− ωk(Ej)ω
l(Ei)

)

= K
n∑

i,j,k,l=1

XiY jXkY l(δikδjl − δjkδil)

= K
(
‖X‖2 ‖Y ‖2 − 〈X,Y 〉2

)
= K.

�

Let us now see an example of how we can use this lemma.

Example 4.2. The n-dimensional hyperbolic space of radius a > 0,
Hn(a), is the open half-space

{(x1, . . . xn) ∈ Rn | xn > 0}
equipped with the Riemannian metric

gij(x) =
a2

(xn)2
δij .

This Riemannian manifold has constant sectional curvature K = − 1
a2
. In-

deed, using the above lemma, we will show that on Hn(a) there is a field of
orthonormal frames {E1, . . . , En} whose dual field of coframes {ω1, . . . , ωn}
satisfies

(21) Ωji = −Kωi ∧ ωj

for K = − 1
a2
. For that, let us consider the natural coordinate system x :

Hn(a) → Rn and the corresponding field of coordinate frames {X1, . . . , Xn}
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with Xi =
∂
∂xi

. Since

〈Xi, Xj〉 =
a2

(xn)2
δij ,

we obtain a field of orthonormal frames {E1, . . . , En} with Ei =
xn

a Xi, and

the corresponding dual field of coframes {ω1, . . . , ωn} where ωi = a
xndx

i.
Then

dωi =
a

(xn)2
dxi ∧ dxn =

1

a
ωi ∧ ωn =

n∑

j=1

ωj ∧
(
−1

a
δjnω

i

)
,

and so, using the structure equations

dωi =
n∑

j=1

ωj ∧ ωij

ωji + ωij = 0,

we can guess that the connection forms are given by ωij =
1
a(δinω

j − δjnω
i).

Indeed, we can easily verify that these forms satisfy the above structure
equations, and hence must be the connection forms by unicity of solution of
these equations. With these forms it is now easy to compute the curvature

forms Ωji using the third structure equation

dωji =
n∑

k=1

ωki ∧ ωjk +Ωji .

We have

dωji = d

(
1

a
(δjnω

i − δinω
j)

)
=

1

a2
(δjnω

i ∧ ωn − δinω
j ∧ ωn)

and
n∑

k=1

ωki ∧ ωjk =
1

a2

n∑

k=1

(δknω
i − δinω

k) ∧ (δjnω
k − δknω

j)

=
1

a2

n∑

k=1

(δknδjnω
i ∧ ωk − δknω

i ∧ ωj + δinδknω
k ∧ ωj)

=
1

a2
(δjnω

i ∧ ωn − ωi ∧ ωj + δinω
n ∧ ωj),

and so,

Ωji = dωji −
n∑

k=1

ωki ∧ ωjk =
1

a2
ωi ∧ ωj .

We conclude that K = − 1
a2
.

The Euclidean spaces Rn have constant curvature equal to zero. More-
over, we can easily see that the spheres Sn(r) ⊂ Rn+1 of radius r have
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constant curvature equal to 1
r2

(cf. Exercise 5.7.2). Therefore we have ex-
amples of manifolds with arbitrary constant negative (Hn(a)), zero (Rn) or
positive (Sn(r)) curvature in any dimension. Note that all these examples
are simply connected and are geodesically complete. Indeed, the images of
the geodesics of the Euclidean space Rn are straight lines, Sn(r) is compact
and the images of the geodesics of Hn(a) are either half circles perpendicular
to the plane xn = 0 and centered on this plane, or vertical half lines starting
at the plane xn = 0 (cf. Exercise 4.7.4).

Every simply connected geodesically complete manifold of constant cur-
vature is isometric to one of these examples, as it is stated in the follow-
ing theorem. In general, if the manifold is not simply connected (but still
geodesically complete), it is isometric to the quotient of one of the above
examples by a free and proper action of a discrete subgroup of the group of
isometries (it can be proved that the group of isometries of a Riemannian
manifold is always a Lie group).

Theorem 4.3. (Killing-Hopf) Let M be a connected, geodesically com-
plete n-dimensional Riemannian manifold with constant curvature K.

(1) IfM is simply connected then it is isometric to one of the following:

Sn
(

1√
K

)
if K > 0, Rn if K = 0, or Hn

(
1√
−K

)
if K < 0.

(2) If M is not simply connected then M is isometric to a quotient

M̃/Γ, where M̃ is one of the above simply connected manifolds and

Γ is a nontrivial discrete subgroup of the group of isometries of M̃

acting properly and freely on M̃ .

Proof. The proof of this theorem can be found in [dC93]. Here we just
give the proof in the case when M is simply connected, n = 2 and K = 0.
In this case, the Cartan-Hadamard theorem (cf. Exercise 5.8.5 in Chapter 3)
implies that given p ∈M the map expp : TpM →M is a diffeomorphism. Let
{E1, E2} be a global orthonormal frame onM (obtained by orthonormalizing
the frame associated to global Cartesian coordinates). Since K = 0, the
corresponding connection form ω2

1 satisfies dω2
1 = 0, and so by the Poincaré

Lemma (cf. Exercise 3.8.5 in Chapter 2) we have ω2
1 = df for some smooth

function f ∈ C∞(M). Let {F1, F2} be the orthonormal frame with the
same orientation as {E1, E2} such that the angle between E1 and F1 is
θ = −f . Then its connection form ω2

1 satisfies ω2
1 = ω2

1 + dθ = 0, that is,
∇F1F1 = ∇F1F2 = ∇F2F1 = ∇F2F2 = 0. We conclude that [F1, F2] = 0,
and so, by Theorem 6.10 in Chapter 1, their flows commute. We can then
introduce local coordinates (x, y) in M by using the parameterization

ϕ(x, y) = ψ1,x ◦ ψ2,x(p)

(where ψ1, ψ2 are the flows of F1, F2). Using ∂
∂x = F1 and ∂

∂y = F2, it is

easily shown that ϕ(x, y) = expp (x(F1)p + y(F2)p), and so (x, y) are actually
global coordinates. Since in these coordinates the metric is written

g = dx⊗ dx+ dy ⊗ dy,
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we conclude that M is isometric to R2. �

Example 4.4. Let M̃ = R2. Then the subgroup of isometries Γ cannot
contain isometries with fixed points (since it acts freely). Hence Γ can only
contain translations and gliding reflections (that is, reflections followed by a
translation in the direction of the reflection axis). Moreover, Γ is generated
by at most two elements, one of which may be assumed to be a translation
(cf. Exercise 4.7.6). Therefore we have:

(1) if Γ is generated by one translation, then the resulting surface will
be a cylinder;

(2) if Γ is generated by two translations we obtain a torus;
(3) if Γ is generated by a gliding reflection we obtain a Möbius band;
(4) if Γ is generated by a translation and a gliding reflection we obtain

a Klein bottle.

These are all the possible examples of geodesically complete Euclidean sur-
faces (2-dimensional manifolds of constant zero curvature).

Example 4.5. The group of orientation-preserving isometries of the hy-
perbolic plane H2 is PSL(2,R) = SL(2,R)/{± id}, acting on H2 through

(
a b
c d

)
· z :=

az + b

cz + d
,

where we make the identification R2 ∼= C (cf. Exercise 4.7.8 and Section 6.1).
To find orientable hyperbolic surfaces, that is, surfaces with constant cur-
vature K = −1, we have to find discrete subgroups Γ of PSL(2,R) acting
properly and freely on H2. Here there are many more possibilities. As an
example, we can consider the group Γ = 〈f〉 generated by the translation
f(z) = z + 2π. The resulting surface is known as pseudosphere and is
homeomorphic to a cylinder (cf. Figure 3). However, the width of the end
where y → +∞ converges to zero, while the width of the end where y → 0
converges to +∞. Its height towards both ends is infinite. Note that this
surface has geodesics which transversely auto-intersect a finite number of
times (cf. Figure 4).

Other examples can be obtained by considering hyperbolic polygons
(bounded by geodesics) and identifying their sides through isometries. For
instance, the surface in Figure 5-(b) is obtained by identifying the sides of the
polygon in Figure 5-(a) through the isometries g(z) = z+2 and h(z) = z

2z+1 .
Choosing other polygons it is possible to obtain compact hyperbolic sur-
faces. In fact, there exist compact hyperbolic surfaces homeomorphic to any
topological 2-manifold with negative Euler characteristic (the Gauss-Bonnet
theorem does not allow non-negative Euler characteristics in this case).

Example 4.6. To find Riemannian manifolds of constant positive cur-
vature we have to find discrete subgroups of isometries of the sphere that
act properly and freely. Let us consider the case where K = 1. Then
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−2π 0 2π 4π

∼=

Figure 3. Pseudosphere.

−2π 0 2π 4π

Figure 4. Trajectories of geodesics on the pseudosphere.

−1 0 1

∼=

(a) (b)

Figure 5. (a) Hyperbolic polygon, (b) Thrice-punctured sphere.
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Γ ⊂ O(n + 1) (cf. Exercise 4.7.11). Since it must act freely on Sn, no el-
ement of Γ\{id} can have 1 as an eigenvalue. We will see that, when n is
even, Sn and RPn are the only geodesically complete manifolds of constant
curvature 1. Indeed, if A ∈ Γ, then A is an orthogonal (n + 1) × (n + 1)
matrix and so all its eigenvalues have absolute value equal to 1. Moreover,
its characteristic polynomial has odd degree (n+1), and so it has a real root,
equal to ±1. Consequently, A2 has 1 as an eigenvalue, and so it has to be
the identity. Hence, A = A−1 = At, and so A is symmetric, implying that
all its eigenvalues are real. The eigenvalues of A are then either all equal
to 1 (if A = id) or all equal to −1, in which case A = − id. We conclude
that Γ = {± id} implying that our manifold is either Sn or RPn. If n is odd
there are other possibilities, which are classified in [Wol78].

Exercises 4.7.

(1) Show that the metric of Hn(a) is a left-invariant metric for the Lie
group structure induced by identifying (x1, . . . , xn) ∈ Hn(a) with
the affine map g : Rn−1 → Rn−1 given by

g(t1, . . . , tn−1) = xn(t1, . . . , tn−1) + (x1, . . . , xn−1).

(2) Prove that if the forms ωi in a field of orthonormal coframes satisfy

dωi = α ∧ ωi (with α a 1-form), then the connection forms ωji are

given by ωji = α(Ei)ω
j − α(Ej)ω

i = −ωij . Use this to confirm the
results in Example 4.2.

(3) Let K be a real number and let ρ = 1+(K4 )
∑n

i=1(x
i)2. Show that,

for the Riemannian metric defined on Rn by

gij(p) =
1

ρ2
δij ,

the sectional curvature is constant equal to K.
(4) Show that any isometry of the Euclidean space Rn which preserves

the coordinate function xn is an isometry of Hn(a). Use this fact
to determine all the geodesics of Hn(a).

(5) (Schur theorem) Let M be a connected isotropic Riemannian man-
ifold of dimension n ≥ 3. Show that M has constant curvature.
(Hint: Use the structure equations to show that dK = 0).

(6) To complete the details in Example 4.4, show that:
(a) the isometries of R2 with no fixed points are either translations

or gliding reflections;
(b) any discrete group of isometries of R2 acting properly and

freely is generated by at most two elements, one of which may
be assumed to be a translation.

(7) Let f, g : R2 → R2 be the isometries

f(x, y) = (−x, y + 1) and g(x, y) = (x+ 1, y)
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(thus f is a gliding reflection and g is a translation). Check that
R2/〈f〉 is homeomorphic to a Möbius band (without boundary),
and that R2/〈f, g〉 is homeomorphic to a Klein bottle.

(8) Let H2 be the hyperbolic plane. Show that:
(a) the formula

(
a b
c d

)
· z :=

az + b

cz + d
(ad− bc = 1)

defines an action of PSL(2,R) := SL(2,R)/{± id} on H2 by
orientation-preserving isometries;

(b) for any two geodesics c1, c2 : R → H2, parameterized by the
arclength, there exists g ∈ PSL(2,R) such that c1(s) = g·c2(s)
for all s ∈ R;

(c) given z1, z2, z3, z4 ∈ H2 with d(z1, z2) = d(z3, z4), there exists
g ∈ PSL(2,R) such that g · z1 = z3 and g · z2 = z4;

(d) an orientation-preserving isometry of H2 with two fixed points
must be the identity. Conclude that all orientation-preserving
isometries are of the form f(z) = g ·z for some g ∈ PSL(2,R).

(9) Check that the isometries g(z) = z + 2 and h(z) = z
2z+1 of the

hyperbolic plane in Example 4.5 identify the sides of the hyperbolic
polygon in Figure 5.

(10) A tractrix is the curve described parametrically by
{
x = u− tanhu

y = sechu
(u > 0)

(its name derives from the property that the distance between any
point in the curve and the x-axis along the tangent is constant equal
to 1). Show that the surface of revolution generated by rotating a
tractrix about the x-axis (tractroid) has constant Gauss curvature
K = −1. Determine an open subset of the pseudosphere isometric
to the tractroid. (Remark: The tractroid is not geodesically complete; in fact,

it was proved by Hilbert in 1901 that any surface of constant negative curvature

embedded in Euclidean 3-space must be incomplete).
(11) Show that the group of isometries of Sn is O(n+ 1).
(12) Let G be a compact Lie group of dimension 2. Show that:

(a) G is orientable;
(b) χ(G) = 0;
(c) any left-invariant metric on G has constant curvature;
(d) G is the 2-torus T 2.

5. Isometric Immersions

Many Riemannian manifolds arise as submanifolds of other Riemannian
manifolds, by taking the induced metric (e.g. Sn ⊂ Rn+1). In this section,
we will analyze how the curvatures of the two manifolds are related.
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Let f : N →M be an immersion of an n-manifold N on an m-manifold
M . We know from Section 5 of Chapter 1 that for each point p ∈ N there
is a neighborhood V ⊂ N of p where f is an embedding onto its image.
Hence f(V ) is a submanifold of M . To simplify notation, we will identify
V with f(V ), and proceed as if f were the inclusion map. Let 〈·, ·〉 be a
Riemannian metric on M and let 〈〈·, ·〉〉 be the metric induced on N by f
(which is therefore called an isometric immersion). For every p ∈ V , the
tangent space TpM can be decomposed as

TpM = TpN ⊕ (TpN)⊥.

Therefore, every element v of TpM can be written uniquely as v = v⊤ + v⊥,
where v⊤ ∈ TpN is the tangential part of v and v⊥ ∈ (TpN)⊥ is the normal

part of v. Let ∇̃ and ∇ be the Levi-Civita connections of (M, 〈·, ·〉) and
(N, 〈〈·, ·〉〉), respectively. Let X,Y be two vector fields in V ⊂ N and let

X̃, Ỹ be two extensions of X,Y to a neighborhood W ⊂M of V . Using the
Koszul formula, we can easily check that

∇X Y =
(
∇̃
X̃
Ỹ
)⊤

(cf. Exercise 3.3.6 in Chapter 3). We define the second fundamental form
of N as

B(X,Y ) := ∇̃
X̃
Ỹ −∇X Y.

Note that this map is well defined, that is, it does not depend on the exten-

sions X̃, Ỹ of X,Y (cf. Exercise 5.7.1). Moreover, it is bilinear, symmetric,
and, for each p ∈ V , B(X,Y )p ∈ (TpN)⊥ depends only on the values of Xp

and Yp.
Using the second fundamental form, we can define, for each vector np ∈

(TpN)⊥, a symmetric bilinear map Hnp : TpN × TpN → R through

Hnp(Xp, Yp) = 〈B(Xp, Yp), np〉.
The corresponding quadratic form is often called the second fundamental
form of f at p along the vector np.

Finally, since Hnp is bilinear, there exists a linear map Snp : TpN → TpN
satisfying

〈〈Snp(Xp), Yp〉〉 = Hnp(Xp, Yp) = 〈B(Xp, Yp), np〉
for all Xp, Yp ∈ TpN . It is easy to check that this linear map is given by

Snp(Xp) = −(∇̃
X̃
n)⊤p ,

where n is a local extension of np normal to N . Indeed, since 〈Ỹ , n〉 = 0 on

N and X̃ is tangent to N , we have on N

〈〈Sn(X), Y 〉〉 = 〈B(X,Y ), n〉 = 〈∇̃
X̃
Ỹ −∇X Y, n〉

= 〈∇̃
X̃
Ỹ , n〉 = X̃ · 〈Ỹ , n〉 − 〈Ỹ , ∇̃

X̃
n〉

= 〈−∇̃
X̃
n, Ỹ 〉 = 〈〈−(∇̃

X̃
n)⊤, Y 〉〉.
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Therefore

〈〈Snp(Xp), Yp〉〉 = 〈〈−(∇̃
X̃
n)⊤p , Yp〉〉

for all Yp ∈ TpN .

Example 5.1. Let N be a hypersurface in M , i.e. let dimN = n and
dimM = n + 1. Consider a point p ∈ V (a neighborhood of N where f
is an embedding), and a unit vector np normal to N at p. As the linear
map Snp : TpN → TpN is symmetric, there exists an orthonormal basis
of TpN formed by eigenvectors {(E1)p, . . . , (En)p} (called principal di-
rections at p) corresponding to the set of real eigenvalues λ1, . . . , λn of
Snp (called principal curvatures at p). The determinant of the map Snp
(equal to the product λ1 · · ·λn) is called the Gauss curvature of f and
H := 1

n tr Snp =
1
n(λ1+ · · ·+λn) is called the mean curvature of f . When

n = 2 and M = R3 with the Euclidean metric, the Gauss curvature of f is
in fact the Gauss curvature of N as defined in Section 1 (cf. Example 5.5).

Example 5.2. If, in the above example, M = Rn+1 with the Euclidean
metric, we can define the Gauss map g : V ⊂ N → Sn, with values on
the unit sphere, which, to each point p ∈ V , assigns the normal unit vector
np. Since np is normal to TpN , we can identify the tangent spaces TpN and
Tg(p)S

n and obtain a well-defined map (dg)p : TpN → TpN . Choosing a
curve c : I → N with c(0) = p and ċ(0) = Xp ∈ TpN , we have

(dg)p(Xp) =
d

dt
(g ◦ c)|t=0

=
d

dt
nc(t)|t=0

= (∇̃ċn)p ,

where we used the fact ∇̃ is the Levi-Civita connection for the Euclidean
metric. However, since ‖n‖ = 1, we have

0 = ċ(t) · 〈n, n〉 = 2〈∇̃ċ n, n〉,
implying that

(dg)p(Xp) = (∇̃ċ n)p = (∇̃ċ n)
⊤
p = −Snp(Xp).

We conclude that the derivative of the Gauss map at p is (dg)p = −Snp .
Let us now relate the curvatures of N and M .

Proposition 5.3. Let p be a point in N , let Xp and Yp be two linearly
independent vectors in TpN ⊂ TpM and let Π ⊂ TpN ⊂ TpM be the 2-
dimensional subspace generated by these vectors. Let KN (Π) and KM (Π)
denote the corresponding sectional curvatures in N and M , respectively.
Then

KN (Π)−KM (Π) =
〈B(Xp, Xp), B(Yp, Yp)〉 − ‖B(Xp, Yp)‖2

‖Xp‖2‖Yp‖2 − 〈Xp, Yp〉2
.

Proof. Observing that the right-hand side depends only on Π, we can
assume, without loss of generality, that {Xp, Yp} is orthonormal. LetX,Y be
local extensions of Xp, Yp, defined on a neighborhood of p in N and tangent
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to N , also orthonormal. Let X̃, Ỹ be extensions of X,Y to a neighborhood
of p in M . Moreover, consider a field of frames {E1, . . . , En+k}, also defined
on a neighborhood of p in M , such that E1, . . . , En are tangent to N with
E1 = X and E2 = Y onN , and En+1, . . . , En+k are normal toN (n+k = m).
Then, since B(X,Y ) is normal to N ,

B(X,Y ) =
k∑

i=1

〈B(X,Y ), En+i〉En+i =
k∑

i=1

HEn+i(X,Y )En+i.

On the other hand,

KN (Π)−KM (Π) = −RN (Xp, Yp, Xp, Yp) +RM (X̃p, Ỹp, X̃p, Ỹp)

= 〈(−∇X ∇Y X +∇Y ∇X X +∇[X,Y ]X

+ ∇̃
X̃
∇̃
Ỹ
X̃ − ∇̃

Ỹ
∇̃
X̃
X̃ − ∇̃

[X̃,Ỹ ]
X̃)p, Yp〉

= 〈(−∇X ∇Y X +∇Y ∇X X + ∇̃
X̃
∇̃
Ỹ
X̃ − ∇̃

Ỹ
∇̃
X̃
X̃)p, Yp〉,

where we have used the fact that ∇̃
[X̃,Ỹ ]

X̃−∇[X,Y ]X is normal to N (cf. Ex-

ercise 5.7.1). However, since on N

∇̃
Ỹ
∇̃
X̃
X̃ = ∇̃

Ỹ
(B(X,X) +∇X X) =

= ∇̃
Ỹ

(
k∑

i=1

HEn+i(X,X)En+i +∇X X

)

=
k∑

i=1

(
HEn+i(X,X)∇̃

Ỹ
En+i + Ỹ · (HEn+i(X,X))En+i

)
+ ∇̃

Ỹ
∇X X,

we have

〈∇̃
Ỹ
∇̃
X̃
X̃, Y 〉 =

k∑

i=1

HEn+i(X,X)〈∇̃
Ỹ
En+i, Y 〉+ 〈∇̃

Ỹ
∇X X,Y 〉.

Moreover,

0 = Ỹ · 〈En+i, Y 〉 = 〈∇̃
Ỹ
En+i, Y 〉+ 〈En+i, ∇̃Ỹ

Y 〉
= 〈∇̃

Ỹ
En+i, Y 〉+ 〈En+i, B(Y, Y ) +∇Y Y 〉

= 〈∇̃
Ỹ
En+i, Y 〉+ 〈En+i, B(Y, Y )〉

= 〈∇̃
Ỹ
En+i, Y 〉+HEn+i(Y, Y ),

and so

〈∇̃
Ỹ
∇̃
X̃
X̃, Y 〉 = −

k∑

i=1

HEn+i(X,X)HEn+i(Y, Y ) + 〈∇̃
Ỹ
∇X X,Y 〉

= −
k∑

i=1

HEn+i(X,X)HEn+i(Y, Y ) + 〈∇Y ∇X X,Y 〉.
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Similarly, we can conclude that

〈∇̃
X̃
∇̃
Ỹ
X̃, Y 〉 = −

k∑

i=1

HEn+i(X,Y )HEn+i(X,Y ) + 〈∇X ∇Y X,Y 〉,

and then

KN (Π)−KM (Π) =

=
k∑

i=1

(
−(HEn+i(Xp, Yp))

2 +HEn+i(Xp, Xp)HEn+i(Yp, Yp)
)

= −‖B(Xp, Yp)‖2 + 〈B(Xp, Xp), B(Yp, Yp)〉.
�

Example 5.4. Again in the case of a hypersurface N , we choose an
orthonormal basis {(E1)p, . . . , (En)p} of TpN formed by eigenvectors of Snp ,

where np ∈ (TpN)⊥. Hence, considering a section Π of TpN generated by
two of these vectors (Ei)p, (Ej)p, and using B(Xp, Yp) = 〈〈Snp(Xp), Yp〉〉np,
we have

KN (Π)−KM (Π) =

= −‖B((Ei)p, (Ej)p)‖2 + 〈B((Ei)p, (Ei)p), B((Ej)p, (Ej)p)〉
= −〈〈Snp((Ei)p), (Ej)p〉〉2+ 〈〈Snp((Ei)p), (Ei)p〉〉〈〈Snp((Ej)p), (Ej)p〉〉
= λiλj .

Example 5.5. In the special case where N is a 2-manifold, andM = R3

with the Euclidean metric, we have KM ≡ 0 and hence KN (p) = λ1λ2, as
promised in Example 5.1. Therefore, although λ1 and λ2 depend on the
immersion, their product depends only on the intrinsic geometry of N .
Gauss was so pleased by this discovery that he called it his Theorema
Egregium (‘remarkable theorem’).

Let us now study in detail the particular case where N is a hypersurface
in M = Rn+1 with the Euclidean metric. Let c : I → N be a curve in N
parameterized by arc length s and such that c(0) = p and ċ(0) = Xp ∈ TpN .
We will identify this curve c with the curve f ◦ c in Rn+1. Considering the
Gauss map g : V → Sn defined on a neighborhood V of p in N , we take

the curve n(s) := (g ◦ c)(s) in Sn. Since ∇̃ is the Levi-Civita connection

corresponding to the Euclidean metric in R3, we have 〈∇̃ċ ċ, n〉 = 〈c̈, n〉. On
the other hand,

〈∇̃ċ ċ, n〉 = 〈B(ċ, ċ) +∇ċ ċ, n〉 = 〈B(ċ, ċ), n〉 = Hn(ċ, ċ).

Hence, at s = 0, Hg(p)(Xp, Xp) = 〈c̈(0), np〉. This value knp := 〈c̈(0), np〉 is
called the normal curvature of c at p. Since knp is equal to Hg(p)(Xp, Xp),
it does not depend on the curve, but only on its initial velocity. Because
Hg(p)(Xp, Xp) = 〈〈Sg(p)(Xp), Xp〉〉, the critical values of these curvatures



152 4. CURVATURE

subject to ‖Xp‖ = 1 are equal to λ1, . . . , λn, and are called the principal
curvatures. This is why in Example 5.1 we also called the eigenvalues of
Snp principal curvatures. The Gauss curvature of f is then equal to the
product of the principal curvatures, K = λ1 . . . λn. As the normal curvature
does not depend on the choice of curve tangent to Xp at p, we can choose c
to take values on the 2-plane generated by Xp and np. Then c̈(0) is parallel
to the normal vector np, and

|kn| = |〈c̈(0), n〉| = ‖c̈(0)‖ = kc,

where kc := ‖c̈(0)‖ is the so-called curvature of the curve c at c(0). The
same formula holds if c is a geodesic of N (cf. Exercise 5.7.6).

Example 5.6. Let us consider the following three surfaces: the 2-sphere,
the cylinder and the saddle surface z = xy.

(1) Let p be any point on the sphere. Intuitively, all points of this
surface are on the same side of the tangent plane at p, implying
that both principal curvatures have the same sign (depending on
the chosen orientation), and consequently that the Gauss curvature
is positive at all points.

(2) If p is any point on the cylinder, one of the principal curvatures
is zero (the maximum or the minimum, depending on the chosen
orientation), and so the Gauss curvature is zero at all points.

(3) Finally, if p is a point on the saddle surface z = xy then the princi-
pal curvatures at p have opposite signs, and so the Gauss curvature
is negative.

Exercises 5.7.

(1) Let M be a Riemannian manifold with Levi-Civita connection ∇̃,
and let N be a submanifold endowed with the induced metric and
Levi-Civita connection ∇. Let X̃, Ỹ ∈ X(M) be local extensions
of X,Y ∈ X(N). Recall that the second fundamental form of the
inclusion of N in M is the map B : TpN × TpN → (TpN)⊥ defined
at each point p ∈ N by

B(X,Y ) := ∇̃
X̃
Ỹ −∇X Y.

Show that:
(a) B(X,Y ) does not depend on the choice of the extensions X̃, Ỹ ;
(b) B(X,Y ) is orthogonal to N ;
(c) B is symmetric, i.e. B(X,Y ) = B(Y,X);
(d) B is bilinear;
(e) B(X,Y )p depends only on the values of Xp and Yp;

(f) ∇̃
[X̃,Ỹ ]

X̃ −∇[X,Y ]X is orthogonal to N .

(2) Let Sn(r) ⊂ Rn+1 be the n dimensional sphere of radius r.
a) Choosing at each point the outward pointing normal unit vec-

tor, what is the Gauss map of this inclusion?
b) What are the eigenvalues of its derivative?
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c) Show that all sectional curvatures are equal to 1
r2

(so Sn(r)

has constant curvature 1
r2
).

(3) Let (M, 〈·, ·〉) be a Riemannian manifold. A submanifold N ⊂M is
said to be totally geodesic if the the geodesics of N are geodesics
of M . Show that:
(a) N is totally geodesic if and only if B ≡ 0, where B is the

second fundamental form of N ;
(b) if N is the set of fixed points of an isometry then N is totally

geodesic. Use this result to give examples of totally geodesic
submanifolds of Rn, Sn and Hn.

(4) Let N be a hypersurface in Rn+1 and let p be a point in N . Show
that if K(p) 6= 0 then

|K(p)| = lim
D→p

vol(g(D))

vol(D)
,

where g : V ⊂ N → Sn is the Gauss map and D is a neighborhood
of p whose diameter tends to zero.

(5) Let (M, 〈·, ·〉) be a Riemannian manifold, p a point in M and Π a
section of TpM . For Bε(p) := expp(Bε(0)) a normal ball around p
consider the set Np := expp(Bε(0) ∩Π). Show that:
a) the set Np is a 2-dimensional submanifold of M formed by the

segments of geodesics in Bε(p) which are tangent to Π at p;
b) if in Np we use the metric induced by the metric in M , the

sectional curvature KM (Π) is equal to the Gauss curvature of
the 2-manifold Np.

(6) Let (M, 〈·, ·〉) be a Riemannian manifold with Levi-Civita connec-

tion ∇̃ and let N be a hypersurface in M . The geodesic curva-
ture of a curve c : I ⊂ R → M , parameterized by arclength, is

kg(s) = ‖∇̃ċ(s)ċ(s)‖. Show that the absolute values of the principal
curvatures are the geodesic curvatures (inM) of the geodesics of N
tangent to the principal directions. (Remark: In the case of an oriented

2-dimensional Riemannian manifold, kg is taken to be positive or negative according

to the orientation of {ċ(s), ∇̃ċ(s)ċ(s)} – cf. Section 2).
(7) Use the Gauss map to compute the Gauss curvature of the following

surfaces in R3:
(a) the paraboloid z = 1

2

(
x2 + y2

)
;

(b) the saddle surface z = xy.
(8) (Surfaces of revolution) Consider the map f : R × (0, 2π) → R3

given by

f(s, θ) = (h(s) cos θ, h(s) sin θ, g(s))

with h > 0 and g smooth maps such that

(h′(s))2 + (g′(s))2 = 1.
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The image of f is the surface of revolution S with axis Oz, obtained
by rotating the curve α(s) = (h(s), g(s)), parameterized by the
arclength s, around that axis.
(a) Show that f is an immersion.
(b) Show that fs := (df)

(
∂
∂s

)
and fθ := (df)( ∂∂θ ) are orthogonal.

(c) Determine the Gauss map and compute the matrix of the sec-
ond fundamental form of S associated to the frame {Es, Eθ},
where Es := fs and Eθ :=

1
‖fθ‖fθ.

(d) Compute the mean curvature H and the Gauss curvature K
of S.

(e) Using these results, give examples of surfaces of revolution
with:

(i) K ≡ 0;
(ii) K ≡ 1;
(iii) K ≡ −1;
(iv) H ≡ 0 (not a plane).

(Remark: Surfaces with constant zero mean curvature are called minimal surfaces;

it can be proved that if a compact surface with boundary has minimum area among

all surfaces with the same boundary then it must be a minimal surface).

6. Notes on Chapter 4

6.1. Section 4. The isometries of the hyperbolic plane are examples
of linear fractional transformations (or Möbius transformations),
i.e. maps f : C → C given by

f(z) =
az + b

cz + d
,

with a, b, c, d ∈ C satisfying ad− bc 6= 0. It is easy to see that each of these
transformations is a composition of the following types of transformations:

(1) translations: z 7→ z + b;
(2) rotations: z 7→ az, |a| = 1;
(3) homotheties: z 7→ rz, r > 0;
(4) inversions: z 7→ 1/z,

and so it is clear that they carry straight lines and circles to either straight
lines or circles.

The special values f(∞) = a
c and f(−d

c ) = ∞ can be introduced as
limits for z → ∞ and z → −d/c, and so, using the stereographic projection,
we can see f as a map from the sphere to itself. Noting that both straight
lines and circles in the plane correspond to circles in the sphere, we can say
that a Möbius transformation, seen as a map on the sphere, carries circles
into circles.

6.2. Bibliographical notes. The material in this chapter can be found
in most books on Riemannian geometry (e.g. [Boo03, dC93, GHL04]).
The proof of the Gauss-Bonnet theorem (due to S. Chern) follows [dC93,
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CCL00] closely. See [KN96, Jos02] to see how this theorem fits within the
general theory of characteristic classes of fiber bundles. A more elementary
discussion of isometric immersions of surfaces in R3 (including a proof of the
Gauss-Bonnet theorem) can be found in [dC76, Mor98].





CHAPTER 5

Geometric Mechanics

Mechanics, the science of motion, was basically started by Galileo and
his revolutionary empirical approach. The first precise mathematical formu-
lation was laid down by Newton in the Philosophiae Naturalis Principia
Mathematica, first published in 1687, which contained, among many other
things, an explanation for the elliptical orbits of the planets around the Sun.
Newton’s ideas were developed and extended by a number of mathemati-
cians, including Euler, Lagrange, Laplace, Jacobi, Poisson and Hamilton.
Celestial mechanics, in particular, reached an exquisite level of precision:
the 1846 discovery of planet Neptune, for instance, was triggered by the
need to explain a mismatch between the observed orbit of planet Uranus
and its theoretical prediction.

This chapter uses Riemannian geometry to give a geometric formulation
of Newtonian mechanics. As explained in Section 1, this is made possible
by the fact that the kinetic energy of any mechanical system yields a
Riemannian metric on its configuration space, that is, the differentiable
manifold whose points represent the possible configurations of the system.
Section 2 describes how holonomic constraints, which force the system to
move along submanifolds of the configuration space, yield nontrivial mechan-
ical systems. A particularly important example of this, the rigid body, is
studied in detail in Section 3. Non-holonomic constraints, which restrict
velocities rather than configurations, are considered in Section 4.

Section 5 presents the Lagrangian formulation of mechanics, where
the trajectories are obtained as curves extremizing the action integral. Also
treated is the Noether theorem, which associates conservation laws to
symmetries. The dual Hamiltonian formulation of mechanics, where
the trajectories are obtained from special flows in the cotangent bundle,
is described in Section 6, and used in Section 7 to formulate the theory
of completely integrable systems, whose dynamics is particularly sim-
ple. Section 8 generalizes the Hamiltonian formalism to symplectic and
Poisson manifolds, and discusses reduction of these manifolds under ap-
propriate symmetries.

1. Mechanical Systems

In mechanics one studies the motions of particles or systems of particles
subject to known forces.

157
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Example 1.1. The motion of a single particle in n-dimensional space is
described by a curve x : I ⊂ R → Rn. It is generally assumed that the force
acting on the particle depends only on its position and velocity. Newton’s
Second Law requires that the particle’s motion satisfies the second order
ordinary differential equation

mẍ = F (x, ẋ),

where F : Rn × Rn → Rn is the force acting on the particle and m > 0
is the particle’s mass. Therefore the solutions of this equation describe the
possible motions of the particle.

It will prove advantageous to make the following generalization:

Definition 1.2. A mechanical system is a triple (M, 〈·, ·〉,F), where:

(i) M is a differentiable manifold, called the configuration space;
(ii) 〈·, ·〉 is a Riemannian metric on M yielding the mass operator µ :

TM → T ∗M , defined by

µ(v)(w) = 〈v, w〉

for all v, w ∈ TpM and p ∈M ;
(iii) F : TM → T ∗M is a differentiable map satisfying F(TpM) ⊂ T ∗

pM
for all p ∈M , called the external force.

A motion of the mechanical system is a solution c : I ⊂ R → M of the
Newton equation

µ

(
Dċ

dt

)
= F(ċ).

Remark 1.3. In particular, the geodesics of a Riemannian manifold
(M, 〈·, ·〉) are the motions of the mechanical system (M, 〈·, ·〉, 0) (describing
a free particle on M).

Example 1.4. For the mechanical system comprising a single particle
moving in n-dimensional space, the configuration space is clearly Rn. If we
set

〈〈v, w〉〉 := m 〈v, w〉

for all v, w ∈ Rn, where 〈·, ·〉 is the Euclidean inner product in Rn, then the
Levi-Civita connection of 〈〈·, ·〉〉 will still be the trivial connection, and

Dẋ

dt
= ẍ.

Setting

(22) F(x, v)(w) := 〈F (x, v), w〉
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for all v, w ∈ Rn, we see that

µ

(
Dẋ

dt

)
= F(x, ẋ) ⇔ µ

(
Dẋ

dt

)
(v) = F(x, ẋ)(v) for all v ∈ Rn

⇔ m 〈ẍ, v〉 = 〈F (x, ẋ), v〉 for all v ∈ Rn

⇔ mẍ = F (x, ẋ).

Hence the motions of the particle are the motions of the mechanical system
(Rn, 〈〈·, ·〉〉,F) with F defined by (22).

Definition 1.5. Let (M, 〈·, ·〉,F) be a mechanical system. The external
force F is said to be:

(i) positional if F(v) depends only on π(v), where π : TM → M is the
natural projection;

(ii) conservative if there exists U : M → R such that F(v) = −(dU)π(v)
for all v ∈ TM (the function U is called the potential energy).

Remark 1.6. In particular any conservative force is positional. A me-
chanical system whose exterior force is conservative is called a conservative
mechanical system.

Definition 1.7. Let (M, 〈·, ·〉,F) be a mechanical system. The kinetic
energy is the differentiable map K : TM → R given by

K(v) =
1

2
〈v, v〉

for all v ∈ TM .

Example 1.8. For the mechanical system comprising a single particle
moving in n-dimensional space, one has

K(v) :=
1

2
m 〈v, v〉.

Theorem 1.9. (Conservation of energy) In a conservative mechanical
system (M, 〈·, ·〉,−dU), the mechanical energy E(t) = K(ċ(t)) + U(c(t))
is constant along any motion c : I ⊂ R →M .

Proof.

dE

dt
(t) =

d

dt

(
1

2
〈ċ(t), ċ(t)〉+ U(c(t))

)
=

〈
Dċ

dt
(t), ċ(t)

〉
+ (dU)c(t)ċ(t)

= µ

(
Dċ

dt

)
(ċ)−F(ċ)(ċ) = 0.

�

A particularly simple example of a conservative mechanical system is
(M, 〈·, ·〉, 0), whose motions are the geodesics of (M, 〈·, ·〉). In fact, the
motions of any conservative system can be suitably reinterpreted as the
geodesics of a certain metric.
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Definition 1.10. Let (M, 〈·, ·〉,−dU) be a conservative mechanical sys-
tem and h ∈ R such that

Mh := {p ∈M | U(p) < h} 6= ∅.

The Jacobi metric on the manifold Mh is given by

〈〈v, w〉〉 := 2 [h− U(p)] 〈v, w〉
for all v, w ∈ TpMh and p ∈Mh.

Theorem 1.11. (Jacobi) The motions of a conservative mechanical sys-
tem (M, 〈·, ·〉,−dU) with mechanical energy h are, up to reparameterization,
geodesics of the Jacobi metric on Mh.

Proof. We shall need the two following lemmas, whose proofs are left
as exercises.

Lemma 1.12. Let (M, 〈·, ·〉) be a Riemannian manifold with Levi-Civita
connection ∇ and let 〈〈·, ·〉〉 = e2ρ〈·, ·〉 be a metric conformally related to

〈·, ·〉 (where ρ ∈ C∞(M)). Then the Levi-Civita connection ∇̃ of 〈〈·, ·〉〉 is
given by

∇̃XY = ∇XY + dρ(X)Y + dρ(Y )X − 〈X,Y 〉 grad ρ
for all X,Y ∈ X(M) (where the gradient is taken with respect to 〈·, ·〉). �

Lemma 1.13. A curve c : I ⊂ R → M is a reparameterized geodesic of
a Riemannian manifold (M, 〈·, ·〉) if and only if it satisfies

Dċ

dt
= f(t) ċ

for some differentiable function f : I → R. �

We now prove the Jacobi theorem. Let c : I ⊂ R → M be a motion of
(M, 〈·, ·〉,−dU) with mechanical energy h. Then Lemma 1.12 yields

D̃ċ

dt
=
Dċ

dt
+ 2dρ(ċ) ċ− 〈ċ, ċ〉 grad ρ,

where D̃
dt is the covariant derivative along c with respect to the Jacobi metric

and e2ρ = 2(h− U). The Newton equation yields

µ

(
Dċ

dt

)
= −dU ⇔ Dċ

dt
= − gradU = e2ρ grad ρ,

and by conservation of energy

〈ċ, ċ〉 = 2K = 2(h− U) = e2ρ.

Consequently we have

D̃ċ

dt
= 2dρ(ċ) ċ,

which by Lemma 1.13 means that c is a reparameterized geodesic of the
Jacobi metric. �
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A very useful expression for writing the Newton equation in local coor-
dinates is the following.

Proposition 1.14. Let (M, 〈·, ·〉,F) be a mechanical system. If (x1, . . . , xn)
are local coordinates on M and (x1, . . . , xn, v1, . . . , vn) are the local coordi-
nates induced on TM then

µ

(
Dċ

dt
(t)

)
=

n∑

i=1

[
d

dt

(
∂K

∂vi
(x(t), ẋ(t))

)
− ∂K

∂xi
(x(t), ẋ(t))

]
dxi.

In particular, if F = −dU is conservative then the equations of motion are

d

dt

(
∂K

∂vi
(x(t), ẋ(t))

)
− ∂K

∂xi
(x(t), ẋ(t)) = −∂U

∂xi
(x(t))

(i = 1, . . . , n).

Proof. Exercise 1.16.8. �

Example 1.15.

(1) (Particle in a central field) Consider a particle of mass m > 0
moving in R2 under the influence of a conservative force whose

potential energy U depends only on the distance r =
√
x2 + y2

to the origin, U = u(r). The equations of motion are most easily
solved when written in polar coordinates (r, θ), defined by

{
x = r cos θ

y = r sin θ
.

Since

dx = cos θdr − r sin θdθ,

dy = sin θdr + r cos θdθ,

it is easily seen that the Euclidean metric is written in these coor-
dinates as

〈·, ·〉 = dx⊗ dx+ dy ⊗ dy = dr ⊗ dr + r2dθ ⊗ dθ,

and hence

K
(
r, θ, vr, vθ

)
=

1

2
m
[
(vr)2 + r2

(
vθ
)2]

.

Therefore we have

∂K

∂vr
= mvr,

∂K

∂vθ
= mr2vθ,

∂K

∂r
= mr

(
vθ
)2
,

∂K

∂θ
= 0,

and consequently the Newton equations are written

d

dt
(mṙ)−mrθ̇2 = −u′(r),

d

dt

(
mr2θ̇

)
= 0.
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Notice that the angular momentum

pθ := mr2θ̇

is constant along the motion. This conservation law can be traced
back to the fact that neither K nor U depend on θ.

(2) (Christoffel symbols for the 2-sphere) The metric for the 2-sphere
S2 ⊂ R3 is written as

〈·, ·〉 = dθ ⊗ dθ + sin2 θ dϕ⊗ dϕ

in the usual local coordinates (θ, ϕ) defined by the parameterization

φ(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ)

(cf. Exercise 3.3.4 in Chapter 3). A quick way to obtain the Christof-
fel symbols in this coordinate system is to write out the Newton
equations for a free particle (of mass m = 1, say) on S2. We have

K
(
θ, ϕ, vθ, vϕ

)
=

1

2

[(
vθ
)2

+ sin2 θ
(
vϕ
)2]

and hence

∂K

∂vθ
= vθ,

∂K

∂vϕ
= sin2 θ vϕ,

∂K

∂θ
= sin θ cos θ (vϕ)2 ,

∂K

∂ϕ
= 0.

Consequently the Newton equations are written

d

dt

(
θ̇
)
− sin θ cos θ ϕ̇2 = 0 ⇔ θ̈ − sin θ cos θ ϕ̇2 = 0,

d

dt

(
sin2 θϕ̇

)
= 0 ⇔ ϕ̈+ 2 cot θ θ̇ ϕ̇ = 0.

Since these must be the equations for a geodesic on S2, by compar-
ing with the geodesic equations

ẍi +
2∑

j,k=1

Γijkẋ
j ẋk = 0 (i = 1, 2),

one immediately reads off the nonvanishing Christoffel symbols:

Γθϕϕ = − sin θ cos θ, Γϕθϕ = Γϕϕθ = cot θ.

Exercises 1.16.

(1) Generalize Examples 1.1, 1.4 and 1.8 to a system of k particles
moving in Rn.

(2) Let (M, 〈·, ·〉,F) be a mechanical system. Show that the Newton
equation defines a flow on TM , generated by the vector field X ∈
X(TM) whose local expression is

X = vi
∂

∂xi
+




n∑

j=1

gij(x)Fj(x, v)−
n∑

j,k=1

Γijk(x)v
jvk


 ∂

∂vi
,
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where (x1, . . . , xn) are local coordinates onM , (x1, . . . , xn, v1, . . . , vn)
are the local coordinates induced on TM , and

F =
n∑

i=1

Fi(x, v)dx
i

on these coordinates. What are the fixed points of this flow?
(3) (Harmonic oscillator) The harmonic oscillator (in appropriate

units) is the conservative mechanical system (R, dx⊗ dx,−dU),
where U : R → R is given by

U(x) :=
1

2
ω2x2.

(a) Write the equation of motion and its general solution.
(b) Friction can be included in this model by considering the ex-

ternal force

F
(
u
d

dx

)
= −dU − 2ku dx

(where k > 0 is a constant). Write the equation of motion of
this new mechanical system and its general solution.

(c) Generalize (a) to the n-dimensional harmonic oscillator, whose
potential energy U : Rn → R is given by

U(x1, . . . , xn) :=
1

2
ω2
((
x1
)2

+ . . .+ (xn)2
)
.

(4) Consider the conservative mechanical system (R, dx ⊗ dx,−dU).
Show that:
(a) the flow determined by the Newton equation on TR ∼= R2 is

generated by the vector field

X = v
∂

∂x
− U ′(x)

∂

∂v
∈ X(R2);

(b) the fixed points of the flow are the points of the form (x0, 0),
where x0 is a critical point of U ;

(c) if x0 is a maximum of U with U ′′(x0) < 0 then (x0, 0) is an
unstable fixed point;

(d) if x0 is a minimum of U with U ′′(x0) > 0 then (x0, 0) is a stable
fixed point, with arbitrarily small neighborhoods formed by
periodic orbits.

(e) the periods of these orbits converge to 2πU ′′(x0)−
1
2 as they

approach (x0, 0);
(f) locally, any conservative mechanical system (M, 〈·, ·〉,−dU)

with dimM = 1 is of the form above.
(5) Prove Lemma 1.12. (Hint: Use the Koszul formula).
(6) Prove Lemma 1.13.
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(7) If (M, 〈·, ·〉) is a compact Riemannian manifold, it is known that
there exists a nontrivial periodic geodesic. Use this fact to show
that if M is compact then any conservative mechanical system
(M, 〈·, ·〉,−dU) admits a nontrivial periodic motion.

(8) Prove Proposition 1.14.
(9) Recall that the hyperbolic plane is the upper half plane

H =
{
(x, y) ∈ R2 | y > 0

}

with the Riemannian metric

〈·, ·〉 = 1

y2
(dx⊗ dx+ dy ⊗ dy)

(cf. Exercise 3.3.5 in Chapter 3). Use Proposition 1.14 to compute
the Christoffel symbols for the Levi-Civita connection of (H, 〈·, ·〉)
in the coordinates (x, y).

(10) (Kepler problem) The Kepler problem (in appropriate units)
consists in determining the motion of a particle of mass m = 1 in
the central potential

U = −1

r
.

(a) Show that the equations of motion can be integrated to

r2θ̇ = pθ,

ṙ2

2
+
pθ

2

2r2
− 1

r
= E,

where E and pθ are integration constants.
(b) Use these equations to show that u = 1

r satisfies the linear
ODE

d2u

dθ2
+ u =

1

pθ2
.

(c) Assuming that the pericenter (i.e. the point in the particle’s
orbit closer to the center of attraction r = 0) occurs at θ = 0,
show that the equation of the particle’s trajectory is

r =
pθ

2

1 + ε cos θ
,

where

ε =
√
1 + 2pθ2E.

(Remark: This is the equation of a conic section with eccentricity ε in polar

coordinates).
(d) Characterize all geodesics of R2 \{(0, 0)} with the Riemannian

metric

〈·, ·〉 = 1√
x2 + y2

(dx⊗ dx+ dy ⊗ dy) .
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Show that this manifold is isometric to the surface of a cone
with aperture π

3 .

2. Holonomic Constraints

Many mechanical systems involve particles or systems of particles whose
positions are constrained (for example, a simple pendulum, a particle moving
on a given surface, or a rigid system of particles connected by massless rods).
To account for these we introduce the following definition:

Definition 2.1. A holonomic constraint on a mechanical system
(M, 〈·, ·〉,F) is a submanifold N ⊂ M with dimN < dimM . A curve c :
I ⊂ R →M is said to be compatible with N if c(t) ∈ N for all t ∈ I.

Example 2.2.

(1) A particle of mass m > 0 moving in R2 subject to a constant
gravitational acceleration g is modeled by the mechanical system
(R2, 〈〈·, ·〉〉,−mg dy), where

〈〈v, w〉〉 := m 〈v, w〉
(〈·, ·〉 being the Euclidean inner product on R2). A simple pen-
dulum is obtained by connecting the particle to a fixed pivoting
point by an ideal massless rod of length l > 0 (cf. Figure 1). As-
suming the pivoting point to be the origin, this corresponds to the
holonomic constraint

N = {(x, y) ∈ R2 | x2 + y2 = l2}
(diffeomorphic to S1).

(2) Similarly, a particle of mass m > 0 moving in R3 subject to a
constant gravitational acceleration g is model-led by the mechanical
system (R3, 〈〈·, ·〉〉,−mg dz), where

〈〈v, w〉〉 := m 〈v, w〉
(〈·, ·〉 being the Euclidean inner product on R3). Requiring the
particle to move on a surface of equation z = f(x, y) yields the
holonomic constraint

N = {(x, y, z) ∈ R3 | z = f(x, y)}.
(3) A system of k particles of masses m1, . . . ,mk moving freely in R3

is model-led by the mechanical system (R3k, 〈〈·, ·〉〉, 0), where

〈〈(v1, . . . , vk), (w1, . . . , wk)〉〉 :=
k∑

i=1

mi 〈vi, wi〉

(〈·, ·〉 being the Euclidean inner product on R3). A rigid body
is obtained by connecting all particles by ideal massless rods, and
corresponds to the holonomic constraint

N =
{
(x1, . . . , xk) ∈ R3k | ‖xi − xj‖ = dij for 1 ≤ i < j ≤ k

}
.
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If at least three particles are not collinear, N is easily seen to be
diffeomorphic to R3 ×O(3).

θ l

m

Figure 1. Simple pendulum.

Keeping the particles on the holonomic constraint requires an additional
external force (provided by the rods or by the surface in the examples above).

Definition 2.3. A reaction force on a mechanical system with holo-
nomic constraint (M, 〈·, ·〉,F , N) is a map R : TN → T ∗M satisfying
R(TpN) ⊂ T ∗

pM for all p ∈ N such that, for each v ∈ TN , there is a
solution c : I ⊂ R → N of the generalized Newton equation

µ

(
Dċ

dt

)
= (F +R)(ċ)

with initial condition ċ(0) = v.

For any holonomic constraint there exist in general infinite possible
choices of reaction forces. The following definition yields a particularly use-
ful criterion for selecting reaction forces.

Definition 2.4. A reaction force in a mechanical system with holo-
nomic constraint (M, 〈·, ·〉,F , N) is said to be perfect, or to satisfy the
d’Alembert principle, if

µ−1 (R(v)) ∈ (TpN)⊥

for all v ∈ TpN and p ∈ N .

Remark 2.5. The variation of the kinetic energy of a solution of the
generalized Newton equation is

dK

dt
=

〈
Dċ

dt
, ċ

〉
= F(ċ)(ċ) +R(ċ)(ċ) = F(ċ)(ċ) +

〈
µ−1(R(ċ)), ċ

〉
.

Therefore, a reaction force is perfect if and only if it neither creates nor
dissipates energy along any motion compatible with the constraint.
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Example 2.6. In each of the examples above, requiring the reaction
force to be perfect amounts to the following assumptions.

(1) Simple pendulum: The force transmitted by the rod is purely
radial (i.e. there is no damping);

(2) Particle on a surface: The force exerted by the surface is or-
thogonal to it (i.e. the surface is frictionless);

(3) Rigid body: The cohesive forces do not dissipate energy.

The next result establishes the existence and uniqueness of perfect reac-
tion forces.

Theorem 2.7. Given any mechanical system with holonomic constraint
(M, 〈·, ·〉,F , N), there exists a unique reaction force R : TN → T ∗M sat-
isfying the d’Alembert principle. The solutions of the generalized Newton
equation

µ

(
Dċ

dt

)
= (F +R)(ċ)

are exactly the motions of the mechanical system (N, 〈〈·, ·〉〉,FN ), where
〈〈·, ·〉〉 is the metric induced on N by 〈·, ·〉 and FN is the restriction of F to
N . In particular, if F = −dU is conservative then FN = −d (U |N ).

Proof. Recall from Section 5 of Chapter 4 that if ∇̃ is the Levi-Civita
connection of (M, 〈·, ·〉) and ∇ is the Levi-Civita connection of (N, 〈〈·, ·〉〉)
then

∇XY =
(
∇̃
X̃
Ỹ
)⊤

for all X,Y ∈ X(N), where X̃, Ỹ are any extensions of X,Y to X(M) (as
usual, v = v⊤ + v⊥ designates the unique decomposition arising from the
splitting TpM = TpN ⊕ (TpN)⊥ for each p ∈ N). Moreover, the second
fundamental form of N ,

B(X,Y ) = ∇̃
X̃
Ỹ −∇XY =

(
∇̃
X̃
Ỹ
)⊥

,

is well defined, and B(X,Y )p ∈ (TpN)⊥ is a symmetric bilinear function of
Xp, Yp for all p ∈ N .

Assume that a perfect reaction force R exists; then the solutions of the
generalized Newton equation satisfy

∇̃ċ ċ = µ−1(F(ċ)) + µ−1(R(ċ)).

Since by hypothesis µ−1R is orthogonal toN , the component of this equation
tangent to N yields

∇ċ ċ = µ−1
N (FN (ċ))

(where µN : TN → T ∗N is the mass operator on N) as for any v ∈ TN one
has

〈〈
(
µ−1(F(ċ))

)⊤
, v〉〉 = 〈µ−1(F(ċ)), v〉 = F(ċ)(v) = FN (ċ)(v) = 〈〈µ−1

N (FN (ċ)), v〉〉.
Hence c is a motion of (N, 〈〈·, ·〉〉,FN ).
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On the other hand, the component of the generalized Newton equation
orthogonal to N yields

B(ċ, ċ) =
(
µ−1(F(ċ))

)⊥
+ µ−1(R(ċ)).

Therefore, if R exists then it must satisfy

(23) R(v) = µ(B(v, v))− µ
[(
µ−1(F(v))

)⊥]

for all v ∈ TN . This proves uniqueness.
To prove existence, define R through (23), which certainly guarantees

that µ−1 (R(v)) ∈ (TpN)⊥ for all v ∈ TpN and p ∈ N . Given v ∈ TN , let
c : I ⊂ R → N be the motion of the mechanical system (N, 〈〈·, ·〉〉,FN ) with
initial condition v. Then

∇̃ċ ċ = ∇ċ ċ+B(ċ, ċ) = µ−1
N (FN (ċ)) +

(
µ−1(F(ċ))

)⊥
+ µ−1(R(ċ))

=
(
µ−1(F(ċ))

)⊤
+
(
µ−1(F(ċ))

)⊥
+ µ−1(R(ċ)) = µ−1(F(ċ)) + µ−1(R(ċ)).

�

Example 2.8. To write the equation of motion of a simple pendulum
with a perfect reaction force, we parameterize the holonomic constraint N
using the map ϕ : (−π, π) → R2 defined by

ϕ(θ) = (l sin θ,−l cos θ)
(so that θ = 0 labels the stable equilibrium position, cf. Figure 1). We have

d

dθ
=
dx

dθ

∂

∂x
+
dy

dθ

∂

∂y
= l cos θ

∂

∂x
+ l sin θ

∂

∂y
,

and hence the kinetic energy of the pendulum is

K

(
v
d

dθ

)
=

1

2
m

〈
vl cos θ

∂

∂x
+ vl sin θ

∂

∂y
, vl cos θ

∂

∂x
+ vl sin θ

∂

∂y

〉

=
1

2
ml2v2.

On the other hand, the potential energy is given by

U(x, y) = mgy,

and hence its restriction to N has the local expression

U(θ) = −mgl cos θ.
Consequently the equation of motion is

d

dt

(
∂K

∂v

(
θ, θ̇
))

− ∂K

∂θ

(
θ, θ̇
)
= −∂U

∂θ
(θ)

⇔ d

dt

(
ml2θ̇

)
= −mgl sin θ

⇔ θ̈ = −g
l
sin θ.

Notice that we did not have to compute the reaction force.



3. RIGID BODY 169

Exercises 2.9.

(1) Use spherical coordinates to write the equations of motion for the
spherical pendulum of length l, i.e. a particle of mass m > 0
moving in R3 subject to a constant gravitational acceleration g
and the holonomic constraint

N = {(x, y, z) ∈ R3 | x2 + y2 + z2 = l2}.
Which parallels of N are possible trajectories of the particle?

(2) Write the equations of motion for a particle moving on a frictionless

surface of revolution with equation z = f(r) (where r =
√
x2 + y2)

under a constant gravitational acceleration g.
(3) Write and solve the equations of motion for a free dumbbell, i.e. a

system of two particles of masses m1 and m2 connected by a mass-
less rod of length l, moving in:
(a) R2;
(b) R3.
(Hint: Use the coordinates of the center of mass, i.e. the point along the rod at a

distance m2

m1+m2
l from m1).

(4) The double pendulum of lengths l1, l2 is the mechanical system
defined by two particles of massesm1,m2 moving in R2 subject to a
constant gravitational acceleration g and the holonomic constraint

N = {(x1, x2) ∈ R4 | ‖x1‖ = l1 and ‖x1 − x2‖ = l2}.
(diffeomorphic to the 2-torus T 2).
(a) Write the equations of motion for the double pendulum using

the parameterization φ : (−π, π)× (−π, π) → N given by

φ(θ, ϕ) = (l1 sin θ,−l1 cos θ, l1 sin θ + l2 sinϕ,−l1 cos θ − l2 cosϕ)

(cf. Figure 2).
(b) Linearize the equations of motion around θ = ϕ = 0. Look for

solutions of the linearized equations satisfying ϕ = kθ, with
k ∈ R constant (normal modes). What are the periods of
the ensuing oscillations?

3. Rigid Body

Recall that a rigid body is a system of k particles of masses m1, . . . ,mk

connected by massless rods in such a way that their mutual distances remain
constant. If in addition we assume that a given particle is fixed (at the origin,
say) then we obtain the holonomic constraint

N =
{
(x1, . . . , xk) ∈ R3k | x1 = 0 and ‖xi − xj‖ = dij for 1 ≤ i < j ≤ k

}
.

If at least three particles are not collinear, this manifold is diffeomorphic to
O(3). In fact, if we fix a point (ξ1, . . . , ξk) in N then any other point in N
is of the form (Sξ1, . . . , Sξk) for a unique S ∈ O(3). A motion in N can
therefore be specified by a curve S : I ⊂ R → O(3). The trajectory in R3
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Figure 2. Double pendulum.

of the particle with mass mi will be given by the curve Sξi : I ⊂ R → R3,
whose velocity is Ṡξi (where we use O(3) ⊂ M3×3(R) ∼= R9 to identify
TSO(3) with an appropriate subspace of M3×3(R)). Therefore the kinetic
energy of the system along the motion will be

K =
1

2

k∑

i=1

mi〈Ṡξi, Ṡξi〉,

where 〈·, ·〉 is the Euclidean inner product on R3.
Now O(3), and hence N , has two diffeomorphic connected components,

corresponding to matrices of positive or negative determinant. Since any
motion necessarily occurs in one connected component, we can take our
configuration space to be simply SO(3). To account for continuum rigid
bodies, we make the following generalization:

Definition 3.1. A rigid body with a fixed point is any mechanical
system of the form (SO(3), 〈〈·, ·〉〉,F), with

〈〈V,W 〉〉 :=
∫

R3

〈V ξ,Wξ〉 dm

for all V,W ∈ TSSO(3) and all S ∈ SO(3), where 〈·, ·〉 is the usual Eu-
clidean inner product on R3 and m (called the mass distribution of the
reference configuration) is a positive finite measure on R3, not supported
on any straight line through the origin, and satisfying

∫
R3 ‖ξ‖2dm < +∞.

Example 3.2.
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(1) The rigid body composed by k particles of masses m1, . . . ,mk cor-
responds to the measure

m =
k∑

i=1

miδξi ,

where δξi is the Dirac delta centered at the point ξi ∈ R3.
(2) A continuum rigid body with (say) compactly supported integrable

density function ρ : R3 → [0,+∞) is described by the measure m
defined on the Lebesgue σ-algebra by

m(A) :=

∫

A
ρ(ξ)d3ξ.

Remark 3.3. The rotational motion of a general rigid body can in many
cases be reduced to the motion of a rigid body with a fixed point (cf. Exer-
cise 3.20.2). Unless otherwise stated, from this point onwards we will take
“rigid body” to mean “rigid body with a fixed point”.

Proposition 3.4. The metric 〈〈·, ·〉〉 defined on SO(3) by a rigid body
is left-invariant, that is, any left translation is an isometry.

Proof. Since left multiplication by a fixed matrix R ∈ SO(3) is a linear
map LR : M3×3(R) → M3×3(R), we have (dLR)S V = RV ∈ TRSSO(3) for
any V ∈ TSSO(3). Consequently,

〈〈(dLR)S V, (dLR)SW 〉〉 = 〈〈RV,RW 〉〉 =
∫

R3

〈RV ξ,RWξ〉 dm

=

∫

R3

〈V ξ,Wξ〉 dm = 〈〈V,W 〉〉

(as R ∈ SO(3) preserves the Euclidean inner product). �

Therefore there exist at most as many rigid bodies as inner products on
so(3) ∼= R3, i.e., as real symmetric positive definite 3 × 3 matrices (cf. Ex-
ercise 1.10.4 in Chapter 3). In fact, we shall see that any rigid body can be
specified by 3 positive numbers.

Proposition 3.5. The metric 〈〈·, ·〉〉 defined on SO(3) by a rigid body
is given by

〈〈V,W 〉〉 = tr
(
V JW t

)
,

where

Jij =

∫

R3

ξiξjdm.
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Proof. We just have to notice that

〈〈V,W 〉〉 =
∫

R3

3∑

i=1




3∑

j=1

Vijξ
j



(

3∑

k=1

Wikξ
k

)
dm

=
3∑

i,j,k=1

VijWik

∫

R3

ξjξk dm =
3∑

i,j,k=1

VijJjkWik.

�

Proposition 3.6. If S : I ⊂ R → SO(3) is a curve and ∇ is the
Levi-Civita connection on (SO(3), 〈〈·, ·〉〉) then

〈〈∇ṠṠ, V 〉〉 =
∫

R3

〈S̈ξ, V ξ〉dm

for any V ∈ TSSO(3).

Proof. We consider first the case in which the rigid body is non-
planar, i.e. m is not supported in any plane through the origin. In this
case, the metric 〈〈·, ·〉〉 can be extended to a flat metric on M3×3(R) ∼= R9

by the same formula

〈〈〈V,W 〉〉〉 =
∫

R3

〈V ξ,Wξ〉 dm

for all V,W ∈ TSM3×3(R) and all S ∈ M3×3(R). Indeed, this formula
clearly defines a symmetric 2-tensor on M3×3(R). To check positive def-
initeness, we notice that if V ∈ TSM3×3(R) is nonzero then its kernel is
contained on a plane through the origin. Therefore, the continuous function
〈V ξ, V ξ〉 is positive on a set of positive measure, and hence

〈〈〈V, V 〉〉〉 =
∫

R3

〈V ξ, V ξ〉 dm > 0.

This metric is easily seen to be flat, as the components of the metric on the
natural coordinates of M3×3(R) are the constant coefficients Jij . Therefore
all Christoffel symbols vanish on these coordinates, and the corresponding

Levi-Civita connection ∇̃ is the trivial connection. If S : I ⊂ R → M3×3(R)
is a curve then

∇̃ṠṠ = S̈.

Since 〈〈·, ·〉〉 is the metric induced on SO(3) by 〈〈〈·, ·〉〉〉, we see that for any
curve S : I ⊂ R → SO(3) one has

∇ṠṠ =
(
∇̃ṠṠ

)⊤
= S̈⊤,

and hence

〈〈∇ṠṠ, V 〉〉 = 〈〈S̈⊤, V 〉〉 = 〈〈〈S̈, V 〉〉〉 =
∫

R3

〈S̈ξ, V ξ〉dm

for any V ∈ TSSO(3).
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For planar rigid bodies the formula can by obtained by a limiting pro-
cedure (cf. Exercise 3.20.3). �

We can use this result to determine the geodesics of (SO(3), 〈〈·, ·〉〉). A
remarkable shortcut (whose precise nature will be discussed in Section 5)
can be obtained by introducing the following quantity.

Definition 3.7. The angular momentum of a rigid body whose mo-
tion is described by S : I ⊂ R → SO(3) is the vector

p(t) :=

∫

R3

[
(S(t)ξ)× (Ṡ(t)ξ)

]
dm

(where × is the usual cross product on R3).

Theorem 3.8. If S : I ⊂ R → SO(3) is a geodesic of (SO(3), 〈〈·, ·〉〉)
then p(t) is constant.

Proof. We have

ṗ =

∫

R3

[
(Ṡξ)× (Ṡξ) + (Sξ)× (S̈ξ)

]
dm =

∫

R3

[
(Sξ)× (S̈ξ)

]
dm.

Take any v ∈ R3. Then

〈Sv, ṗ〉 =
〈
Sv,

∫

R3

[
(Sξ)× (S̈ξ)

]
dm

〉
=

∫

R3

〈
Sv, (Sξ)× (S̈ξ)

〉
dm

=

∫

R3

〈
S̈ξ, (Sv)× (Sξ)

〉
dm =

∫

R3

〈
S̈ξ, S(v × ξ)

〉
dm,

where we have used the invariance of 〈·, ·×·〉 ≡ det(·, ·, ·) under even permu-
tations of its arguments and the fact that the cross product is equivariant
under multiplication by S ∈ SO(3).

To complete the proof we will need the following lemma, whose proof is
left as an exercise.

Lemma 3.9. There exists a linear isomorphism Ω : so(3) → R3 such that

Aξ = Ω(A)× ξ

for all ξ ∈ R3 and A ∈ so(3). Moreover, Ω([A,B]) = Ω(A) × Ω(B) for all
A,B ∈ so(3) (that is, Ω is a Lie algebra isomorphism between so(3) and
(R3,×)). �

Returning to the proof, let V ∈ so(3) be such that Ω(V ) = v. Then
SV ∈ TSSO(3) and

〈Sv, ṗ〉 =
∫

R3

〈
S̈ξ, SV ξ

〉
dm = 〈〈∇ṠṠ, SV 〉〉 = 0

(as S : I ⊂ R → SO(3) is a geodesic). Since v ∈ R3 is arbitrary, we see that
ṗ = 0 along the motion. �
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If S : I ⊂ R → SO(3) is a curve then Ṡ = SA for some A ∈ so(3). Let
us define Ω := Ω(A). Then

p =

∫

R3

[(Sξ)× (SAξ)] dm =

∫

R3

S [ξ × (Aξ)] dm

= S

∫

R3

[ξ × (Ω× ξ)] dm.

This suggests the following definition.

Definition 3.10. The linear operator I : R3 → R3 defined as

I(v) :=

∫

R3

[ξ × (v × ξ)]dm

is called the rigid body’s moment of inertia tensor.

Proposition 3.11. The moment of inertia tensor of any given rigid
body is a symmetric positive definite linear operator, and the corresponding
kinetic energy map K : TSO(3) → R is given by

K(V ) =
1

2
〈〈V, V 〉〉 = 1

2
〈〈SA, SA〉〉 = 1

2
〈IΩ,Ω〉,

for all V ∈ TSSO(3) and all S ∈ SO(3), where V = SA and Ω = Ω(A).

Proof. We start by checking that I is symmetric:

〈Iv, w〉 = 〈
∫

R3

[ξ × (v × ξ)] dm,w〉 =
∫

R3

〈ξ × (v × ξ), w〉 dm

=

∫

R3

〈v × ξ, w × ξ〉 dm = 〈v, Iw〉.

In particular we have

〈IΩ,Ω〉 =
∫

R3

〈Ω× ξ,Ω× ξ〉 dm =

∫

R3

〈Aξ,Aξ〉 dm

=

∫

R3

〈SAξ, SAξ〉 dm = 2K(V ).

The positive definiteness of I is an immediate consequence of this formula.
�

Corollary 3.12. Given any rigid body there exist three positive num-
bers I1, I2, I3 (principal moments of inertia) and an orthonormal basis
of R3, {e1, e2, e3} (principal axes), such that Iei = Iiei (i = 1, 2, 3). �

The principal moments of inertia are the three positive numbers which
completely specify the rigid body (as they determine the inertia tensor,
which in turn yields the kinetic energy). To compute these numbers we must
compute the eigenvalues of a matrix representation of the inertia tensor.
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Proposition 3.13. The matrix representation of the inertia tensor in
the canonical basis of R3 is




∫
R3(y

2 + z2) dm −
∫
R3 xy dm −

∫
R3 xz dm

−
∫
R3 xy dm

∫
R3(x

2 + z2) dm −
∫
R3 yz dm

−
∫
R3 xz dm −

∫
R3 yz dm

∫
R3(x

2 + y2) dm



.

Proof. Let {u1, u2, u3} be the canonical basis of R3. Then

Iij = 〈Iui, uj〉 =
∫

R3

〈ξ × (ui × ξ), uj〉 dm.

Using the vector identity

u× (v × w) = 〈u,w〉v − 〈u, v〉w

for all u, v, w ∈ R3, we have

Iij =

∫

R3

〈
‖ξ‖2ui − 〈ξ, ui〉ξ, uj

〉
dm =

∫

R3

(
‖ξ‖2δij − ξiξj

)
dm.

�

We can now write the equations for the geodesics of (SO(3), 〈〈·, ·〉〉), that
is, the equations of motion of a rigid body in the absence of external forces.
This mechanical system is commonly known as the Euler top.

Proposition 3.14. The equations of motion of the Euler top are given
by the Euler equations

IΩ̇ = (IΩ)× Ω.

Proof. We just have to notice that

p = SIΩ.

Therefore

0 = ṗ = ṠIΩ+ SIΩ̇ = SAIΩ+ SIΩ̇ = S
(
Ω× (IΩ) + IΩ̇

)
.

�

Remark 3.15. Any point ξ ∈ R3 in the rigid body traverses a curve
x(t) = S(t)ξ with velocity

ẋ = Ṡξ = SAξ = S(Ω× ξ) = (SΩ)× (Sξ) = (SΩ)× x.

Therefore ω := SΩ is the rigid body’s instantaneous angular velocity:
at each instant, the rigid body rotates about the axis determined by ω with
angular speed ‖ω‖. Consequently, Ω is the angular velocity as seen in the
(accelerated) rigid body’s rest frame (cf. Figure 3).
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Ω(t)

ω(t)
S(t)

Figure 3. Angular velocities.

In the basis {e1, e2, e3} of the principal axes, the Euler equations are
written 




I1Ω̇
1 = (I2 − I3)Ω

2Ω3

I2Ω̇
2 = (I3 − I1)Ω

3Ω1

I3Ω̇
3 = (I1 − I2)Ω

1Ω2

.

Since I is positive definite (hence invertible), we can change variables to
P := IΩ. Notice that p = SP , i.e. P is the (constant) angular momentum
vector as seen in rigid body’s rest frame. In these new variables, the Euler
equations are written

Ṗ = P ×
(
I−1P

)
.

In the basis {e1, e2, e3} of the principal axes, these are




Ṗ 1 =

(
1

I3
− 1

I2

)
P 2P 3

Ṗ 2 =

(
1

I1
− 1

I3

)
P 3P 1

Ṗ 3 =

(
1

I2
− 1

I1

)
P 1P 2

.

Proposition 3.16. If I1 > I2 > I3, the stationary points of the Euler
equations are given by

P = λei (λ ∈ R, i = 1, 2, 3),

and are stable for i = 1, 3 and unstable for i = 2.

Proof. Since there are no external forces, the kinetic energy K, given
by

2K = 〈IΩ,Ω〉 =
〈
P, I−1P

〉
=

(
P 1
)2

I1
+

(
P 2
)2

I2
+

(
P 3
)2

I3
,
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is conserved. This means that the flow defined by the Euler equations is
along ellipsoids with semiaxes of lengths

√
2KI1 >

√
2KI2 >

√
2KI3. On

the other hand, since p is constant along the motion, we have a second
conserved quantity,

‖p‖2 = ‖P‖2 =
(
P 1
)2

+
(
P 2
)2

+
(
P 3
)2
.

Therefore the flow is along spheres. The integral curves on a particular
sphere can be found by intersecting it with the ellipsoids corresponding to
different values of K, as shown in Figure 4. �

e1

e2

e3

Figure 4. Integral curves of the Euler equations.

Remark 3.17. Since Ω = I−1P , Proposition 3.16 is still true if we
replace P with Ω. The equilibrium points represent rotations about the
principal axes with constant angular speed, as they satisfy Ω = IiP , and
hence ω = Iip is constant. If the rigid body is placed in a rotation state close
to a rotation about the axes e1 or e3, P will remain close to these axes, and
hence Se1 or Se3 will remain close to the fixed vector p. On the other hand,
if the rigid body is placed in a rotation state close to a rotation about the
axis e2, then P will drift away from e2 (approaching −e2 before returning
to e2), and hence Se2 will drift away from the fixed vector p (approaching
−p before returning to p). This can be illustrated by throwing a rigid body
(say a brick) in the air, as its rotational motion about the center of mass is
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that of a rigid body with a fixed point (cf. Exercise 3.20.2). When rotating
about the smaller or the larger axis (i.e. the principal axes corresponding to
the larger or the smaller moments of inertia – cf. Exercise 3.20.6) it performs
a stable rotation, but when rotating about the middle axis it flips in midair.

If the rigid body is not free, one must use parameterizations of SO(3).

Definition 3.18. The Euler angles correspond to the local coordinates
(θ, ϕ, ψ) : SO(3) → (0, π)× (0, 2π)× (0, 2π) defined by

S(θ, ϕ, ψ) =



cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1





1 0 0
0 cos θ − sin θ
0 sin θ cos θ





cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 .

The geometric interpretation of the Euler angles is sketched in Figure 5:
if the rotation carries the canonical basis {ex, ey, ez} to a new orthonormal
basis {e1, e2, e3}, then θ is the angle between e3 and ez, ϕ is the angle
between the line of intersection of the planes spanned by {e1, e2} and {ex, ey}
(called the nodal line) and the x-axis, and ψ is the angle between e1 and
the nodal line.

e1

e2

e3

ex

ey

ez
θ

ϕ ψ

nodal line horizontal plane

Figure 5. Euler angles.

The general expression of the kinetic energy in the local coordinates of
TSO(3) associated to the Euler angles is quite complicated; here we present
it only in the simpler case I1 = I2.
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Proposition 3.19. If I1 = I2 then the kinetic energy of a rigid body in
the local coordinates (θ, ϕ, ψ, vθ, vϕ, vψ) of TSO(3) is given by

K =
I1
2

((
vθ
)2

+
(
vϕ
)2

sin2 θ
)
+
I3
2

(
vψ + vϕ cos θ

)2
.

Proof. Exercise 3.20.13. �

A famous model which can be studied using this expression is the so-
called Lagrange top, corresponding to an axisymmetric rigid body in a
constant gravity field g. The potential energy for the corresponding me-
chanical system is

U := g

∫

R3

〈Sξ, ez〉 dm =Mg〈Sξ, ez〉,

where M = m(R3) is the total mass and

ξ :=
1

M

∫

R3

ξ dm

is the position of the center of mass in the rigid body’s frame. By axisym-
metry, the center of mass satisfies ξ = le3 for some l ∈ R, and so

U =Mgl cos θ.

Exercises 3.20.

(1) Show that the bilinear form 〈〈·, ·〉〉 defined on SO(3) by a rigid body
is indeed a Riemannian metric.

(2) A general rigid body (i.e. with no fixed points) is any mechanical
system of the form (R3 × SO(3), 〈〈〈·, ·〉〉〉,F), with

〈〈〈(v, V ), (w,W )〉〉〉 :=
∫

R3

〈v + V ξ, w +Wξ〉 dm

for all (v, V ), (w,W ) ∈ T(x,S)R
3 × SO(3) and (x, S) ∈ R3 × SO(3),

where 〈·, ·〉 is the usual Euclidean inner product on R3 and m is
a positive finite measure on R3 not supported on any straight line
and satisfying

∫
R3 ‖ξ‖2dm < +∞.

(a) Show that one can always translate m in such a way that
∫

R3

ξ dm = 0

(i.e. the center of mass of the reference configuration is placed
at the origin).

(b) Show that for this choice the kinetic energy of the rigid body
is

K(v, V ) =
1

2
M〈v, v〉+ 1

2
〈〈V, V 〉〉,

where M = m(R3) is the total mass of the rigid body and
〈〈·, ·〉〉 is the metric for the rigid body (with a fixed point)
determined by m.
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(c) Assume that there exists a differentiable function F : R3 → R3

such that

F(x, S, v, V )(w,W ) =

∫

R3

〈F (x+ Sξ), w +Wξ〉 dm.

Show that, if
∫

R3

(Sξ)× F (x+ Sξ) dm = 0

for all (x, S) ∈ R3 ×SO(3), then the projection of any motion
on SO(3) is a geodesic of (SO(3), 〈〈·, ·〉〉).

(d) Describe the motion of a rigid body falling in a constant grav-
itational field, for which F = −gez is constant.

(3) Prove Proposition 3.6 for a planar rigid body. (Hint: Include the planar

rigid body in a smooth one-parameter family of non-planar rigid bodies).
(4) Prove Lemma 3.9.
(5) Show that I1 ≤ I2 + I3 (and cyclic permutations). When is I1 =

I2 + I3?
(6) Determine the principal axes and the corresponding principal mo-

ments of inertia of:
(a) a homogeneous rectangular parallelepiped with mass M , sides

2a, 2b, 2c ∈ R+ and centered at the origin;
(b) a homogeneous (solid) ellipsoid with massM , semiaxes a, b, c ∈

R+ and centered at the origin. (Hint: Use the coordinate change

(x, y, z) = (au, bv, cw)).
(7) A symmetry of a rigid body is an isometry S ∈ O(3) which pre-

serves the mass distribution (i.e. m(SA) = m(A) for any measur-
able set A ⊂ R3). Show that:
(a) SISt = I, where I is the matrix representation of the inertia

tensor;
(b) if S is a reflection in a plane then there exists a principal axis

orthogonal to the reflection plane;
(c) if S is a nontrivial rotation about an axis then that axis is

principal;
(d) if moreover the rotation is not by π then all axes orthogonal

to the rotation axis are principal.
(8) Consider a rigid body satisfying I1 = I2. Use the Euler equations

to show that:
(a) the angular velocity satisfies

ω̇ =
1

I1
p× ω;

(b) if I1 = I2 = I3 then the rigid body rotates about a fixed axis
with constant angular speed (i.e. ω is constant);
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(c) if I1 = I2 6= I3 then ω precesses (i.e. rotates) about p with
angular velocity

ωpr :=
p

I1
.

(9) Many asteroids have irregular shapes, and hence satisfy I1 < I2 <
I3. To a very good approximation, their rotational motion about
the center of mass is described by the Euler equations. Over very
long periods of time, however, their small interactions with the Sun
and other planetary bodies tend to decrease their kinetic energy
while conserving their angular momentum. Which rotation state
do asteroids approach?

(10) Due to its rotation, the Earth is not a perfect sphere, but an oblate
spheroid; therefore its moments of inertia are not quite equal, sat-
isfying approximately

I1 = I2 6= I3;

I3 − I1
I1

≃ 1

306
.

The Earth’s rotation axis is very close to e3, but precesses around
it (Chandler precession). Find the period of this precession (in
the Earth’s frame).

(11) Consider a rigid body whose motion is described by the curve
S : R → SO(3), and let Ω be the corresponding angular veloc-
ity. Consider a particle with mass m whose motion in the rigid
body’s frame is given by the curve ξ : R → R3. Let f be the
external force on the particle, so that its equation of motion is

m
d2

dt2
(Sξ) = f.

(a) Show that the equation of motion can be written as

mξ̈ = F −mΩ× (Ω× ξ)− 2mΩ× ξ̇ −mΩ̇× ξ

where f = SF . (The terms following F are the so-called iner-
tial forces, and are known, respectively, as the centrifugal
force, the Coriolis force and the Euler force).

(b) Show that if the rigid body is a homogeneous sphere rotating
freely (like the Earth, for instance) then the Euler force van-
ishes. Why must a long range gun in the Northern hemisphere
be aimed at the left of the target?

(12) (Poinsot theorem) The inertia ellipsoid of a rigid body with mo-
ment of inertia tensor I is the set

E = {ξ ∈ R3 | 〈Iξ, ξ〉 = 1}.
Show that the inertia ellipsoid of a freely moving rigid body rolls
without slipping on a fixed plane orthogonal to p (that is, the
contact point has zero velocity at each instant). (Hint: Show that
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any point S(t)ξ(t) where the ellipsoid is tangent to a plane orthogonal to p satisfies

S(t)ξ(t) = ± 1√
2K

ω(t)).

(13) Prove Proposition 3.19. (Hint: Notice that symmetry demands that the ex-

pression for K must not depend neither on ϕ nor on ψ).
(14) Consider the Lagrange top.

(a) Write the equations of motion and determine the equilibrium
points.

(b) Show that there exist solutions such that θ, ϕ̇ and ψ̇ are con-

stant, which in the limit |ϕ̇| ≪ |ψ̇| (fast top) satisfy

ϕ̇ ≃ Mgl

I3ψ̇
.

(15) (Precession of the equinoxes) Due to its rotation, the Earth is not
a perfect sphere, but an oblate ellipsoid; therefore its moments of
inertia are not quite equal, satisfying approximately

I1 = I2 6= I3;

I3 − I1
I1

≃ 1

306

(cf. Exercise 10). As a consequence, the combined gravitational
attraction of the Moon and the Sun disturbs the Earth’s rotation
motion. This perturbation can be approximately modeled by the
potential energy U : SO(3) → R given in the Euler angles (θ, ϕ, ψ)
by

U = −Ω2

2
(I3 − I1) cos

2 θ,

where
2π

Ω
≃ 168 days.

(a) Write the equations of motion and determine the equilibrium
points.

(b) Show that there exist solutions such that θ, ϕ̇ and ψ̇ are con-

stant, which in the limit |ϕ̇| ≪ |ψ̇| (as is the case with the
Earth) satisfy

ϕ̇ ≃ −Ω2(I3 − I1) cos θ

I3ψ̇
.

Given that for the Earth θ ≃ 23◦, determine the approximate
value of the period of ϕ(t).

(16) (Pseudo-rigid body) Recall that the (non planar) rigid body metric
is the restriction to SO(3) of the flat metric on GL(3) given by

〈〈V,W 〉〉 = tr(V JW t),

where

Jij =

∫

R3

ξiξj dm.
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(a) What are the geodesics of the Levi-Civita connection for this
metric? Is (GL(3), 〈〈·, ·〉〉) geodesically complete?

(b) The Euler equation and the continuity equation for an
incompressible fluid with velocity field u : R × R3 → R3 and
pressure p : R× R3 → R are

∂u

∂t
+ (u · ∇)u = −∇p,

∇ · u = 0,

where

∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)

is the usual operator of vector calculus.
Given a geodesic S : R → GL(3), we define

x(t, ξ) = S(t)ξ,

u(t, x) = Ṡ(t)ξ = Ṡ(t)S−1(t)x.

Show that the velocity field u satisfies the Euler equation (with
p = 0), but not the continuity equation.

(c) Let f : GL(3) → R be given by f(S) = detS. Show that

∂f

∂Sij
= cof(S)ij

(where cof(S) is the matrix of the cofactors of S), and conse-
quently

df

dt
= (detS) tr(ṠS−1).

So the continuity equation is satisfied if we impose the con-
straint detS(t) = 1.

(d) Show that the holonomic constraint SL(3) ⊂ GL(3) satisfies
the d’Alembert principle if and only if

{
µ
(
S̈
)
= λ(t)df

detS = 1
.

Assuming that J is invertible, show that the equation of mo-
tion can be rewritten as

S̈ = λ
(
S−1

)t
J−1.

(e) Show that the geodesics of (SL(3), 〈〈·, ·〉〉) yield solutions of
the Euler equation with

p = −λ
2
xt
(
S−1

)t
J−1S−1x

which also satisfy the continuity equation.
(Remark: More generally, it is possible to interpret the Euler equation on an

open set U ⊂ Rn as a mechanical system on the group of diffeomorphisms of
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U (which is an infinite dimensional Lie group); the continuity equation imposes

the holonomic constraint corresponding to the subgroup of volume-preserving

diffeomorphisms, and the pressure is the perfect reaction force associated to this

constraint).

4. Non-Holonomic Constraints

Some mechanical systems are subject to constraints which force the mo-
tions to proceed in certain admissible directions. To handle such constraints
we must first introduce the corresponding geometric concept.

Definition 4.1. A distribution Σ of dimension m on a differentiable
manifold M is a choice of an m-dimensional subspace Σp ⊂ TpM for each
p ∈M . The distribution is said to be differentiable if for all p ∈M there
exists a neighborhood U ∋ p and vector fields X1, . . . , Xm ∈ X(U) such that

Σq = span
{
(X1)q , . . . , (Xm)q

}

for all q ∈ U .

Equivalently, Σ is differentiable if for all p ∈M there exists a neighbor-
hood U ∋ p and 1-forms ω1, . . . , ωn−m ∈ Ω1(U) such that

Σq = ker
(
ω1
)
q
∩ · · · ∩ ker

(
ωn−m

)
q

for all p ∈ U (cf. Exercise 4.15.1). We will assume from this point on that
all distributions are differentiable.

Definition 4.2. A non-holonomic constraint on a mechanical sys-
tem (M, 〈·, ·〉,F) is a distribution Σ on M . A curve c : I ⊂ R → M is said
to be compatible with Σ if ċ(t) ∈ Σc(t) for all t ∈ I.

Example 4.3.

(1) (Wheel rolling without slipping) Consider a vertical wheel of radius
R rolling without slipping on a plane. Assuming that the motion
takes place along a straight line, we can parameterize any position
of the wheel by the position x of the contact point and the angle
θ between a fixed radius of the wheel and the radius containing
the contact point (cf. Figure 6); hence the configuration space is
R× S1.

If the wheel is to rotate without slipping, we must require that
ẋ = Rθ̇ along any motion; this is equivalent to requiring that the
motion be compatible with the distribution defined on R × S1 by
the vector field

X = R
∂

∂x
+

∂

∂θ
,

or, equivalently, by the kernel of the 1-form

ω = dx−Rdθ.
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θ

x

O

Figure 6. Wheel rolling without slipping.

(2) (Ice skate) A simple model for an ice skate is provided by a line seg-
ment which can either move along itself or rotate about its middle
point. The position of the skate can be specified by the Cartesian
coordinates (x, y) of the middle point and the angle θ between the
skate and the x-axis (cf. Figure 7); hence the configuration space
is R2 × S1.

θ x

y

Figure 7. Ice skate.

If the skate can only move along itself, we must require that
(ẋ, ẏ) be proportional to (cos θ, sin θ); this is equivalent to requiring
that the motion be compatible with the distribution defined on
R2 × S1 by the vector fields

X = cos θ
∂

∂x
+ sin θ

∂

∂y
, Y =

∂

∂θ
,

or, equivalently, by the kernel of the 1-form

ω = − sin θdx+ cos θdy.

One may wonder whether there exists any connection between holonomic
and non-holonomic constraints. To answer this question, we must make a
small digression.
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Definition 4.4. A foliation of dimension m on an n-dimensional dif-
ferentiable manifold M is a family F = {Lα}α∈A of subsets of M (called
leaves) satisfying:

(1) M = ∪α∈ALα;
(2) Lα ∩ Lβ = ∅ if α 6= β;
(3) each leaf Lα is pathwise connected, that is, if p, q ∈ Lα then

there exists a continuous curve c : [0, 1] → Lα such that c(0) = p
and c(1) = q;

(4) for each point p ∈ M there exists an open set U ∋ p and local
coordinates (x1, . . . , xn) : U → Rn such that the connected compo-
nents of the intersections of the leaves with U are the level sets of
(xm+1, . . . , xn) : U → Rn−m.

Remark 4.5. The coordinates (x1, . . . , xm) provide local coordinates on
the leaves, which are therefore images of injective immersions. In particular,
the leaves have well defined m-dimensional tangent spaces at each point,
and consequently any foliation of dimension m defines an m-dimensional
distribution. Notice however that in general the leaves are not (embedded)
submanifolds of M (cf. Exercise 4.15.2).

Definition 4.6. Anm-dimensional distribution Σ on a differential man-
ifold M is said to be integrable if there exists an m-dimensional foliation
F = {Lα}α∈A on M such that

Σp = TpLp

for all p ∈M , where Lp is the leaf containing p. The leaves of F are called
the integral submanifolds of the distribution.

Integrable distributions are particularly simple. For instance, the set
of points q ∈ M which are accessible from a given point p ∈ M by a curve
compatible with the distribution is simply the leaf Lp through p. If the leaves
are embedded submanifolds, then an integrable non-holonomic restriction
reduces to a family of holonomic restrictions. For this reason, an integrable
distribution is sometimes called a semi-holonomic constraint, whereas a
non-integrable distribution is called a true non-holonomic constraint.

It is therefore important to have a criterion for identifying integrable
distributions.

Definition 4.7. Let Σ be a distribution on a differentiable manifold M .
A vector field X ∈ X(M) is said to be compatible with Σ if Xp ∈ Σp for
all p ∈ M . We denote by X(Σ) the linear subspace of X(M) formed by all
vector fields which are compatible with Σ.

Theorem 4.8. (Frobenius) A distribution Σ is integrable if and only if
X,Y ∈ X(Σ) ⇒ [X,Y ] ∈ X(Σ).

Proof. The proof of this theorem can be found in [War83] (see Exer-
cise 4.15.3 for the “only if” part). �
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If Σ is locally given by m vector fields X1, . . . , Xm, then to check in-
tegrability it suffices to check whether [Xi, Xj ] =

∑m
k=1C

k
ijXk for locally

defined functions Ckij (cf. Exercise 4.15.4). The next proposition provides
an alternative criterion.

Proposition 4.9. An m-dimensional distribution Σ on an n-manifold
M is integrable if and only if

dωi ∧ ω1 ∧ · · · ∧ ωn−m = 0 (i = 1, . . . , n−m)

for all locally defined sets of differential forms {ω1, . . . , ωn−m} whose kernels
determine Σ.

Proof. Exercise 4.15.5. �

Since the condition of the Frobenius theorem is local, this condition
needs to be checked only for sets of differential forms whose domains form
an open cover of M .

Example 4.10.

(1) (Wheel rolling without slipping) Recall that in this case the con-
straint is given by the kernel of the 1-form

ω = dx−Rdθ.

Since dω = 0, we see that this is a semi-holonomic constraint,
corresponding to an integrable distribution. The leaves of the dis-
tribution are the submanifolds with equation x = x0 +Rθ.

(2) (Ice skate) Recall that in this case the constraint is given by the
kernel of the 1-form

ω = − sin θdx+ cos θdy.

Since

dω ∧ ω = (− cos θdθ ∧ dx− sin θdθ ∧ dy) ∧ (− sin θdx+ cos θdy)

= −dθ ∧ dx ∧ dy 6= 0,

we see that this is a true non-holonomic constraint.

In a Riemannian manifold (M, 〈·, ·〉), any distribution Σ determines an
orthogonal distribution Σ⊥, given by

Σ⊥
p = (Σp)

⊥ ⊂ TpM.

Hence we have two orthogonal projections ⊤ : TM → Σ and ⊥ : TM → Σ⊥.
The set of all external forces F : TM → T ∗M satisfying

F (v) = F
(
v⊤
)

for all v ∈ TM is denoted by FΣ.
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Definition 4.11. A reaction force on a mechanical system with non-
holonomic constraints (M, 〈·, ·〉,F ,Σ) is a force R ∈ FΣ such that the solu-
tions of the generalized Newton equation

µ

(
Dċ

dt

)
= (F +R)(ċ)

with initial condition in Σ are compatible with Σ. The reaction force is said
to be perfect, or to satisfy the d’Alembert principle, if

µ−1(R(v)) ∈ Σ⊥
p

for all v ∈ TpM,p ∈M .

Just like in the holonomic case, a reaction force is perfect if and only if
it neither creates nor dissipates energy along any motion compatible with
the constraint.

Theorem 4.12. Given a mechanical system with non-holonomic con-
straints (M, 〈·, ·〉,F ,Σ), there exists a unique reaction force R ∈ FΣ satisfy-
ing the d’Alembert principle.

Proof. We define the second fundamental form of the distribution
Σ at a point p ∈M as the map B : TpM × Σp → Σ⊥

p given by

B(v, w) = (∇XY )⊥ ,

where X ∈ X(M) and Y ∈ X(Σ) satisfy Xp = v and Yp = w. To check that
B is well defined, let {Z1, . . . , Zn} be a local orthonormal frame such that
{Z1, . . . , Zm} is a basis for Σ and {Zm+1, . . . , Zn} is a basis for Σ⊥. Then

∇XY = ∇X

(
m∑

i=1

Y iZi

)
=

m∑

i=1


(X · Y i)Zi +

n∑

j,k=1

ΓkjiX
jY iZk


 ,

where the functions Γkij are defined by

∇ZiZj =
n∑

k=1

ΓkijZk.

Consequently,

B(v, w) = (∇XY )⊥ =
n∑

i=1

m∑

j=1

n∑

k=m+1

ΓkijX
iY jZk

depends only on v = Xp and w = Yp, and is a bilinear map. Incidentally,
the restriction of B to Σp × Σp is symmetric for all p ∈M if and only if

Γkij = Γkji ⇔ 〈∇ZiZj , Zk〉 = 〈∇ZjZi, Zk〉 ⇔ 〈[Zi, Zj ], Zk〉 = 0

for all i, j = 1, . . . ,m and all k = m + 1, . . . , n, i.e. if and only if Σ is
integrable. In this case, B is, of course, the second fundamental form of the
leaves.
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Let us assume that R exists. Then any motion c : I ⊂ R → M with
initial condition on Σ is compatible with Σ and satisfies

Dċ

dt
= µ−1(F(ċ)) + µ−1(R(ċ)).

The projection of this equation on Σ⊥ yields

B(ċ, ċ) =
(
µ−1(F(ċ))

)⊥
+ µ−1(R(ċ))

(recall that Dċ
dt = ∇ċċ). Therefore, if R exists then it must be given by

R(v) = µ (B(v, v))− µ
((
µ−1(F(v))

)⊥)

for any v ∈ Σ, and by R(v) = R
(
v⊤
)
for any v ∈ TM (as R ∈ FΣ). This

proves uniqueness of R.
To prove existence, we just have to show that for this choice of R the

solutions of the generalized Newton equation with initial condition on Σ are
compatible with Σ. Consider the system

{
ċ =

∑m
i=1 v

iZi
Dċ
dt = µ−1(F(ċ))−

(
µ−1(F(ċ))

)⊥
+B(ċ, ċ)

.(24)

When written in local coordinates, this is a system of first order ODEs with
n+m unknowns x1(t), . . . , xn(t), v1(t), . . . , vm(t). Since the second equation
is just

Dċ

dt
=
(
µ−1(F(ċ))

)⊤
+

(
Dċ

dt

)⊥
⇔
(
Dċ

dt

)⊤
=
(
µ−1(F(ċ))

)⊤
,

we see that this equation has only m nonvanishing components in the local
frame {Z1, . . . , Zn}. Therefore, (24) is a system of (n+m) first order ODEs
on n+m unknowns, and has a unique local solution for any initial condition.
If ċ(0) ∈ Σc(0), we can always choose v1(0), . . . , vm(0) such that

ċ(0) =
m∑

i=1

vi(0) (Zi)c(0) .

The solution of (24) with initial condition (x1(0), . . . , xn(0), v1(0), . . . , vm(0))
must then, by uniqueness, be the solution of

Dċ

dt
= µ−1(F(ċ)) + µ−1(R(ċ))

with initial condition ċ(0). On the other hand, it is, by construction, com-
patible with Σ. �

Example 4.13. (Wheel rolling without slipping) Recall that in this case
the constraint is given by the kernel of the 1-form

ω = dx−Rdθ.
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Since µ−1R is orthogonal to the constraint for a perfect reaction force R, the
constraint must be in the kernel of R, and hence R = λω for some smooth
function λ : TM → R.

If the kinetic energy of the wheel is

K =
M

2
(vx)2 +

I

2

(
vθ
)2

then

µ

(
Dċ

dt

)
=Mẍdx+ Iθ̈dθ.

Just to make things more interesting, consider a constant gravitational
acceleration g and suppose that the plane on which the wheel rolls makes
an angle α with respect to the horizontal (Figure 8), so that there exists a
conservative force with potential energy

U =Mgx sinα.

The equation of motion is therefore

µ

(
Dċ

dt

)
= −dU +R(ċ) ⇔Mẍdx+ Iθ̈dθ = −Mg sinαdx+ λdx− λRdθ.

The motion of the wheel will be given by a solution of this equation which
also satisfies the constraint equation, i.e. a solution of the system of ODEs





Mẍ = −Mg sinα+ λ

Iθ̈ = −Rλ
ẋ = Rθ̇

.

This system is easily solved to yield




x(t) = x0 + v0t− γ
2 t

2

θ(t) = θ0 +
v0
R t−

γ
2R t

2

λ = Iγ
R2

where

γ =
g sinα

1 + I
MR2

and x0, v0, θ0 are integration constants.
Physically, the reaction force can be interpreted as a friction force ex-

erted by the plane on the wheel. This force opposes the translational motion
of the wheel but accelerates its spinning motion. Therefore, contrary to in-
tuition, there is no dissipation of energy: all the translational kinetic energy
lost by the wheel is restored as rotational kinetic energy.

A perfect reaction force guarantees, as one would expect, conservation
of energy.
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Figure 8. Wheel rolling without slipping on an inclined plane.

Theorem 4.14. Let (M, 〈·, ·〉,−dU,Σ) be a conservative mechanical sys-
tem with non-holonomic constraints. If the reaction force R satisfies the
d’Alembert principle then the mechanical energy E := K + U is constant
along any motion with initial condition in Σ.

Proof. Exercise 4.15.7. �

Exercises 4.15.

(1) Show that an m-dimensional distribution Σ on an n-manifold M is
differentiable if and only if for all p ∈M there exists a neighborhood
U ∋ p and 1-forms ω1, . . . , ωn−m ∈ Ω1(U) such that

Σq = ker
(
ω1
)
q
∩ · · · ∩ ker

(
ωn−m

)
q

for all q ∈ U .
(2) Show that the foliation

F =
{
(x, y) ∈ R2 | y =

√
2x+ α

}
α∈R

of R2 induces a foliation F ′ on T 2 = R2/Z2 whose leaves are not
(embedded) submanifolds.

(3) Let Σ be an integrable distribution. Show that X,Y ∈ X(Σ) ⇒
[X,Y ] ∈ X(Σ).

(4) Using the Frobenius theorem show that an m-dimensional distri-
bution Σ is integrable if and only if each local basis of vector fields
{X1, . . . , Xm} satisfies [Xi, Xj ] =

∑m
k=1C

k
ijXk for locally defined

functions Ckij . (Remark: Since the condition of the Frobenius theorem is local,

this condition needs to be checked only for local bases whose domains form an open

cover of M).
(5) Prove Proposition 4.9. (Hint: Recall from Exercise 3.8.2 in Chapter 2 that

dω(X,Y ) = X · ω(Y )− Y · ω(X)− ω([X,Y ]) for any ω ∈ Ω1(M) and X,Y ∈ X(M)).
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(6) Let M be an n-dimensional differentiable manifold with an affine
connection ∇. Show that the parallel transport of vectors is deter-
mined by a distribution Σ on TM , which is integrable if and only
if the curvature of ∇ vanishes.

(7) Prove Theorem 4.14.
(8) (Ice skate) Recall that our model for an ice skate is given by the

non-holonomic constraint Σ defined on R2×S1 by the kernel of the
1-form ω = − sin θdx+ cos θdy.
(a) Show that the ice skate can access all points in the configu-

ration space: given two points p, q ∈ R2 × S1 there exists a
piecewise smooth curve c : [0, 1] → R2×S1 compatible with Σ
such that c(0) = p and c(1) = q. Why does this show that Σ
is non-integrable?

(b) Assuming that the kinetic energy of the skate is

K =
M

2

(
(vx)2 + (vy)2

)
+
I

2

(
vθ
)2

and that the reaction force is perfect, show that the skate
moves with constant speed along straight lines or circles. What
is the physical interpretation of the reaction force?

(c) Determine the motion of the skate moving on an inclined plane,
i.e. subject to a potential energy U =Mg sinαx.

(9) Consider a vertical wheel of radius R moving on a plane.
(a) Show that the non-holonomic constraint corresponding to the

condition of rolling without slipping or sliding is the distribu-
tion determined on the configuration space R2 × S1 × S1 by
the 1-forms

ω1 = dx−R cosϕdψ, ω2 = dy −R sinϕdψ,

where (x, y, ψ, ϕ) are the local coordinates indicated in Fig-
ure 9.

(b) Assuming that the kinetic energy of the wheel is

K =
M

2

(
(vx)2 + (vy)2

)
+
I

2
(vψ)2 +

J

2
(vϕ)2

and that the reaction force is perfect, show that the wheel
moves with constant speed along straight lines or circles. What
is the physical interpretation of the reaction force?

(c) Determine the motion of the vertical wheel moving on an in-
clined plane, i.e. subject to a potential energy U =Mg sinαx.

(10) Consider a sphere of radius R and mass M rolling without slipping
on a plane.
(a) Show that the condition of rolling without slipping is

ẋ = Rωy, ẏ = −Rωx,
where (x, y) are the Cartesian coordinates of the contact point
on the plane and ω is the angular velocity of the sphere.
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Figure 9. Vertical wheel on a plane.

(b) Show that if the sphere’s mass is symmetrically distributed
then its kinetic energy is

K =
M

2

(
ẋ2 + ẏ2

)
+
I

2
〈ω, ω〉,

where I is the sphere’s moment of inertia and 〈·, ·〉 is the Eu-
clidean inner product.

(c) Using ω as coordinates on the fibers of TSO(3), show that

Dċ

dt
= ẍ

∂

∂x
+ ÿ

∂

∂y
+ ω̇.

(Hint: Recall from Exercise 4.8.3 in Chapter 3 that the integral curves of left-

invariant vector fields on a Lie group with a bi-invariant metric are geodesics).
(d) Since we are identifying the fibers of TSO(3) with R3, we can

use the Euclidean inner product to also identify the fibers of
T ∗SO(3) with R3. Show that under this identification the non-
holonomic constraint yielding the condition of rolling without
slipping is the distribution determined by the kernels of the
1-forms

θx := dx−Rey, θy := dy +Rex
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(where {ex, ey, ez} is the canonical basis of R3). Is this distri-
bution integrable? (Hint: Show that any two points of R2 × SO(3) can

be connected by a piecewise smooth curve compatible with the distribution).
(e) Show that the sphere moves along straight lines with constant

speed and constant angular velocity orthogonal to its motion.
(f) Determine the motion of the sphere moving on an inclined

plane, i.e. subject to a potential energy U =Mg sinαx.
(11) (The golfer dilemma) Show that the center of a symmetric sphere

of radius R, mass M and moment of inertia I rolling without slip-
ping inside a vertical cylinder of radius R+ a moves with constant
angular velocity with respect to the axis of the cylinder while oscil-

lating up and down with a frequency
√

I
I+MR2 times the frequency

of the angular motion.

5. Lagrangian Mechanics

Let M be a differentiable manifold, p, q ∈ M and a, b ∈ R such that
a < b. Let us denote by C the set of differentiable curves c : [a, b] →M such
that c(a) = p and c(b) = q.

Definition 5.1. A Lagrangian function on M is a differentiable map
L : TM → R. The action determined by L on C is the map S : C → R
given by

S(c) :=

∫ b

a
L(ċ(t))dt.

We can look for the global minima (or maxima) of the action by consid-
ering curves on C.

Definition 5.2. A variation of c ∈ C is a map γ : (−ε, ε) → C (for
some ε > 0) such that γ(0) = c and the map γ̃ : (−ε, ε) × [a, b] → M given
by γ̃(s, t) := γ(s)(t) is differentiable. The curve c is said to be a critical
point of the action if

d

ds |s=0

S(γ(s)) = 0

for any variation γ of c.

Notice that the global minima (or maxima) of S must certainly be at-
tained at critical points. However, as it is usually the case, a critical point
is not necessarily a point of minimum (or maximum). It turns out that the
critical points of the action are solutions of second order ODEs.

Theorem 5.3. The curve c ∈ C is a critical point of the action de-
termined by the Lagrangian L : TM → R if and only if it satisfies the
Euler-Lagrange equations

d

dt

(
∂L

∂vi
(x(t), ẋ(t))

)
− ∂L

∂xi
(x(t), ẋ(t)) = 0 (i = 1, . . . , n)
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for any local chart (x1, . . . , xn) on M , where (x1, . . . , xn, v1, . . . , vn) is the
corresponding local chart induced on TM .

Proof. Assume first that the image of c is contained on the domain of
a local chart (x1, . . . , xn). Let γ : (−ε, ε) → C be a variation of c. Setting
x(s, t) := (x ◦ γ̃)(s, t), we have

S(γ(s)) =

∫ b

a
L

(
x(s, t),

∂x

∂t
(s, t)

)
dt,

and hence

d

ds |s=0

S(γ(s)) =

∫ b

a

n∑

i=1

∂L

∂xi

(
x(0, t),

∂x

∂t
(0, t)

)
∂xi

∂s
(0, t) dt

+

∫ b

a

n∑

i=1

∂L

∂vi

(
x(0, t),

∂x

∂t
(0, t)

)
∂2xi

∂s∂t
(0, t) dt.

Differentiating the relations x(s, a) = x(p), x(s, b) = x(q) with respect to s
one obtains

∂x

∂s
(0, a) =

∂x

∂s
(0, b) = 0.

Consequently, the second integral above can be integrated by parts to yield

−
∫ b

a

n∑

i=1

d

dt

(
∂L

∂vi

(
x(0, t),

∂x

∂t
(0, t)

))
∂xi

∂s
(0, t) dt,

and hence

d

ds |s=0

S(γ(s)) =

∫ b

a

n∑

i=1

(
∂L

∂xi
(x(t), ẋ(t))− d

dt

(
∂L

∂vi
(x(t), ẋ(t))

))
wi(t) dt,

where we have set x(t) := (x ◦ c)(t) and w(t) := ∂x
∂s (0, t). This shows that

if c satisfies the Euler-Lagrange equations then c is a critical point of the
action.

To show the converse, we notice that any smooth function w : [a, b] → Rn

satisfying w(a) = w(b) = 0 determines a variation γ : (−ε, ε) → C given in
local coordinates by x(s, t) = x(t) + sw(t), satisfying ∂x

∂s (0, t) = w(t). In
particular, if ρ : [a, b] → R is a smooth positive function with ρ(a) = ρ(b) =
0, we can take

wi(t) := ρ(t)

(
∂L

∂xi
(x(t), ẋ(t))− d

dt

(
∂L

∂vi
(x(t), ẋ(t))

))
.

Therefore if c is a critical point of the action we must have
∫ b

a

n∑

i=1

(
∂L

∂xi
(x(t), ẋ(t))− d

dt

(
∂L

∂vi
(x(t), ẋ(t))

))2

ρ(t) dt = 0,

and hence c must satisfy the Euler-Lagrange equations.
The general case (in which the image of c is not contained in the domain

of the local chart) is left as an exercise. �
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Corollary 5.4. The motions of any conservative mechanical system
(M, 〈·, ·〉,−dU) are the critical points of the action determined by the La-
grangian L := K − U . �

Therefore we can find motions of conservative systems by looking for
minima, say, of the action. This variational approach is often very useful.

The energy conservation in a conservative system is, in fact, a particular
case of a more general conservation law, which holds for any Lagrangian.
Before we state it we need the following definitions.

Definition 5.5. The fiber derivative of a Lagrangian function L :
TM → R at v ∈ TpM is the linear map (FL)v : TpM → R given by

(FL)v(w) :=
d

dt |t=0

L(v + tw)

for all w ∈ TpM .

Definition 5.6. If L : TM → R is a Lagrangian function then its
associated Hamiltonian function H : TM → R is defined as

H(v) := (FL)v(v)− L(v).

Theorem 5.7. The Hamiltonian function is constant along the solutions
of the Euler-Lagrange equations.

Proof. In local coordinates we have

H(x, v) =
n∑

i=1

vi
∂L

∂vi
(x, v)− L(x, v).

Consequently, if c : I ⊂ R → M is a solution of the Euler-Lagrange equa-
tions, given in local coordinates by x = x(t), then

d

dt
(H(ċ(t))) =

d

dt

(
n∑

i=1

ẋi(t)
∂L

∂vi
(x(t), ẋ(t))− L(x(t), ẋ(t))

)

=
n∑

i,j=1

ẍi(t)
∂L

∂vi
(x(t), ẋ(t)) +

n∑

i=1

ẋi(t)
d

dt

(
∂L

∂vi
(x(t), ẋ(t))

)

−
n∑

i=1

ẋi(t)
∂L

∂xi
(x(t), ẋ(t))−

n∑

i=1

ẍi(t)
∂L

∂vi
(x(t), ẋ(t)) = 0.

�

Example 5.8. If (M, 〈·, ·〉,−dU) is a conservative mechanical system
then its motions are the solutions of the Euler-Lagrange equations for the
Lagrangian L : TM → R given by

L(v) =
1

2
〈v, v〉 − U(π(v))
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(where π : TM →M is the canonical projection). Clearly,

(FL)v(w) =
1

2

d

dt |t=0

〈v + tw, v + tw〉 = 〈v, w〉,

and hence

H(v) = 〈v, v〉 − 1

2
〈v, v〉+ U(π(v)) =

1

2
〈v, v〉+ U(π(v))

is the mechanical energy.

The Lagrangian formulation is particularly useful for exploring the rela-
tion between symmetry and conservation laws.

Definition 5.9. Let G be a Lie group acting on a manifold M . The
Lagrangian L : TM → R is said to be G-invariant if

L ((dg)pv) = L(v)

for all v ∈ TpM , p ∈M and g ∈ G (where g :M →M is the map p 7→ g ·p).
We will now show that if a Lagrangian is G-invariant then to each ele-

ment V ∈ g there corresponds a conserved quantity. To do so, we need the
following definitions.

Definition 5.10. Let G be a Lie group acting on a manifold M . The
infinitesimal action of V ∈ g on M is the vector field XV ∈ X(M) defined
as

XV
p :=

d

dt |t=0

(exp(tV ) · p) = (dAp)e V,

where Ap : G→M is the map Ap(g) = g · p.
Theorem 5.11. (Noether) Let G be a Lie group acting on a manifold

M . If L : TM → R is G-invariant then JV : TM → R defined as JV (v) :=
(FL)v

(
XV
)
is constant along the solutions of the Euler-Lagrange equations

for all V ∈ g.

Proof. Choose local coordinates (x1, . . . , xn) onM and let (y1, . . . , ym)
be local coordinates centered at e ∈ G. Let A : G×M → M be the action
of G on M , written in these local coordinates as

(A1(x1, . . . , xn, y1, . . . , ym), . . . , An(x1, . . . , xn, y1, . . . , ym)).

Then the infinitesimal action of V =
∑m

a=1 V
a ∂
∂ya has components

Xi(x) =
m∑

a=1

∂Ai

∂ya
(x, 0)V a.

Since L is G-invariant, we have

L

(
A1(x, y), . . . , An(x, y),

n∑

i=1

∂A1

∂xi
(x, y)vi, . . . ,

n∑

i=1

∂An

∂xi
(x, y)vi

)

= L(x1, . . . , xn, v1, . . . , vn).
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Setting y = y(t) in the above identity, where (y1(t), . . . , ym(t)) is the ex-
pression of the curve exp(tV ) in local coordinates, and differentiating with
respect to t at t = 0, we obtain

n∑

i=1

m∑

a=1

∂L

∂xi
(x, v)

∂Ai

∂ya
(x, 0)V a +

n∑

i,j=1

m∑

a=1

∂L

∂vi
(x, v)

∂2Ai

∂ya∂xj
(x, 0)vjV a = 0

⇔
n∑

i=1

∂L

∂xi
(x, v)Xi(x) +

n∑

i,j=1

∂L

∂vi
(x, v)

∂Xi

∂xj
(x)vj = 0.

In these coordinates,

JV (x, v) =
n∑

i=1

∂L

∂vi
(x, v)Xi(x).

Therefore, if c : I ⊂ R → M is a solution of the Euler-Lagrange equations,
given in local coordinates by x = x(t), we have

d

dt

(
JV (ċ(t))

)
=

d

dt

(
n∑

i=1

∂L

∂vi
(x(t), ẋ(t))Xi(x(t))

)

=
n∑

i=1

d

dt

(
∂L

∂vi
(x(t), ẋ(t))

)
Xi(x(t)) +

n∑

i,j=1

∂L

∂vi
(x(t), ẋ(t))

∂Xi

∂xj
(x(t))ẋj(t)

=

n∑

i=1

d

dt

(
∂L

∂vi
(x(t), ẋ(t))

)
Xi(x(t))−

n∑

i=1

∂L

∂xi
(x(t), ẋ(t))Xi(x(t)) = 0.

�

Remark 5.12. Notice that the map g ∋ V 7→ XV ∈ X(M) is linear.
Since (FL)v is also linear, we can see JV as a linear map g ∋ V 7→ JV ∈
C∞(TM). Therefore the Noether theorem yields m = dim g independent
conserved quantities.

Example 5.13. Consider a conservative mechanical system consisting of
k particles with masses m1, . . . ,mk moving in R3 under a potential energy
U : R3k → R which depends only on the distances between them. The
motions of the system are the solutions of the Euler-Lagrange equations
obtained from the Lagrangian L : TR3k → R given by

L(x1, . . . , xk, v1, . . . , vk) =
1

2

k∑

i=1

mi〈vi, vi〉 − U(x1, . . . , xk).

This Lagrangian is clearly SO(3)-invariant, where the action of SO(3) on
R3k is defined through

S · (x1, . . . , xk) = (Sx1, . . . , Sxk).

The infinitesimal action of V ∈ so(3) is the vector field

XV
(x1,...,xk)

= (V x1, . . . , V xk) = (Ω(V )× x1, . . . ,Ω(V )× xk),
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where Ω : so(3) → R3 is the isomorphism in Lemma 3.9. On the other hand,

(FL)(v1,...,vk)(w1, . . . , wk) =
k∑

i=1

mi〈vi, wi〉.

Therefore, the Noether theorem guarantees that the quantity

JV =
k∑

i=1

mi〈ẋi,Ω(V )×xi〉 =
k∑

i=1

mi〈Ω(V ), xi×ẋi〉 =
〈
Ω(V ),

k∑

i=1

mixi × ẋi

〉

is conserved along the motion of the system for any V ∈ so(3). In other
words, the system’s total angular momentum

Q :=

k∑

i=1

mixi × ẋi

is conserved.

Exercises 5.14.

(1) Complete the proof of Theorem 5.3.
(2) Let (M, 〈·, ·〉) be a Riemannian manifold. Show that the critical

points of the arclength, i.e., of the action determined by the La-
grangian L : TM → R given by

L(v) = 〈v, v〉 1
2

(where we must restrict the action to curves with nonvanishing
velocity) are reparameterized geodesics.

(3) (Brachistochrone curve) A particle with mass m moves on a curve
y = y(x) under the action of a constant gravitational field, cor-
responding to the potential energy U = mgy. The curve satisfies
y(0) = y(d) = 0 and y(x) < 0 for 0 < x < d.
(a) Assuming that the particle is set free at the origin with zero

velocity, show that its speed at each point is

v =
√
−2gy,

and that therefore the travel time between the origin and point
(d, 0) is

S = (2g)−
1
2

∫ d

0
(1 + y′2)

1
2 (−y)− 1

2dx,

where y′ = dy
dx .

(b) Show that the curve y = y(x) which corresponds to the mini-
mum travel time satisfies the differential equation

d

dx

[(
1 + y′2

)
y
]
= 0.
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(c) Check that the solution of this equation satisfying y(0) =
y(d) = 0 is given parametrically by

{
x = Rθ −R sin θ

y = −R+R cos θ

where d = 2πR. (Remark: This curve is called a cycloid, because it is

the curved traced out by a point on a circle which rolls without slipping on the

xx-axis).
(4) (Charged particle in a stationary electromagnetic field) The motion

of a particle with mass m > 0 and charge e ∈ R in a stationary
electromagnetic field is determined by the Lagrangian L : TR3 → R
given by

L =
1

2
m〈v, v〉+ e〈A, v〉 − eΦ,

where 〈·, ·〉 is the Euclidean inner product, Φ ∈ C∞(R3) is the elec-
tric potential and A ∈ X(R3) is themagnetic vector potential.
(a) Show that the equations of motion are

mẍ = eE + eẋ×B,

where E = − gradΦ is the electric field and B = curlA is
the magnetic field.

(b) Write an expression for the Hamiltonian function and use the
equations of motion to check that it is constant along any
motion.

(5) (Restricted 3-body problem) Consider two gravitating particles mov-
ing in circular orbit around their common center of mass. We
choose our units so that the masses of the particles are 0 < µ < 1
and 1 − µ, the distance between them is 1 and the orbital angu-
lar velocity is also 1. Identifying the plane of the orbit with R2,
with the center of mass at the origin, we can choose fixed positions
p1 = (1 − µ, 0) and p2 = (−µ, 0) for the particles in the rotating
frame where they are at rest.
(a) Use Exercise 3.20.11 to show that in this frame the equations

of motion of a third particle with negligible mass m moving in
the plane of the orbit are





ẍ =
Fx
m

+ x+ 2ẏ

ÿ =
Fy
m

+ y − 2ẋ

,

where (Fx, Fy) is the force on m as measured in the rotating
frame.
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(b) Assume that the only forces on m are the gravitational forces
produced by µ and 1− µ, so that





Fx
m

= − µ

r13
(x− 1 + µ)− 1− µ

r23
(x+ µ)

Fy
m

= − µ

r13
y − 1− µ

r23
y = 0

,

where r1, r2 : R2 → R are the Euclidean distances to p1, p2.
Show that the equations of motion are the Euler-Lagrange
equations for the Lagrangian L : T

(
R2 \ {p1, p2}

)
→ R given

by

L(x, y, vx, vy) =
1

2

(
(vx)2 + (vy)2

)
+ xvy − yvx

+
1

2

(
x2 + y2

)
+
µ

r1
+

1− µ

r2
.

(c) Find the Hamiltonian function. (Remark: The fact that this function

remains constant gives the so-called Tisserand criterion for identifying the

same comet before and after a close encounter with Jupiter).
(d) Compute the equilibrium points (i.e. the points corresponding

to stationary solutions) which are not on the x-axis. How
many equilibrium points are there in the x-axis?

(e) Show that the linearization of the system around the equilib-
rium points not in the x-axis is





ξ̈ − 2η̇ =
3

4
ξ ± 3

√
3

4
(1− 2µ)η

η̈ + 2ξ̇ = ±3
√
3

4
(1− 2µ)ξ +

9

4
η

,

and show that these equilibrium points are unstable for

1

2

(
1−

√
69

9

)
< µ <

1

2

(
1 +

√
69

9

)
.

(6) Consider the mechanical system in Example 5.13.
(a) Use the Noether theorem to prove that the total linear mo-

mentum

P :=
k∑

i=1

miẋi

is conserved along the motion.
(b) Show that the system’s center of mass, defined as the point

X =

∑k
i=1mixi∑k
i=1mi

,



202 5. GEOMETRIC MECHANICS

moves with constant velocity.
(7) Generalize Example 5.13 to the case in which the particles move in

an arbitrary Riemannian manifold (M, 〈·, ·〉), by showing that given
any Killing vector field X ∈ X(M) (cf. Exercise 3.3.8 in Chapter 3)
the quantity

JX =
k∑

i=1

mi〈ċi, X〉

is conserved, where ci : I ⊂ R → M is the motion of the particle
with mass mi.

(8) Consider the action of SO(3) on itself by left multiplication.
(a) Show that the infinitesimal action of B ∈ so(3) is the right-

invariant vector field determined by B.
(b) Use the Noether theorem to show that the angular momentum

of the free rigid body is constant.
(9) Consider a satellite equipped with a small rotor, i.e. a cylinder

which can spin freely about its axis. When the rotor is locked the
satellite can be modeled by a free rigid body with inertia tensor
I. The rotor’s axis passes through the satellite’s center of mass,
and its direction is given by the unit vector e. The rotor’s mass is
symmetrically distributed around the axis, producing a moment of
inertia J .
(a) Show that the configuration space for the satellite with un-

locked rotor is the Lie group SO(3)× S1, and that its motion
is a geodesic of the left-invariant metric corresponding to the
kinetic energy

K =
1

2
〈IΩ,Ω〉+ 1

2
J̟2 + J̟〈Ω, e〉,

where the Ω ∈ R3 is the satellite’s angular velocity as seen on
the satellite’s frame and ̟ ∈ R is the rotor’s angular speed
around its axis.

(b) Use the Noether theorem to show that l = J(̟ + 〈Ω, e〉) ∈ R
and p = S(IΩ + J̟e) ∈ R3 are conserved along the motion
of the satellite with unlocked rotor, where S : R → SO(3)
describes the satellite’s orientation.

6. Hamiltonian Mechanics

We will now see that under certain conditions it is possible to study the
Euler-Lagrange equations as a flow on the cotangent bundle with special
geometric properties.

Let M be an n-dimensional manifold. The set

TM ⊕ T ∗M :=
⋃

q∈M
TqM × T ∗

qM
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has an obvious differentiable structure: if (x1, . . . , xn) are local coordinates
on M then (x1, . . . , xn, v1, . . . , vn, p1, . . . , pn) are the local coordinates on
TM ⊕ T ∗M which label the pair (v, ω) ∈ TqM × T ∗

qM , where

v =
n∑

i=1

vi
∂

∂xi
, ω =

n∑

i=1

pidx
i,

and q ∈M is the point with coordinates (x1, . . . , xn). For this differentiable
structure, the maps π1 : TM ⊕ T ∗M → TM and π2 : TM ⊕ T ∗M → T ∗M
given by π1(v, ω) = v and π2(v, ω) = ω are submersions.

Definition 6.1. The extended Hamiltonian function corresponding

to a Lagrangian L : TM → R is the map H̃ : TM ⊕ T ∗M → R given by

H̃(v, ω) := ω(v)− L(v).

In local coordinates, we have

H̃(x1, . . . , xn, v1, . . . , vn, p1, . . . , pn) =
n∑

i=1

piv
i − L(x1, . . . , xn, v1, . . . , vn),

and hence

dH̃ =
n∑

i=1

(
pi −

∂L

∂vi

)
dvi +

n∑

i=1

vidpi −
n∑

i=1

∂L

∂xi
dxi.

Thus any critical point of any restriction of H̃ to a submanifold of the form
TqM × {ω} (for fixed q ∈M and ω ∈ T ∗

qM) must satisfy

pi =
∂L

∂vi
(x1, . . . , xn, v1, . . . , vn) (i = 1, . . . , n).

It follows that the set of all such critical points is naturally a 2n-dimensional
submanifold S ⊂ TM⊕T ∗M such that π1|S : S → TM is a diffeomorphism.
If π2|S : S → T ∗M is also a diffeomorphism then the Lagrangian is said

to be hyper-regular. In this case, π2|S ◦ π1|S−1 : TM → T ∗M is a fiber-
preserving diffeomorphism, called the Legendre transformation.

Given a hyper-regular Lagrangian, we can use the maps π1|S and π2|S
to make the identifications TM ∼= S ∼= T ∗M . Since the Hamiltonian func-
tion H : TM → R is clearly related to the extended Hamiltonian function

through H = H̃ ◦ π1|S−1, we can under these identifications simply write

H = H̃|S . Therefore

dH =
n∑

i=1

vidpi −
n∑

i=1

∂L

∂xi
dxi

(here we must think of (x1, . . . , xn, v1, . . . , vn, p1, . . . , pn) as local functions
on S such that both (x1, . . . , xn, v1, . . . , vn) and (x1, . . . , xn, p1, . . . , pn) are
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local coordinates). On the other hand, thinking of H as a function on the
cotangent bundle, we obtain

dH =
n∑

i=1

∂H

∂xi
dxi +

n∑

i=1

∂H

∂pi
dpi.

Therefore we must have




∂H

∂xi
= − ∂L

∂xi

∂H

∂pi
= vi

(i = 1, . . . , n),

where the partial derivatives of the Hamiltonian must be computed with re-
spect to the local coordinates (x1, . . . , xn, p1, . . . , pn) and the partial deriva-
tives of the Lagrangian must be computed with respect to the local coordi-
nates (x1, . . . , xn, v1, . . . , vn).

Proposition 6.2. The Euler-Lagrange equations for a hyper-regular La-
grangian L : TM → R define a flow on TM . This flow is carried by the Le-
gendre transformation to the flow defined on T ∗M by the Hamilton equa-
tions 




ẋi =
∂H

∂pi

ṗi = −∂H
∂xi

(i = 1, . . . , n).

Proof. The Euler-Lagrange equations can be cast as a system of first
order ordinary differential equations on TM as follows.





ẋi = vi

d

dt

(
∂L

∂vi

)
=
∂L

∂xi

(i = 1, . . . , n).

Since on S one has

pi =
∂L

∂vi
, vi =

∂H

∂pi
,

∂L

∂xi
= −∂H

∂xi
,

we see that this system reduces to the Hamilton equations in the local coor-
dinates (x1, . . . , xn, p1, . . . , pn). Since the Hamilton equations clearly define
a flow on T ∗M , the Euler-Lagrange equations must define a flow on TM . �

Example 6.3. The Lagrangian for a conservative mechanical system
(M, 〈·, ·〉,−dU) is written in local coordinates as

L(x1, . . . , xn, v1, . . . , vn) =
1

2

n∑

i,j=1

gij(x
1, . . . , xn)vivj − U(x1, . . . , xn).
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The Legendre transformation is given in these coordinates by

pi =
∂L

∂vi
=

n∑

j=1

gijv
j (i = 1, . . . , n),

and is indeed a fiber-preserving diffeomorphism, whose inverse is given by

vi =
n∑

j=1

gijpj (i = 1, . . . , n).

As a function on the tangent bundle, the Hamiltonian is (cf. Example 5.8)

H =
1

2

n∑

i,j=1

gijv
ivj + U.

Using the Legendre transformation, we can see the Hamiltonian as the fol-
lowing function on the cotangent bundle.

H =
1

2

n∑

i,j,k,l=1

gijg
ikpkg

jlpl + U =
1

2

n∑

k,l=1

gklpkpl + U.

Therefore the Hamilton equations for a conservative mechanical system are




ẋi =
n∑

j=1

gijpj

ṗi = −1

2

n∑

k,l=1

∂gkl

∂xi
pkpl −

∂U

∂xi

(i = 1, . . . , n).

The flow defined by the Hamilton equations has remarkable geometric
properties, which are better understood by introducing the following defini-
tion.

Definition 6.4. The canonical symplectic potential (or Liouville
form) is the 1-form θ ∈ Ω1(T ∗M) given by

θα(v) := α ((dπ)α(v))

for all v ∈ Tα(T
∗M) and all α ∈ T ∗M , where π : T ∗M → M is the

natural projection. The canonical symplectic form on T ∗M is the 2-
form ω ∈ Ω2(T ∗M) given by ω = dθ.

In local coordinates, we have

π(x1, . . . , xn, p1, . . . , pn) = (x1, . . . , xn)

and

v =
n∑

i=1

dxi(v)
∂

∂xi
+

n∑

i=1

dpi(v)
∂

∂pi
.
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Consequently,

(dπ)α(v) =
n∑

i=1

dxi(v)
∂

∂xi
,

and hence

θα(v) = α ((dπ)α(v)) =
n∑

i=1

pidx
i




n∑

j=1

dxj(v)
∂

∂xj


 =

n∑

i=1

pidx
i(v).

We conclude that

θ =

n∑

i=1

pidx
i,

and consequently

ω =
n∑

i=1

dpi ∧ dxi.

Proposition 6.5. The canonical symplectic form ω is closed (dω = 0)
and non-degenerate. Moreover, ωn = ω ∧ · · · ∧ ω is a volume form (in
particular T ∗M is always orientable, even if M itself is not).

Proof. Exercise 6.15.1. �

Recall from Exercise 1.15.8 in Chapter 2 that if v ∈ TpM then ι(v)ω ∈
T ∗
pM is the covector given by

(ι(v)ω) (w) = ω(v, w)

for all w ∈ TpM . Therefore the first statement in Proposition 6.5 is equiv-
alent to saying that the map TpM ∋ v 7→ ι(v)ω ∈ T ∗

pM is a linear isomor-
phism for all p ∈M .

The key to the geometric meaning of the Hamilton equations is contained
in the following result.

Proposition 6.6. The Hamilton equations are the equations for the
local flow of the vector field XH satisfying

ι(XH)ω = −dH.
Proof. The Hamilton equations yield the local flow of the vector field

XH =
n∑

i=1

(
∂H

∂pi

∂

∂xi
− ∂H

∂xi
∂

∂pi

)
.

Therefore

ι(XH)ω = ι(XH)

n∑

i=1

(dpi ⊗ dxi − dxi ⊗ dpi)

=
n∑

i=1

(
−∂H
∂xi

dxi − ∂H

∂pi
dpi

)
= −dH.

�
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Remark 6.7. Notice that H completely determines XH , as ω is nonde-
generate. By analogy with the Riemannian case, −XH is sometimes called
the symplectic gradient of H. The vector field XH is usually referred to
as the Hamiltonian vector field determined by H.

Definition 6.8. The Hamiltonian flow generated by F ∈ C∞(T ∗M)
is the flow of the unique vector field XF ∈ X(T ∗M) such that

ι(XF )ω = −dF,
which we assume to be complete (as will be the case if, for example, the flow
is along compact invariant sets).

The flow determined on T ∗M by a hyper-regular Lagrangian is therefore
a particular case of a Hamiltonian flow (in which the generating function is
the Hamiltonian function). We will now discuss the geometric properties of
general Hamiltonian flows, starting with the Hamiltonian version of energy
conservation.

Proposition 6.9. Hamiltonian flows preserve their generating func-
tions.

Proof. We have

XF · F = dF (XF ) = (−ι(XF )ω) (XF ) = −ω(XF , XF ) = 0,

as ω is alternating. �

Proposition 6.10. Hamiltonian flows preserve the canonical symplectic
form: if ψt : T

∗M → T ∗M is a Hamiltonian flow then ψt
∗ω = ω.

Proof. Let F ∈ C∞(T ∗M) be the function whose Hamiltonian flow is
ψt. Recall from Exercise 3.8.7 in Chapter 2 that the Lie derivative of ω
along XF ∈ X(T ∗M),

LXFω =
d

dt |t=0

ψt
∗ω,

can be computed by the Cartan formula:

LXFω = ι(XF )dω + d(ι(XF )ω) = d(−dF ) = 0.

Therefore

d

dt
ψt

∗ω =
d

ds |s=0

(ψt+s)
∗ω =

d

ds |s=0

(ψs ◦ ψt)∗ω =
d

ds |s=0

ψt
∗(ψs

∗ω)

= ψt
∗ d
ds |s=0

ψs
∗ω = ψt

∗LXFω = 0.

We conclude that

ψt
∗ω = (ψ0)

∗ω = ω.

�
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Theorem 6.11. (Liouville) Hamiltonian flows preserve the integral with
respect to the symplectic volume form: if ψt : T

∗M → T ∗M is a Hamiltonian
flow and F ∈ C∞(T ∗M) is a compactly supported function then∫

T ∗M
F ◦ ψt =

∫

T ∗M
F.

Proof. This is a simple consequence of the fact that ψt preserves the
symplectic volume form, since

ψt
∗(ωn) = (ψt

∗ω)n = ωn.

Therefore∫

T ∗M
F ◦ ψt =

∫

T ∗M
(F ◦ ψt)ωn =

∫

T ∗M
(F ◦ ψt)ψt∗(ωn)

=

∫

T ∗M
ψt

∗(Fωn) =
∫

T ∗M
Fωn =

∫

T ∗M
F

(cf. Exercise 4.2.4 in Chapter 2). �

Theorem 6.12. (Poincaré recurrence) Let ψt : T ∗M → T ∗M be a
Hamiltonian flow and K ⊂ T ∗M a compact set invariant under ψt. Then
for each open set U ⊂ K and each T > 0 there exist α ∈ U and t ≥ T such
that ψt(α) ∈ U .

Proof. Let F ∈ C∞(T ∗M) be a compactly supported smooth function
with values in [0, 1] such that F (α) = 1 for all α ∈ K (this is easily con-
structed using, for instance, a partition of unity). Let G ∈ C∞(T ∗M) be a
smooth function with values in [0, 1] and compact support contained in U
such that ∫

T ∗M
G > 0.

Consider the open sets Un := ψnT (U). If these sets were all disjoint then

one could define functions G̃N ∈ C∞(M) for each N ∈ N as

G̃N (α) =

{
(G ◦ ψ−nT )(α) if α ∈ Un and n ≤ N

0 otherwise
.

These functions would have compact support contained in K (K is invariant

under ψt) and values in [0, 1], and hence would satisfy G̃N ≤ F . Therefore
we would have

∫

T ∗M
F ≥

∫

T ∗M
G̃N =

N∑

n=1

∫

T ∗M
G ◦ ψ−nT = N

∫

T ∗M
G

for all N ∈ N, which is absurd. We conclude that there must exist m,n ∈ N
(with, say, n > m) such that

Um ∩ Un 6= ∅ ⇔ ψmT (U) ∩ ψnT (U) 6= ∅ ⇔ U ∩ ψ(n−m)T (U) 6= ∅.

Choosing t = (n −m)T and α ∈ ψ−t(U ∩ ψt(U)) = ψ−t(U) ∩ U yields the
result. �
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We can use the symplectic structure of the cotangent bundle to define a
new binary operation on the set of differentiable functions on T ∗M .

Definition 6.13. The Poisson bracket of two differentiable functions
F,G ∈ C∞(T ∗M) is {F,G} := XF ·G.

Proposition 6.14. (C∞(T ∗M), {·, ·}) is a Lie algebra, and the map
that associates to a function F ∈ C∞(T ∗M) its Hamiltonian vector field
XF ∈ X(T ∗M) is a Lie algebra homomorphism, i.e.

(i) {F,G} = −{G,F};
(ii) {αF + βG,H} = α{F,H}+ β{G,H};
(iii) {F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0;
(iv) X{F,G} = [XF , XG]

for any F,G,H ∈ C∞(T ∗M) and any α, β ∈ R.

Proof. We have

{F,G} = XF ·G = dG(XF ) = (−ι(XG)ω)(XF )

= −ω(XG, XF ) = ω(XF , XG),

which proves the anti-symmetry and bilinearity of the Poisson bracket. On
the other hand,

ι(X{F,G})ω = −d{F,G} = −d(XF ·G) = −d(dG(XF )) = −d(ι(XF )dG)

= −LXF dG = LXF (ι(XG)ω) = ι(LXFXG)ω + ι(XG)LXFω

= ι([XF , XG])ω

(cf. Exercise 3.8.7 in Chapter 2). Since ω is non-degenerate, we have

X{F,G} = [XF , XG].

Finally,

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}}
= {F,XG ·H} − {G,XF ·H} −X{F,G} ·H
= XF · (XG ·H)−XG · (XF ·H)− [XF , XG] ·H = 0.

�

Exercises 6.15.

(1) Prove Proposition 6.5.
(2) Let (M, 〈·, ·〉) be a Riemannian manifold, α ∈ Ω1(M) a 1-form and

U ∈ C∞(M) a differentiable function.
(a) Show that the Euler-Lagrange equations for the Lagrangian

L : TM → R given by

L(v) =
1

2
〈v, v〉+ ι(v)αp − U(p)

for v ∈ TpM yield the motions of the mechanical system
(M, 〈·, ·〉,F), where

F(v) = −(dU)p − ι(v)(dα)p
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for v ∈ TpM .
(b) Show that the mechanical energy E = K + U is conserved

along the motions of (M, 〈·, ·〉,F) (which is therefore called a
conservative mechanical system with magnetic term).

(c) Show that L is hyper-regular and compute the Legendre trans-
formation.

(d) Find the Hamiltonian H : T ∗M → R and write the Hamilton
equations.

(3) Let c > 0 be a positive number, representing the speed of light, and
consider the open set U := {v ∈ TRn | ‖v‖ < c}, where ‖ · ‖ is the
Euclidean norm. The motion of a free relativistic particle of mass
m > 0 is determined by the Lagrangian L : U → R given by

L(v) := −mc2
√
1− ‖v‖2

c2
.

(a) Show that L is hyper-regular and compute the Legendre trans-
formation.

(b) Find the Hamiltonian H : T ∗Rn → R and write the Hamilton
equations.

(4) Show that in the Poincaré recurrence theorem the set of points
α ∈ U such that ψt(α) ∈ U for some t ≥ T is dense in U . (Remark:

It can be shown that this set has full measure).
(5) Let (M, 〈·, ·〉) be a compact Riemannian manifold. Show that for

each normal ball B ⊂ M and each T > 0 there exist geodesics
c : R → M with ‖ċ(t)‖ = 1 such that c(0) ∈ B and c(t) ∈ B for
some t ≥ T .

(6) Let (x1, . . . , xn, p1, . . . , pn) be the usual local coordinates on T ∗M .
Compute Xxi , Xpi , {xi, xj}, {pi, pj} and {pi, xj}.

(7) Show that the Poisson bracket satisfies the Leibniz rule

{F,GH} = {F,G}H + {F,H}G

for all F,G,H ∈ C∞(T ∗M).

7. Completely Integrable Systems

We now concentrate on studying the Hamiltonian flow of a Hamiltonian
function H ∈ C∞(T ∗M). We already know that H is constant along its
Hamiltonian flow, so that it suffices to study this flow along the level sets
of H. This can be further simplified if there exist additional nontrivial
functions F ∈ C∞(T ∗M) such that

XH · F = 0 ⇔ {H,F} = 0.

Definition 7.1. A function F ∈ C∞(T ∗M) is said to be a first inte-
gral of H if {H,F} = 0.
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In general, there is no reason to expect that there should exist nontrivial
first integrals other than H itself. In the special cases when these exist, they
often satisfy additional conditions.

Definition 7.2. The functions F1, . . . , Fm ∈ C∞(T ∗M) are said to be

(i) in involution if {Fi, Fj} = 0 (i, j = 1, . . . ,m);
(ii) independent at α ∈ T ∗M if (dF1)α , . . . , (dFm)α ∈ T ∗

α(T
∗M) are

linearly independent covectors.

Proposition 7.3. If F1, . . . , Fm ∈ C∞(T ∗M) are in involution and are
independent at some point α ∈ T ∗M then m ≤ n.

Proof. Exercise 7.17.2. �

The maximal case m = n is especially interesting.

Definition 7.4. The Hamiltonian H is said to be completely inte-
grable if there exist n first integrals F1, . . . , Fn in involution which are in-
dependent on a dense open set U ⊂ T ∗M .

Example 7.5.

(1) If M is 1-dimensional and dH 6= 0 on a dense open set of T ∗M
then H is completely integrable.

(2) (Particle in a central field) Recall Example 1.15 where a particle of
massm > 0 moves in a central field. The corresponding Lagrangian
function is

L
(
r, θ, vr, vθ

)
=

1

2
m
[
(vr)2 + r2

(
vθ
)2]− u(r),

and so the Legendre transformation is given by

pr =
∂L

∂vr
= mvr and pr =

∂L

∂vθ
= mr2vθ.

The Hamiltonian function is then

H (r, θ, pr, pθ) =
pr

2

2m
+

pθ
2

2mr2
+ u(r).

By the Hamilton equations,

ṗθ = −∂H
∂θ

= 0,

and hence pθ is a first integral. Since

dH =

(
− pθ

2

mr3
+ u′(r)

)
dr +

pr
m
dpr +

pθ
mr2

dpθ,

we see that dH and dpθ are independent on the dense open set of
T ∗R2 formed by the points whose polar coordinates (r, θ, pr, pθ) are
well defined and do not satisfy

u′(r)− pθ
2

mr3
= pr = 0
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(i.e. are not on a circular orbit – cf. Exercise 7.17.4). Therefore this
Hamiltonian is completely integrable.

Proposition 7.6. Let H be a completely integrable Hamiltonian with
first integrals F1, . . . , Fn in involution, independent in the dense open set
U ⊂ T ∗M , and such that XF1 , . . . , XFn are complete on U . Then each
nonempty level set

Lf := {α ∈ U | F1(α) = f1, . . . , Fn(α) = fn}

is a submanifold of dimension n, invariant for the Hamiltonian flow of H,
admitting a locally free action of Rn which is transitive on each connected
component.

Proof. All points in U are regular points of the map F : U → Rn

given by F (α) = (F1(α), . . . , Fn(α)); therefore all nonempty level sets Lf :=
F−1(f) are submanifolds of dimension n.

Since XH · Fi = 0 for i = 1, . . . , n, the level sets Lf are invariant for the
flow of XH . In addition, we have XFi · Fj = {Fi, Fj} = 0, and hence these
level sets are invariant for the flow of XFi . Moreover, these flows commute,
as [XFi , XFj ] = X{Fi,Fj} = 0 (cf. Theorem 6.10 in Chapter 1).

Consider the map A : Rn × Lf → Lf given by

A(t1, . . . , tn, α) = (ψ1,t1 ◦ · · · ◦ ψn,tn)(α),

where ψi,t : Lf → Lf is the flow of XFi . Since these flows commute, this
map defines an action of Rn on Lf . On the other hand, for each α ∈ Lf ,
the map Aα : Rn → Lf given by Aα(t1, . . . , tn) = A(t1, . . . , tn, α) is a local
diffeomorphism at the origin, as

(dAα)0 (ei) =
d

dt |t=0

ψi,t(α) = (XFi)α

and the vector fields XFi are linearly independent. Therefore the action is
locally free (that is, for each point α ∈ Lf there exists an open neighborhood
U ⊂ Rn of 0 such that A(t, α) 6= α for all t ∈ U \ {0}), meaning that the
isotropy groups are discrete. Also, the action is locally transitive (i.e. each
point α ∈ Lf admits an open neighborhood V ⊂ Lf such that every β ∈ V
is of the form β = A(t, α) for some t ∈ Rn), and hence transitive on each
connected component (for given α ∈ Lf both the set of points β ∈ Lf which
are of the form β = A(t, α) for some t ∈ Rn and the set of points which are
not are open). �

The isotropy subgroups of the action above are discrete subgroups of
Rn. We next describe the structure of such subgroups.

Proposition 7.7. Let Γ be a discrete subgroup of Rn. Then there ex-
ist k ∈ {0, 1, . . . , n} linearly independent vectors e1, . . . , ek such that Γ =
spanZ{e1, . . . , ek}.
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Proof. If Γ = {0} then we are done. If not, let e ∈ Γ \ {0}. Since Γ is
discrete, the set

Γ ∩ {λe | 0 < λ ≤ 1}
is finite (and nonempty). Let e1 be the element in this set which is closest
to 0. Then

Γ ∩ spanR{e} = spanZ{e1}
(for otherwise e1 would not be the element in this set closest to 0). If
Γ = spanZ{e1} then we are done. If not, let e ∈ Γ\ spanZ{e1}. Then the set

Γ ∩ {λe+ λ1e1 | 0 < λ, λ1 ≤ 1}
is finite (and nonempty). Let e2 be the element in this set which is closest
to spanR{e1} (Figure 10). Then

Γ ∩ spanR{e, e1} = spanZ{e1, e2}.
Iterating this procedure yields the result. �

e

e1

e2

Figure 10. Proof of Proposition 7.7.

Proposition 7.8. Let Lαf be the connected component of α ∈ Lf . Then

Lαf is diffeomorphic to T k×Rn−k, where k is the number of generators of the
isotropy subgroup Γα. In particular, if Lαf is compact then it is diffeomorphic
to the n-dimensional torus Tn.

Proof. Since the action A : Rn × Lαf → Lαf is transitive, the local
diffeomorphism Aα : Rn → Lαf is surjective. On the other hand, because Γα
is discrete, the action of Γα on Rn by translation is free and proper, and we
can form the quotient Rn/Γα, which is clearly diffeomorphic to T k × Rn−k.
Finally, it is easily seen that Aα induces a diffeomorphism Rn/Γα ∼= Lαf . �
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We are now in position to understand the Hamiltonian flow on a com-
pletely integrable system. For that we need the following definition (cf. Fig-
ure 11).

Definition 7.9. A linear flow on the torus Tn = Rn/Zn is the projec-
tion of the flow ψt : R

n → Rn given by

ψt(x) = x+ νt.

The frequencies of the linear flow are the components ν1, . . . , νn of ν.

x

ν

ψt(x)

Figure 11. Linear flow on the 2-torus.

Theorem 7.10. (Arnold-Liouville) Let H be a completely integrable
Hamiltonian with n first integrals F1, . . . , Fn ∈ C∞(T ∗M) in involution,
independent on the dense open set U ⊂ T ∗M . If the connected components
of the level sets of the map (F1, . . . , Fn) : U → Rn are compact then they are
n-dimensional tori, invariant for the flow of XH . The flow of XH on these
tori is a linear flow (for an appropriate choice of coordinates).

Proof. Since the connected components of the level sets of (F1, . . . , Fn)
are compact, the vector fields XFi are complete. All that remains to be seen
is that the flow of XH on the invariant tori is a linear flow. It is clear that
the flow of each XFi is linear in the coordinates given by Proposition 7.8.
Since XH is tangent to the invariant tori, we have XH =

∑n
i=1 f

iXFi for
certain functions f i. Now

0 = X{Fi,H} = [XFi , XH ] =
n∑

j=1

(XFi · f j)XFj ,

and hence each function f i is constant on the invariant torus. We conclude
that the flow of XH is linear. �

We next explore in detail the properties of linear flows on the torus.
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Definition 7.11. Let ψt : T
n → Tn be a linear flow. The time average

of a function f ∈ C∞(Tn) along ψt is the map

f(x) := lim
T→+∞

1

T

∫ T

0
f(ψt(x))dt

(defined on the set of points x ∈ Tn where the limit exists).

Definition 7.12. The frequencies ν ∈ Rn of a linear flow ψt : T
n → Tn

are said to be independent if they are linearly independent over Q, i.e. if
〈k, ν〉 6= 0 for all k ∈ Zn \ {0}.

Theorem 7.13. (Birkhoff ergodicity) If the frequencies ν ∈ Rn of a
linear flow ψt : Tn → Tn are independent then the time average of any
function f ∈ C∞(Tn) exists for all x ∈ Tn and

f(x) =

∫

Tn
f.

Proof. Since Tn = Rn/Zn, the differentiable functions on the torus
arise from periodic differentiable functions on Rn, which can be expanded
as uniformly convergent Fourier series. Therefore it suffices to show that
the theorem holds for f(x) = e2πi〈k,x〉 with k ∈ Zn.

If k = 0 then both sides of the equality are 1, and the theorem holds.
If k 6= 0 that the right-hand side of the equality is zero, whereas the

left-hand side is

f(x) = lim
T→+∞

1

T

∫ T

0
e2πi〈k,x+νt〉dt

= lim
T→+∞

1

T
e2πi〈k,x〉

e2πi〈k,ν〉T − 1

2πi〈k, ν〉 = 0

(where we used the fact that 〈k, ν〉 6= 0). �

Corollary 7.14. If the frequencies of a linear flow ψt : T
n → Tn are

independent then {ψt(x) | t ≥ 0} is dense on the torus for all x ∈ Tn.

Proof. If {ψt(x) | t ≥ 0} were not dense then it would not intersect an
open set U ⊂ Tn. Therefore any nonnegative function f ∈ C∞(Tn) with
nonempty support contained in U would satisfy f(x) = 0 and

∫
Tn f > 0,

contradicting the Birkhoff ergodicity theorem. �

Corollary 7.15. If the frequencies of a linear flow ψt : T
n → Tn are

independent and n ≥ 2 then ψt(x) is not periodic. �

Remark 7.16. The qualitative behavior of the Hamiltonian flow gener-
ated by completely integrable Hamiltonians is completely understood. Com-
plete integrability is however a very strong condition, not satisfied by generic
Hamiltonians. TheKolmogorov-Arnold-Moser (KAM) theorem guar-
antees a small measure of genericity by establishing that a large fraction of
the invariant tori of a completely integrable Hamiltonians survives under



216 5. GEOMETRIC MECHANICS

small perturbations of the Hamiltonian, the flow on these tori remaining
linear with the same frequencies. On the other hand, many invariant tori,
including those whose frequencies are not independent (resonant tori), are
typically destroyed.

Exercises 7.17.

(1) Show that if F,G ∈ C∞(T ∗M) are first integrals, then {F,G} is
also a first integral.

(2) Prove Proposition 7.3.
(3) Consider a surface of revolution M ⊂ R3 given in cylindrical coor-

dinates (r, θ, z) by

r = f(z),

where f : (a, b) → (0,+∞) is differentiable.
(a) Show that the geodesics of M are the critical points of the

action determined by the Lagrangian L : TM → R given in
local coordinates by

L
(
θ, z, vθ, vz

)
=

1

2

(
(f(z))2

(
vθ
)2

+
(
(f ′(z))2 + 1

)
(vz)2

)
.

(b) Show that the curves given in local coordinates by θ = constant
or f ′(z) = 0 are images of geodesics.

(c) Compute the Legendre transformation, show that L is hyper-
regular and write an expression in local coordinates for the
Hamiltonian H : T ∗M → R.

(d) Show that H is completely integrable.
(e) Show that the projection on M of the invariant set

L(E,l) := H−1(E) ∩ pθ−1(l)

(E, l > 0) is given in local coordinates by

f(z) ≥ l√
2E

.

Use this fact to conclude that if f has a strict local maximum
at z = z0 then the geodesic whose image is z = z0 is stable,
i.e. geodesics with initial condition close to the point in TM
with coordinates (θ0, z0, 1, 0) stay close to the curve z = z0.

(4) Recall from Example 7.5 that a particle of mass m > 0 moving in a
central field is described by the completely integrable Hamiltonian
function

H (r, θ, pr, pθ) =
pr

2

2m
+

pθ
2

2mr2
+ u(r).

(a) Show that there exist circular orbits of radius r0 whenever
u′(r0) ≥ 0.

(b) Verify that the set of points where dH and dpθ are not inde-
pendent is the union of these circular orbits.
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(c) Show that the projection of the invariant set

L(E,l) := H−1(E) ∩ pθ−1(l)

on R2 is given in local coordinates by

u(r) +
l2

2mr2
≤ E.

(d) Conclude that if u′(r0) ≥ 0 and

u′′(r0) +
3u′(r0)
r0

> 0

then the circular orbit of radius r0 is stable.
(5) In General Relativity, the motion of a particle in the gravitational

field of a point massM > 0 is given by the Lagrangian L : TU → R
written in cylindrical coordinates (u, r, θ) as

L = −1

2

(
1− 2M

r

)(
vu
)2

+
1

2

(
1− 2M

r

)−1 (
vr
)2

+
1

2
r2
(
vθ
)2
,

where U ⊂ R3 is the open set given by r > 2M (the coordinate u
is called the time coordinate, and in general is different from the
proper time of the particle, i.e. the parameter t of the curve).
(a) Show that L is hyper-regular and compute the corresponding

Hamiltonian H : T ∗U → R.
(b) Show that H is completely integrable.
(c) Show that there exist circular orbits of any radius r0 > 2M ,

with H < 0 for r0 > 3M , H = 0 for r0 = 3M and H > 0 for
r0 < 3M . (Remark: The orbits with H > 0 are not physical, since they

correspond to speeds greater than the speed of light; the orbits with H = 0 can

only be achieved by massless particles, which move at the speed of light).
(d) Show that the set of points where dH, dpu and dpθ are not

independent (and pu 6= 0) is the union of these circular orbits.
(e) Show that the projection of the invariant cylinder

L(E,k,l) := H−1(E) ∩ pu−1(k) ∩ pθ−1(l)

on U is given in local coordinates by

l2

r2
−
(
1− 2M

r

)−1

k2 ≤ 2E.

(f) Conclude that if r0 > 6M then the circular orbit of radius r0
is stable.

(6) Recall that the Lagrange top is the mechanical system determined
by the Lagrangian L : TSO(3) → R given in local coordinates by

L =
I1
2

((
vθ
)2

+
(
vϕ
)2

sin2 θ
)
+
I3
2

(
vψ + vϕ cos θ

)2
−Mgl cos θ,

where (θ, ϕ, ψ) are the Euler angles, M is the top’s mass and l is
the distance from the fixed point to the center of mass.
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(a) Compute the Legendre transformation, show that L is hyper-
regular and write an expression in local coordinates for the
Hamiltonian H : T ∗SO(3) → R.

(b) Prove that H is completely integrable.
(c) Show that the solutions found in Exercise 3.20.14 are stable

for |ϕ̇| ≪ |ψ̇| if |ψ̇| is large enough.
(7) Show that the the Euler top with I1 < I2 < I3 defines a completely

integrable Hamiltonian on T ∗SO(3).
(8) Consider the sequence formed by the first digit of the decimal ex-

pansion of each of the integers 2n for n ∈ N0:

1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, . . .

The purpose of this exercise is to answer the following question: is
there a 7 in this sequence?
(a) Show that if ν ∈ R \Q then

lim
n→+∞

1

n+ 1

n∑

k=0

e2πiνk = 0.

(b) Prove the following discrete version of the Birkhoff ergodicity
theorem: if a differentiable function f : R → R is periodic with
period 1 and ν ∈ R \Q then for all x ∈ R

lim
n→+∞

1

n+ 1

n∑

k=0

f(x+ νk) =

∫ 1

0
f(x)dx.

(c) Show that log 2 is an irrational multiple of log 10.
(d) Is there a 7 in the sequence above?

8. Symmetry and Reduction

The symplectic structure on the cotangent bundle can be generalized to
arbitrary manifolds.

Definition 8.1. A symplectic manifold is a pair (M,ω), where M
is a differentiable manifold and ω ∈ Ω2(M) is nondegenerate and closed.

Example 8.2. If M is an orientable surface and ω ∈ Ω2(M) is a volume
form on M then (M,ω) is a symplectic manifold. In fact, ω is necessarily
non-degenerate (if ι(v)ω = 0 for some nonvanishing v ∈ TpM then ωp = 0),
and dω = 0 trivially.

All definitions and results of Sections 6 and 7 (Hamiltonian flow and
its properties, Liouville and Poincaré recurrence theorems, Poisson bracket,
completely integrable systems and the Arnold-Liouville theorem) are readily
extended to arbitrary symplectic manifolds. In fact, all symplectic manifolds
are locally the same (i.e. there is no symplectic analogue of the curvature),
as we now show.
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Theorem 8.3. (Darboux) Let (M,ω) be a symplectic manifold and
p ∈ M . Then there exist local coordinates (x1, . . . , xn, p1, . . . , pn) around p
such that

ω =
n∑

i=1

dpi ∧ dxi

(in particular the dimension of M is necessarily even).

Proof. We begin by observing that ω is of the form above if and only
if {xi, xj} = {pi, pj} = 0 and {pi, xj} = δij for i, j = 1, . . . , n (cf. Exer-
cise 8.23.2).

Clearly we must have m := dimM ≥ 2 (otherwise ω = 0 would be
degenerate). Let P ∈ C∞(M) be a function with (dP )p 6= 0, let XP be the
corresponding Hamiltonian vector field and let T ⊂ M be a hypersurface
not tangent to (XP )p (cf. Figure 12). Then XP is not tangent to T on
some neighborhood V of p. Possibly reducing V , we can define a smooth
function Q on V by the condition that ψ−Q(q)(q) ∈ T for each q ∈ V , where

ψt is the flow of XP . Notice that T ∩ V = Q−1(0), implying that XQ is
tangent to T , and so {(XP )p, (XQ)p} is a linearly independent set. This
means that {(dP )p, (dQ)p} is linearly independent, and so, reducing V if
necessary, (P,Q) can be extended to a system of local coordinates around
p. If m = 2 then we are done, because (Q,P ) are local coordinates and
{P,Q} = XP ·Q = 1.

If m > 2 then, since XP is not tangent to T , the level set P−1(P (p))
intersects T on a (m − 2)-dimensional manifold S ⊂ T . Since {P,Q} = 1,
we have XQ ·P = {Q,P} = −1, and so XQ is not tangent to S. If q ∈ S and
{v1, . . . , vm−2} is a basis for TqS then {(XP )q, (XQ)q, v1, . . . , vm−2} is a basis
for TqM . Moreover, we have ω(XP , vi) = −dP (vi) = 0 (as P is constant in
S), and similarly ω(XQ, vi) = −dQ(vi) = 0. We conclude that the matrix
(ω(vi, vj)) must be nonsingular, that is, i∗ω must be nondegenerate, where
i : S → V is the inclusion map. Since di∗ω = i∗dω = 0, we see that (S, i∗ω)
is a symplectic manifold. Given any function F ∈ C∞(S), we can extend it
to T by making it constant along the flow of XQ, and then to V by making it
constant along the flow ofXP . Since [XP , XQ] = X{P,Q} = X1 = 0, the flows
of XP and XQ commute, and so this extension can be done in the reverse
order. Consequently, the extended function (which we still call F ) satisfies
{P, F} = XP ·F = 0 and {Q,F} = XQ ·F = 0, that is, XF ·P = {F, P} = 0
and XF · Q = {F,Q} = 0. This implies that XF is tangent to S, and so
XF coincides on S with the Hamiltonian vector field determined by F on
(S, i∗ω). In the same way, the Poisson bracket {F,G} of the extensions to
V of two functions F,G ∈ C∞(S) satisfies

XP ·{F,G} = {P, {F,G}} = {{P, F}, G}+{F, {P,G}} = {0, G}+{F, 0} = 0,

and similarly XQ · {F,G} = 0, implying that {F,G} is the extension of
the Poison bracket on (S, i∗ω). Therefore, if the Darboux theorem holds
for (S, i∗ω), meaning that we have m − 2 = 2n − 2 and local coordinates
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(x1, . . . , xn−1, p1, . . . , pn−1) with {xi, xj} = {pi, pj} = 0 and {pi, xj} = δij
for i, j = 1, . . . , n− 1, then, making xn = Q and pn = P , we have the result
for (M,ω). �

T

S

XP

p

q

ψ−Q(q)(q)

Figure 12. Proof of the Darboux theorem.

In fact, to have Hamiltonian flows all that is required is the existence of
a Poisson bracket. This suggests a further generalization.

Definition 8.4. A Poisson manifold is a pair (M, {·, ·}), where M
is a differentiable manifold and {·, ·}, called the Poisson bracket, is a Lie
bracket on C∞(M) satisfying the Leibniz rule, that is,

(i) {F,G} = −{G,F};
(ii) {αF + βG,H} = α{F,H}+ β{F,H};
(iii) {F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0;
(iv) {F,GH} = {F,G}H + {F,H}G
for any α, β ∈ R and F,G,H ∈ C∞(M).

Example 8.5.

(1) Any symplectic manifold (M,ω) is naturally a Poisson manifold
(M, {·, ·}) (cf. Exercise 6.15.7).

(2) Any smooth manifold M can be given a Poisson structure, namely
the trivial Poisson bracket {·, ·} := 0. This is not true for symplectic
structures, even if M is even-dimensional (cf. Exercise 8.23.2).

(3) If 〈·, ·〉 is the Euclidean inner product on R3 then the formula

{F,G}(x) := 〈x, gradF × gradG〉
defines a nontrivial Poisson bracket on R3 (cf. Example 8.22).

The bilinearity and Leibniz rule properties of the Poisson bracket imply
that {F, ·} is a derivation (hence a vector field) for any F ∈ C∞(M). This
allows us to define Hamiltonian flows.



8. SYMMETRY AND REDUCTION 221

Definition 8.6. If (M, {·, ·}) is a Poisson manifold and F ∈ C∞(M)
then the Hamiltonian vector field generated by F is the vector field XF ∈
X(M) such that

XF ·G = {F,G}
for any function G ∈ C∞(M).

Proposition 8.7. The map C∞(M) ∋ F 7→ XF ∈ X(M) is a Lie
algebra homomorphism between (C∞(M), {·, ·}) and (X(M), [·, ·]), that is,
(i) XαF+βG = αXF + βXG;
(ii) X{F,G} = [XF , XG]

for all α, β ∈ R and F,G,H ∈ C∞(M).

Proof. Property (i) is immediate from the bilinearity of the Poisson
bracket. Property (ii) arises from the Jacobi identity, as

X{F,G} ·H = {{F,G}, H} = {F, {G,H}} − {G, {F,H}}
= XF · (XG ·H)−XG · (XF ·H)

= [XF , XG] ·H
for any F,G,H ∈ C∞(M). �

The functions in the kernel of the homomorphism F 7→ XF are called
the Casimir functions, and are simply the functions F ∈ C∞(M) that
Poisson commute with all other functions, that is, such that {F,G} = 0
for all G ∈ C∞(M). Notice that Casimir functions are constant along any
Hamiltonian flow. The image of the homomorphism F 7→ XF is the set
of Hamiltonian vector fields, which in particular forms a Lie subalgebra of
(X(M), [·, ·]).

Example 8.8.

(1) If (M,ω) is a symplectic manifold then the Casimir functions are
just the (locally) constant functions.

(2) If {·, ·} := 0 is the trivial Poisson bracket on a smooth manifold M
then any function is a Casimir function, and the only Hamiltonian
vector field is the zero field.

(3) If {·, ·} is the Poisson bracket defined on R3 by the formula

{F,G}(x) := 〈x, gradF × gradG〉
then C(x) := ‖x‖2 is a Casimir function, as gradC = 2x and so

{C,F}(x) = 2〈x, x× gradF 〉 = 2〈gradF, x× x〉 = 0

for any smooth function F ∈ C∞(R3). It follows that the Hamilton-
ian vector fields are necessarily tangent to the spheres of constant
C (and in particular must vanish at the origin).

Since the Poisson bracket can be written as

{F,G} = XF ·G = dG(XF ) = −dF (XG),
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we see that {F,G}(p) is a linear function of both (dF )p and (dG)p. Therefore
the Poisson bracket determines a bilinear map Bp : T ∗

pM × T ∗
pM → R for

all p ∈M .

Definition 8.9. The antisymmetric (0, 2)-tensor field B satisfying

{F,G} = B(dF, dG)

is called the Poisson bivector.

Using the identification TpM ∼= (T ∗
pM)∗, we have

XF (dG) = dG(XF ) = XF ·G = {F,G} = B(dF, dG) = (ι(dF )B)(dG),

where the contraction of a covector with the Poisson bivector is defined
in the same way as the contraction of a vector with an alternating tensor
(cf. Exercise 1.15.8 in Chapter 2). Therefore we have

XF = ι(dF )B,

and so the set of all possible values of Hamiltonian vector fields at a given
point p ∈M is exactly the range of the map T ∗

pM ∋ ω 7→ ι(ω)B ∈ TpM .

Theorem 8.10. (Kirillov) Let (M, {·, ·}) be a Poisson manifold such that
the rank of the map T ∗

pM ∋ ω 7→ ι(ω)B ∈ TpM is constant (as a function
of p ∈ M). Then M is foliated by symplectic submanifolds (S, ωS) (called
symplectic leaves) such that

{F,G}(p) = {F |S , G|S}(p)
for all p ∈M , where S is the leaf containing p.

Proof. Since the rank r of the map T ∗
pM ∋ ω 7→ ι(ω)B ∈ TpM is

constant, the range Σp of this map has dimension r for all p ∈ M , and
so determines a distribution Σ of dimension r in M . By construction, all
Hamiltonian vector fields are compatible with this distribution, and it is clear
that for each p ∈M there exist F1, . . . , Fr ∈ C∞(M) such that Σ is spanned
by XF1 , . . . , XFr on a neighbourhood of p. Since [XFi , XFj ] = X{Fi,Fj} for
i, j = 1, . . . , r, the distribution Σ is integrable, and so M is foliated by r-
dimensional leaves S with TpS = Σp for all p ∈ S. If ω, η ∈ T ∗

pM then
B(ω, η) = η(ι(ω)B) = −ω(ι(η)B) depends only on the restrictions of η
and ω to Σp, that is, B restricts to Σ∗

p × Σ∗
p. Moreover, this restriction

is nondegenerate, since the map Σ∗
p ∋ η 7→ ι(η)B ∈ Σp is surjective. It

is then easy to check that the Poisson bracket determined in each leaf S
by the restriction of B to T ∗S × T ∗S arises from a symplectic form on S
(cf. Exercise 8.23.4). �

Remark 8.11. Kirillov’s theorem still holds in the general case, where
the rank of the map T ∗

pM ∋ ω 7→ ι(ω)B ∈ TpM is not necessarily constant.
In this case the symplectic leaves do not necessarily have the same dimension,
and form what is called a singular foliation.

Example 8.12.
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(1) If (M,ω) is a symplectic manifold then there is only one symplectic
leaf (M itself).

(2) If {·, ·} := 0 is the trivial Poisson bracket on a smooth manifold M
then the Poisson bivector vanishes identically and the symplectic
leaves are the zero-dimensional points.

(3) If {·, ·} is the Poisson bracket defined on R3 by the formula

{F,G}(x) := 〈x, gradF × gradG〉
then the Poisson bivector at x ∈ R3 is given by

B(v, w) = 〈x, v × w〉 = 〈w, x× v〉
for any v, w ∈ R3, where we use the Euclidean inner product 〈·, ·〉
to make the identification (R3)∗ ∼= R3. Therefore at x ∈ R3 we
have

ι(v)B = x× v,

and so the range of B at x is the tangent space to the sphere Sx
of radius ‖x‖ centered at the origin. The symplectic leaves are
therefore the spheres Sx (including the origin, which is a singular
leaf), and if x 6= 0 the symplectic form on Sx is given by

ω(v, w) =
1

‖x‖2 〈x, v × w〉

for v, w ∈ TxSx (that is, ω is 1
‖x‖ times the standard volume form).

Indeed, if F ∈ C∞(R3) and v ∈ TxSx then we have

ω(XF , v) =
1

‖x‖2 〈x,XF × v〉 = 1

‖x‖2 〈v, x× (ι(gradF )B)〉

=
1

‖x‖2 〈v, x× (x× gradF )〉

=
1

‖x‖2
〈
v, 〈x, gradF 〉x− ‖x‖2 gradF

〉

= −〈v, gradF 〉 = −dF (v).
Next we consider the geometric properties of Hamiltonian flows, that

is, flows generated by Hamiltonian vector fields. Just like in the symplectic
case, we have a Hamiltonian version of energy conservation.

Proposition 8.13. Hamiltonian flows preserve their generating func-
tions.

Proof. If F ∈ C∞(M) then

XF · F = {F, F} = −{F, F} = 0.

�

Recall that in the symplectic case Hamiltonian flows preserve the sym-
plectic form. To obtain the analogue of this property in Poisson geometry
we make the following definition.
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Definition 8.14. A Poisson map f : M → N between two Poisson
manifolds (M, {·, ·}) and (N, {·, ·}) is a differentiable map such that

{F,G} ◦ f = {F ◦ f,G ◦ f}
for all F,G ∈ C∞(N).

As one would expect, Poisson maps preserve Hamiltonian flows.

Proposition 8.15. If (M, {·, ·}) and (N, {·, ·}) are Poisson manifolds,
f :M → N is a Poisson map and F ∈ C∞(N) then

f∗XF◦f = XF .

Proof. We just have to notice that given G ∈ C∞(N) we have

(f∗XF◦f ) ·G = XF◦f · (G ◦ f) = {F ◦ f,G ◦ f} = {F,G} = XF ·G.
�

Finally, we show that Hamiltonian flows preserve the Poisson bracket.

Proposition 8.16. Hamiltonian flows are Poisson maps.

Proof. Let ψt : M → M be the Hamiltonian flow generated by the
function F ∈ C∞(M). If G ∈ C∞(M) is another function we have

d

dt
(G ◦ ψt) =

d

dt
(ψt

∗G) =
d

ds |s=0

((ψt+s)
∗G) =

d

ds |s=0

((ψt ◦ ψs)∗G)

=
d

ds |s=0

(ψs
∗(ψt

∗G)) = XF · (ψt∗G) = {F, ψt∗G}.

Given G,H ∈ C∞(M), let Kt ∈ C∞(M) be the function

Kt := {G,H} ◦ ψt − {G ◦ ψt, H ◦ ψt} = ψt
∗{G,H} − {ψt∗G,ψt∗H}.

Clearly K0 = 0. Since the Poisson bracket is bilinear, we have

d

dt
Kt =

d

dt
(ψt

∗{G,H})−
{
d

dt
(ψt

∗G), ψt
∗H

}
−
{
ψt

∗G,
d

dt
(ψt

∗H)

}

= XF · (ψt∗{G,H})− {{F, ψt∗G}, ψt∗H} − {ψt∗G, {F, ψt∗H}}
= XF · (ψt∗{G,H})− {F, {ψt∗G,ψt∗H}} = XF ·Kt.

Regarding Kt as a function K defined on I×M , where I ⊂ R is the interval
of definition of ψt, we see that it satisfies{(

∂
∂t −XF

)
·K = 0

K(0, p) = 0 for all p ∈M
.

Integrating from {0}×M along the integral curves of ∂
∂t−XF we then obtain

Kt = 0 for all t ∈ I. �

We are now ready to discuss symmetry and reduction.

Definition 8.17. Let G be a Lie group acting on a Poisson manifold
(M, {·, ·}). The action is said to be:
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(1) Poisson if for each g ∈ G the map Ag :M →M given by Ag(p) :=
g · p is a Poisson map;

(2) Hamiltonian if for each V ∈ g there exists a function J(V ) ∈
C∞(M) such that the infinitesimal action XV is the Hamiltonian
vector field generated by J(V ), that is, XV = XJ(V ).

If G is connected then Proposition 8.16 guarantees that a Hamiltonian
action is Poisson (cf. Exercise 8.23.6). Notice that because XV is a linear
function of V we can take J(V ) to be a linear function of V , and thus think
of J as a map J : M → g∗. This map is called the momentum map for
the action.

Theorem 8.18. (Noether, Hamiltonian version) If the action of the Lie
group G on the Poisson manifold (M, {·, ·}) is Hamiltonian with momentum
map J : M → g∗ and H ∈ C∞(M) is G-invariant then J is constant along
the Hamiltonian flow of H.

Proof. Since H is G-invariant we have for any V ∈ g

XV ·H = 0 ⇔ XJ(V ) ·H = 0 ⇔ {J(V ), H} = 0 ⇔ XH · J(V ) = 0.

�

Example 8.19. The relation between the Hamiltonian and the La-
grangian versions of the Noether theorem is made clear by the following
important example. Let M be a differentiable manifold, and let G be a Lie
group acting onM . We can lift this action to the symplectic (hence Poisson)
manifold T ∗M by the formula

g · α = A∗
g−1α

for all α ∈ T ∗M , where Ag :M →M is given by Ag(p) = g ·p for all p ∈M .
It is easy to check that this formula indeed defines an action of G on T ∗M ,
mapping each cotangent space T ∗

pM to T ∗
g·pM .

Let (x1, . . . , xn) be local coordinates onM and let (x1, . . . , xn, p1, . . . , pn)
be the corresponding local coordinates on T ∗M . Let (y1, . . . , ym) be local
coordinates on G centered at the identity e ∈ G such that (−y1, . . . ,−ym)
parameterizes the inverse of the element parameterized by (y1, . . . , ym) (this
can be easily accomplished by using the exponential map). If in these coor-
dinates the action A : G×M →M of G on M is given by

(A1(x1, . . . , xn, y1, . . . , ym), . . . , An(x1, . . . , xn, y1, . . . , ym))

then we have

A∗
g−1

(
n∑

i=1

pidx
i

)
=

n∑

i,j=1

pi
∂Ai

∂xj
(x,−y)dxj ,

and so the lift of the action of G to T ∗M is written(
A1(x, y), . . . , An(x, y),

n∑

i=1

∂Ai

∂x1
(A(x, y),−y)pi, . . . ,

n∑

i=1

∂Ai

∂xn
(A(x, y),−y)pi

)
.
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Therefore the infinitesimal action of V :=
∑m

a=1 V
a ∂
∂ya on T ∗M is

n∑

i=1

Xi(x)
∂

∂xi
−

n∑

i,j=1

∂Xj

∂xi
(x)pj

∂

∂pi
=

n∑

i=1

∂J

∂pi

∂

∂xi
−

n∑

i=1

∂J

∂xi
∂

∂pi
,

where

Xi(x) =
m∑

a=1

∂Ai

∂ya
(x, 0)V a

are the components of the infinitesimal action of V on M and

J =
n∑

i=1

Xi(x)pi.

We conclude that the lift of the action of G to T ∗M is Hamiltonian with
momentum map J : T ∗M → g∗ given by

J(α)(V ) = α(XV ),

whereXV ∈ X(M) is the infinitesimal action of V onM . Notice that J(V ) is
exactly the image by the Legendre transformation of the conserved quantity
JV in the Lagrangian version of the Noether theorem.

Theorem 8.20. (Poisson reduction) If the action of G on (M, {·, ·}) is
free, proper and Poisson then M/G is naturally a Poisson manifold (identi-
fying C∞(M/G) with the G-invariant functions in C∞(M)), and the natural
projection π : M → M/G is a Poisson map. In particular, π carries the
Hamiltonian flow of G-invariant functions on M to the Hamiltonian flow of
the corresponding functions in M/G.

Proof. We just have to observe that the if the action is Poisson then
the Poisson bracket of G-invariant functions is G-invariant. �

If G is a Lie group then G acts on G by left multiplication, and the
lift of this action to T ∗G is free, proper and Hamiltonian. If moreover G is
connected then the action is Poisson, and we have the following result.

Theorem 8.21. (Lie-Poisson reduction) If G is a connected Lie group
then the quotient Poisson bracket on T ∗G/G ≃ g∗ is given by

{F,H}(µ) := µ([dF, dH])

for all F,H ∈ C∞(g∗), where dF, dH ∈ g∗∗ ≃ g. If (p1, . . . , pm) are linear
coordinates on g∗ corresponding to the basis {ω1, . . . , ωm} then

{F,H} =
m∑

a,b,c=1

paC
a
bc

∂F

∂pb

∂H

∂pc
,

where Cabc are the structure constants associated to the dual basis {X1, . . . , Xm}
of g.
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Proof. If we think of {ω1, . . . , ωm} as left-invariant 1-forms on G then
the canonical symplectic potential on T ∗G is

θ =
m∑

a=1

paω
a,

(for simplicity we identify ωa and π∗ωa, where π : T ∗G → G is the natural
projection). Now from Exercise 2.8.1 in Chapter 4 we know that

dωa = −1

2

m∑

b,c=1

Cabc ω
b ∧ ωc,

and so the canonical symplectic form is

ω = dθ =
m∑

a=1

dpa ∧ ωa −
1

2

m∑

a,b,c=1

paC
a
bc ω

b ∧ ωc

=
m∑

a=1

dpa ⊗ ωa −
m∑

a=1

ωa ⊗ dpa −
m∑

a,b,c=1

paC
a
bc ω

b ⊗ ωc.

If F ∈ C∞(T ∗G) is G-invariant then it only depends on the coordinates
(p1, . . . , pm) along the fibers, and so

dF =
m∑

a=1

∂F

∂pa
dpa.

Setting

XF :=

m∑

a=1

ξaXa +

m∑

a=1

ηa
∂

∂pa
,

where {X1, . . . , Xm} is the dual basis of g, we then have

ι(XF )ω = −
m∑

a=1

ξadpa −
m∑

a,b,c=1

paC
a
bc ξ

bωc +
m∑

a=1

ηaω
a.

From ι(XF )ω = −dF we then obtain

XF =
m∑

a=1

∂F

∂pa
Xa +

m∑

a,b,c=1

paC
a
bc

∂F

∂pb

∂

∂pc
,

implying that if H ∈ C∞(T ∗G) is also G-invariant then

{F,H} = XF ·H =

m∑

a,b,c=1

paC
a
bc

∂F

∂pb

∂H

∂pc
.
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Notice that as covectors on g∗ we have dpa = Xa, and so, by definition of
the structure functions Cabc,

{F,H} =
m∑

a,b,c=1

paω
a([Xb, Xc])

∂F

∂pb

∂H

∂pc
=

m∑

a,b,c=1

paω
a

([
∂F

∂pb
Xb,

∂H

∂pc
Xc

])

=

m∑

a

paω
a([dF, dH]).

�

Example 8.22. Lie-Poisson reduction on T ∗SO(3) yields the Poisson
bracket

{F,G}(x) := 〈x,∇F ×∇G〉
on so(3)∗ ∼= (R3)∗ ∼= R3, where we used Lemma 3.9 to identify so(3) with
(R3,×) and the Euclidean inner product 〈·, ·〉 to make (R3)∗ ∼= R3.

Exercises 8.23.

(1) Consider the symplectic structure on

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}
determined by the usual volume form. Compute the Hamiltonian
flow generated by the function H(x, y, z) = z.

(2) Let (M,ω) be a symplectic manifold. Show that:
(a) ω =

∑n
i=1 dpi ∧ dxi if and only if {xi, xj} = {pi, pj} = 0 and

{pi, xj} = δij for i, j = 1, . . . , n;
(b) M is orientable;
(c) if M is compact then ω cannot be exact. (Remark: In particular if

M is compact and all closed 2-forms on M are exact then M does not admit a

symplectic structure; this is the case for all even-dimensional spheres S2n with

n > 1).
(3) Let (M, 〈·, ·〉) be a Riemannian manifold, α ∈ Ω1(M) a 1-form and

U ∈ C∞(M) a differentiable function.
(a) Show that ω̃ := ω+π∗dα is a symplectic form on T ∗M , where

ω is the canonical symplectic form and π : T ∗M → M is the
natural projection (ω̃ is called a canonical symplectic form
with magnetic term).

(b) Show that the Hamiltonian flow generated by a function H̃ ∈
C∞(T ∗M) with respect to the symplectic form ω̃ is given by
the equations




ẋi =
∂H̃

∂pi

ṗi = −∂H̃
∂xi

+
n∑

j=1

(
∂αj
∂xi

− ∂αi
∂xj

)
ẋj

.
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(c) The map F : T ∗M → T ∗M given by

F (ξ) := ξ − αp

for ξ ∈ T ∗
pM is a fiber-preserving diffeomorphism. Show that

F carries the Hamiltonian flow defined in Exercise 6.15.2 to the
Hamiltonian flow of H̃ with respect to the symplectic form ω̃,
where

H̃(ξ) :=
1

2
〈ξ, ξ〉+ U(p)

for ξ ∈ T ∗
pM . (Remark: Since the projections of the two flows on M

coincide, we see that the magnetic term can be introduced by changing either

the Lagrangian or the symplectic form).
(4) Let (M, {·, ·}) be a Poisson manifold, B the Poisson bivector and

(x1, . . . , xn) local coordinates on M . Show that:
(a) B can be written in these local coordinates as

B =
n∑

i,j=1

Bij ∂

∂xi
⊗ ∂

∂xj
,

where Bij = {xi, xj} for i, j = 1, . . . , n;
(b) the Hamiltonian vector field generated by F ∈ C∞(M) can be

written as

XF =

p∑

i,j=1

Bij ∂F

∂xi
∂

∂xj
;

(c) the components of B must satisfy
n∑

l=1

(
Bil ∂B

jk

∂xl
+Bjl ∂B

ki

∂xl
+Bkl ∂B

ij

∂xl

)
= 0

for all i, j, k = 1, . . . , n;
(d) if {·, ·} arises from a symplectic form ω then (Bij) = −(ωij)

−1;
(e) if B is nondegenerate then it arises from a symplectic form.

(5) (Action-angle coordinates) Let (M,ω) be a symplectic manifold
and F = (F1, . . . , Fn) :M → Rn a set of independent first integrals
in involution, with compact level sets (n-tori). Choose an invariant
torus T0, a point α ∈ T0, and an n-dimensional submanifoldN ⊂M
transverse to T0 at α (that is, TαM = TαT ⊕TαN). We fix the the
coordinates x = (x1, . . . , xn) determined on each invariant torus T
close to T0 by the identification T ∼= Rn/Zn (which arises from the
Rn-action associated to F ) by setting x = 0 on N . In this way we
obtain local coordinates (x, F ) in a neighborhood of T . Show that:
(a) In these coordinates the components of the Poisson bivector

are

(B) =




∗ | −At
−−− + −−−
A | 0


 ,
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and so the components of the symplectic form are

(ω) =




0 | −A−1

−−− + −−−
(A−1)t | ∗


 ,

where A = A(F ) is the matrix A = (aij) defined by

XFi =
n∑

j=1

aij
∂

∂xj
;

(b) it is possible to choose new coordinates J = J(F ) such that
{Ji, xj} = δij ;

(c) {xi, xj} is a function of J only;
(d) it is possible to choose new coordinates y = x+z(J) such that

{yi, yj} = 0 and {Ji, yj} = δij ;
(e) there exists a 1-form θ in a neighborhood of T0 such that ω =

dθ, and Ji =
∮
γi
θ, where γi is the projection of the yi-axis on

each invariant torus T ∼= Rn/Zn.
(Hint: You will need to use the Poincaré Lemma – cf. Exercise 3.8.6 in Chapter 2).

(6) Let G be a connected Lie group and U ⊂ G a neighborhood of the
identity. Show that:
(a) G = ∪+∞

n=1U
n, where Un = {g1 · · · · · gn | g1, . . . , gn ∈ U};

(b) if G acts on a Poisson manifold (M, {·, ·}) and the action is
Hamiltonian then it is Poisson.

(7) Let G be a connected Lie group with a free, proper, Hamiltonian
action on a Poisson manifold (M, {·, ·}), and let H ∈ C∞(M) be
G-invariant. Show that if p ∈ M/G is a fixed point of π∗XH ∈
X(M/G) (where π :M →M/G is the quotient map) then the flow
of XH on π−1(p) is given by orbits of 1-parameter subgroups of G.

(8) The Lie group SO(2) ≃ S1 acts on M = R2 \ {(0, 0)} through

eiϕ · (r, θ) = (r, θ + ϕ),

where (r, θ) are polar coordinates on M and θ, ϕ should be under-
stood mod 2π.
(a) Write an expression for the infinitesimal action XV ∈ X(M)

of V ∈ so(2) ∼= R.
(b) Determine the momentum map for the lift of this action to the

cotangent bundle.
(c) Write an expression for the Poisson bivector of T ∗M with

the canonical symplectic structure in the usual coordinates
(r, θ, pr, pθ).

(d) Calculate the Poisson bivector of the Poisson manifold Q :=
T ∗M/SO(2) ≃ R3. What are the symplectic leaves of this
manifold? Give an example of a nonconstant Casimir function.
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(e) Consider the Hamiltonian H : T ∗Q→ R given by

H(r, θ, pr, pθ) =
pr

2

2
+
pθ

2

2r2
+ u(r).

Show that H is SO(2)-invariant, and determine its Hamilton-
ian flow on the reduced Poisson manifold Q.

(f) Use the Noether theorem to obtain a quantity conserved by
the Hamiltonian flow of H on T ∗M .

(9) Recall that the upper half plane H = {(x, y) ∈ R2 | y > 0} has a
Lie group structure, given by the operation

(x, y) · (z, w) := (yz + x, yw),

and that the hyperbolic plane corresponds to the left-invariant met-
ric

g :=
1

y2
(dx⊗ dx+ dy ⊗ dy)

on H (cf. Exercise 7.17.3 in Chapter 1 and Exercise 3.3.5 in Chap-
ter 3). The geodesics are therefore determined by the Hamiltonian
function K : T ∗H → R given by

K(x, y, px, py) =
y2

2

(
px

2 + p2y
)
.

(a) Determine the lift to T ∗H of the action of H on itself by left
translation, and check that it preserves the Hamiltonian K.

(b) Show that the functions

F (x, y, px, py) = ypx and G(x, y, px, py) = ypy

are also H-invariant, and use this to obtain the quotient Pois-
son structure on T ∗H/H. Is this a symplectic manifold?

(c) Write an expression for the momentum map for the action of
H on T ∗H, and use it to obtain a nontrivial first integral I
of the geodesic equations. Show that the projection on H of
a geodesic for which K = E, px = l and I = m satisfies the
equation

l2x2 + l2y2 − 2lmx+m2 = 2E.

Assuming l 6= 0, what are these curves?
(10) Recall that the Euler top is the mechanical system determined by

the Lagrangian L : TSO(3) → R given by

L =
1

2
〈IΩ,Ω〉,

where Ω are the left-invariant coordinates on the fibers resulting
from the identifications

TSSO(3) = dLS(so(3)) ∼= so(3) ∼= R3.
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(a) Show that if we use the Euclidean inner product 〈·, ·〉 to iden-
tify (R3)∗ with R3 then the Legendre transformation is written

P = IΩ,

where P are the corresponding left-invariant coordinates on
T ∗SO(3).

(b) Write the Hamilton equations on the reduced Poisson manifold
T ∗SO(3)/SO(3) ∼= R3. What are the symplectic leaves? Give
an example of a nonconstant Casimir function.

(c) Compute the momentum map for the lift to T ∗SO(3) of the
action of SO(3) on itself by left translation.

(11) Let (P 1, P 2, P 3) be the usual left-invariant coordinates on the fibers
of T ∗SO(3), and consider the functions (Γ1,Γ2,Γ3) defined through

γ = SΓ

for each S ∈ SO(3), where γ ∈ R3 is a fixed vector. Show that for
i, j = 1, 2, 3:
(a) {P i, P j} =

∑3
k=1 εijkP

k;
(b) {Γi,Γj} = 0;

(c) {P i,Γj} =
∑3

k=1 εijkΓ
k,

where

εijk =





+1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3)
0 otherwise.

(Hint: Show that Γ̇ = Γ × Ω along any motion of the Euler top, where Ω is the

angular velocity in the Euler top’s frame, and regard
(P i)2

2
as the limit of the Euler

top Hamiltonian when Ii = 1 and Ij → +∞ for j 6= i).
(12) If on Exercise 11 we set γ = gez, where g is the (constant) gravi-

tational acceleration, then the motion of a rigid body (with a fixed
point) of mass M and moment of inertia I, whose center of mass
has position vector L ∈ R3 in its frame, is given by the Hamiltonian
flow of

H =
1

2
〈P, I−1P 〉+M〈γ, SL〉.

(a) Show that H is S1-invariant for the lift to T ∗SO(3) of the
action of S1 on SO(3) determined by eiθ · S = RθS, where

Rθ :=



cos θ − sin θ 0
sin θ cos θ 0
0 0 1




(corresponding to rotations about the z-axis).
(b) Determine the momentum map for this action.
(c) Show that the functions P and Γ are S1-invariant, and that

the Poisson bracket on the quotient manifold T ∗SO(3)/S1 ∼=
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(SO(3)/S1) × R3 ∼= S2 × R3 is determined by the Poisson
brackets of these functions.

(d) Use the functions P and Γ to write the equations of motion on
the quotient, and give an example of a nonconstant Casimir
function.

9. Notes on Chapter 5

9.1. Section 1. Throughout this chapter, starting at the exercises of
Section 1, we need several definitions and facts related to stability of fixed
points of vector fields in Rn (refer for instance to [Arn92, GH02] for addi-
tional details). In order to study nonlinear systems

(25)

{
ẋ = f(x)

x(0) = x0
(x ∈ Rn)

one usually starts by finding the zeros of f , called fixed points, equilib-
ria or stationary solutions. A fixed point x is called stable if for each
neighborhood U of x there exists another (possibly smaller) neighborhood
V of x such that if x0 ∈ V then x(t) ∈ U for each t > 0 where the solution
is defined. The behavior of solutions near x can, in many situations, be
studied by linearizing (25) at x and analyzing the resulting (linear) system

(26)

{
ξ̇ = Aξ

ξ(0) = ξ0
(ξ ∈ Rn)

where A := (df)x. This linear system has a global solution

ξ(ξ0, t) = etAξ0,

where etA can be seen as a map from Rn to Rn defining the flow of the vector
field Aξ. If we put A in the Jordan canonical form then it is clear that this
flow has the following invariant subspaces:

Es := span{v1, . . . , vns} (stable subspace);

Eu := span{u1, . . . , unu} (unstable subspace);

Ec := span{w1, . . . , wnc} (center subspace),

where v1, . . . , vns are the ns generalized eigenvectors corresponding to eigen-
values with negative real part, u1, . . . , unu are the nu generalized eigenvectors
corresponding to eigenvalues with positive real part, and w1, . . . , wns are the
nc generalized eigenvectors corresponding to eigenvalues with zero real part.
If Ec = ∅ then x is called a hyperbolic or nondegenerate fixed point of
f . In this case the Hartman-Grobman theorem tells us that there exists
a homeomorphism from a neighborhood of x in Rn to a neighborhood of 0
in Rn which takes the orbits of the non-linear flow of (25) to those of the
linear flow etA of (26). The asymptotic behavior of solutions near x, and
consequently its stability type, is then determined by the eigenvalues λ of
A.
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9.2. Bibliographical notes. The material in this chapter follows [Oli02]
and [Arn97] closely. There are of course many other excellent books on me-
chanics, both traditional [GPS02] and geometric [AM78, MR99]. Non-
holonomic systems (including control theory) are treated in greater detail
in [Blo03, BL05]. For more information on completely integrable systems
see [CB97, Aud96].



CHAPTER 6

Relativity

This chapter studies one of the most important applications of Rie-
mannian geometry: the theory of general relativity. This theory, which
ultimately superseded the classical mechanics of Galileo and Newton, arose
from the seemingly paradoxical experimental fact that the speed of light is
the same for every observer, independently of their state of motion. In 1905,
after a period of great confusion, Einstein came up with an explanation that
was as simple as it was radical: time intervals and length measurements
are not the same for all observers, but instead depend on their state of mo-
tion. In 1908, Minkowski gave a geometric formulation of Einstein’s theory
by introducing a pseudo-inner product in the four-dimensional spacetime
R4. While initially resisting this “excessive mathematization” of his theory,
Einstein soon realized that curving spacetime was actually the key to un-
derstanding gravity. In 1915, after a long struggle with the mathematics
of Riemannian geometry, he was able to arrive at a complete formulation
of the general theory of relativity. The predictions of his theory were first
confirmed in 1919 by a British solar eclipse expedition, led by Eddington,
and have since been verified in every experimental test ever attempted.

To smooth the transition from classical mechanics to relativity, Section 1
discusses Galileo spacetime, the geometric structure underlying Newto-
nian mechanics, which hinges on the existence of arbitrarily fast motions. If,
however, a maximum speed is assumed to exist, then it must be replaced by
Minkowski spacetime, whose geometry is studied in special relativity
(Section 2).

Section 3 shows how to include Newtonian gravity in Galileo spacetime
by introducing the symmetric Cartan connection. Trying to general-
ize this procedure leads to general Lorentzian manifolds satisfying the
Einstein field equation, of which Minkowski spacetime is the simplest
example (Section 4).

Other simple solutions are analyzed in the subsequent sections: the
Schwarzschild solution, modeling the gravitational field outside spher-
ically symmetric bodies or black holes (Section 5), and the Friedmann-
Lemâıtre-Robertson-Walker models of cosmology, describing the be-
havior of the universe as a whole (Section 6).

Finally, Section 7 discusses of the causal structure of a Lorentz man-
ifold, in preparation for the proof of the celebrated singularity theorems
of Hawking (Section 8) and Penrose (Section 9).

235
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1. Galileo Spacetime

The set of all physical occurrences can be modeled as a connected 4-
dimensional manifold M , which we call spacetime, and whose points we
refer to as events. We assume that M is diffeomorphic to R4, and that
there exists a special class of diffeomorphisms x : M → R4, called iner-
tial frames. An inertial frame yields global coordinates (x0, x1, x2, x3) =
(t, x, y, z). We call the coordinate t :M → R the time function associated
to a given inertial frame. Two events p, q ∈M are said to be simultaneous
on that frame if t(p) = t(q). The level functions of the time function are
therefore called simultaneity hypersurfaces. The distance between two
simultaneous events p, q ∈M is given by

d(p, q) =

√√√√
3∑

i=1

(xi(p)− xi(q))2.

The motion of a particle is modeled by a smooth curve c : I → M such
that dt(ċ) 6= 0. A special class of motions is formed by the motions of free
particles, i.e. particles which are not acted upon by any external force.
The special property that inertial frames have to satisfy is that the motions
of free particles are always represented by straight lines. In other words, free
particles move with constant velocity relative to inertial frames (Newton’s
law of inertia). In particular, motions of particles at rest in an inertial
frame are motions of free particles.

Inertial frames are not unique: if x : M → R4 is an inertial frame and
f : R4 → R4 is an invertible affine transformation then f ◦ x is another
inertial frame. In fact, any two inertial frames must be related by such an
affine transformation (cf. Exercise 1.1.3).

The Galileo spacetime, which underlies Newtonian mechanics, is ob-
tained by further requiring that inertial frames should:

(1) agree on the time interval between any two events (and hence on
whether two given events are simultaneous);

(2) agree on the distance between simultaneous events.

Therefore, up to translations and reflections, all coordinate transfor-
mations between inertial frames belong to the Galileo group Gal(4), the
group of linear orientation-preserving maps which preserve time functions
and the Euclidean structures of the simultaneity hypersurfaces.

When analyzing problems in which only one space dimension is impor-
tant, we can use a simpler 2-dimensional Galileo spacetime. If (t, x) are
the spacetime coordinates associated to an inertial frame and T ∈ Gal(2)
is a Galileo change of basis to a new inertial frame with global coordinates
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(t′, x′), then

∂

∂t′
:= T

(
∂

∂t

)
=

∂

∂t
+ v

∂

∂x

∂

∂x′
:= T

(
∂

∂x

)
=

∂

∂x

with v ∈ R, since we must have t = t′, and so

dt

(
∂

∂t′

)
= dt′

(
∂

∂t′

)
= 1,

and we want the orientation-preserving map T to be an isometry of the
simultaneity hypersurface {t = 0} ≡ {t′ = 0}. The change of basis matrix
is then

S =

(
1 0
v 1

)
,

with inverse

S−1 =

(
1 0
−v 1

)
.

Therefore the corresponding coordinate transformation is
{
t′ = t

x′ = x− vt
(v ∈ R)

(Galileo transformation), and hence the new frame is moving with veloc-
ity v with respect to the old one (as the curve x′ = 0 is the curve x = vt).
Notice that S−1 is obtained from S simply by reversing the sign of v, as one
would expect, as the old frame must be moving relative to the new one with
velocity −v. We shall call this observation the relativity principle.

Exercises 1.1.

(1) (Lucas problem) By the late 19th century there existed a regular
transatlantic service between Le Havre and New York. Every day
at noon (GMT) a transatlantic ship would depart Le Havre and
another one would depart New York. The journey took exactly
seven days, so that arrival would also take place at noon (GMT).
Therefore, a transatlantic ship traveling from Le Havre to New
York would meet a transatlantic ship just arriving from New York
at departure, and another one just leaving New York on arrival.
Besides these, how many other ships would it meet? At what times?
What was the total number of ships needed for this service? (Hint:

Represent the ships’ motions as curves in a 2-dimensional Galileo spacetime).
(2) Check that free particles move with constant velocity relative to

inertial frames.
(3) Let f : Rn → Rn (n ≥ 2) be a bijection that takes straight lines to

straight lines. Show that f must be an affine function, i.e., that

f(x) = Ax+ b
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for all x ∈ Rn, where A ∈ GL(n,R) and b ∈ Rn.
(4) Prove that the Galileo group Gal(4) is the subset of GL(4,R)

formed by matrices of the form
(
1 0
v R

)

where v ∈ R3 and R ∈ SO(3). Conclude that Gal(4) is isomorphic
to the group of orientation-preserving isometries of the Euclidean
3-space R3.

(5) Show that Gal(2) is a subgroup of Gal(4).

2. Special Relativity

The Galileo spacetime requirement that all inertial observers should
agree on the time interval between two events is intimately connected with
the possibility of synchronizing clocks in different frames using signals of
arbitrarily high speeds. Experience reveals that this is actually impossible.
Instead, there appears to exist a maximum propagation speed, the speed of
light (approximately 300,000 kilometers per second), which is the same at
all events and in all directions. A more accurate requirement is then that
any two inertial frames should

(1’) agree on whether a given particle is moving at the speed of light.

Notice that we no longer require that different inertial frames should
agree on the time interval between two events, or even on whether two given
events are simultaneous. However we still require that any two inertial
frames should

(2’) agree on the distance between events which are simultaneous in both
frames.

It is convenient to choose units such that the speed of light is 1 (for in-
stance measuring time in years and distance in light-years). Fix a particular
inertial frame with coordinates (x0, x1, x2, x3). A free particle moving at the
speed of light on an inertial frame x : R4 → R will be a straight line whose
tangent vector

v = v0
∂

∂x0
+ v1

∂

∂x1
+ v2

∂

∂x2
+ v3

∂

∂x3

must satisfy

(v0)2 = (v1)2 + (v2)2 + (v3)2,(27)

so that the distance traveled equals the elapsed time. In other words, v must
satisfy 〈v, v〉 = 0, where

〈v, w〉 := −v0w0 + v1w1 + v2w2 + v3w3 =
3∑

µ,ν=0

ηµνv
µwν ,
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with (ηµν) = diag(−1, 1, 1, 1). Notice that 〈·, ·〉 is a symmetric non-degenerate
tensor which is not positive definite; we call it the Minkowski (pseudo)
inner product. The coordinate basis

{
∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

}

is an orthonormal basis for this inner product (cf. Exercise 2.2.1), as
〈

∂

∂xµ
,
∂

∂xν

〉
= ηµν

(µ, ν = 0, 1, 2, 3).
Since we used a particular inertial frame to define the Minkowski inner

product, we must now check that it is well defined (i.e., it is independent
of the inertial frame we chose to define it). Let (x0′, x1′, x2′, x3′) be the
coordinates associated to another inertial frame. The analogue of (27) on
the new inertial frame implies that the vectors

∂

∂x0′
± ∂

∂xi′

(i = 1, 2, 3) must be tangent to a motion at the speed of light. By assump-
tion (1’), given a motion of a free particle at the speed of light, all inertial
observers must agree that the particle is moving at this (maximum) speed.
Therefore we must have〈

∂

∂x0′
± ∂

∂xi′
,
∂

∂x0′
± ∂

∂xi′

〉
= 0.

This implies that
〈

∂

∂x0′
,
∂

∂x0′

〉
= −

〈
∂

∂xi′
,
∂

∂xi′

〉
;

〈
∂

∂x0′
,
∂

∂xi′

〉
= 0.

Similarly, we must have
〈√

2
∂

∂x0′
+

∂

∂xi′
+

∂

∂xj ′
,
√
2
∂

∂x0′
+

∂

∂xi′
+

∂

∂xj ′

〉
= 0

(i 6= j), and hence 〈
∂

∂xi′
,
∂

∂xj ′

〉
= 0.

Since 〈·, ·〉 is non-degenerate, we conclude that there must exist k 6= 0 such
that 〈

∂

∂xµ′
,
∂

∂xν ′

〉
= kηµν

(µ, ν = 0, 1, 2, 3).
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The simultaneity hypersurfaces {x0 = const.} and {x0′ = const.} are 3-
planes in R4. If they are parallel, they will coincide for appropriate values of
the constants; otherwise, they must intersect along 2-planes of events which
are simultaneous in both frames. In either case there exist events which are
simultaneous in both frames. Let v 6= 0 be a vector connecting two such
events. Then dx0(v) = dx0′(v) = 0, and hence

v =

3∑

i=1

vi
∂

∂xi
=

3∑

i=1

vi′
∂

∂xi′
.

By assumption (2’), we must have

3∑

i=1

(
vi
)2

=
3∑

i=1

(
vi′
)2
.

Consequently, from

3∑

i=1

(
vi
)2

= 〈v, v〉 =
〈

3∑

i=1

vi′
∂

∂xi′
,

3∑

i=1

vi′
∂

∂xi′

〉
= k

3∑

i=1

(
vi′
)2
,

we conclude that we must have k = 1. Therefore the coordinate basis{
∂

∂x0′
,
∂

∂x1′
,
∂

∂x2′
,
∂

∂x3′

}

must also be an orthonormal basis. In particular, this means that the
Minkowski inner product 〈·, ·〉 is well defined (i.e., it is independent of the in-
ertial frame we choose to define it), and that we can identify inertial frames
with orthonormal bases of (R4, 〈·, ·〉).

Definition 2.1. (R4, 〈·, ·〉) is said to be the Minkowski spacetime.

The length of a vector v ∈ R4 is |v| = |〈v, v〉| 12 .
The study of the geometry of Minkowski spacetime is usually called

special relativity. A vector v ∈ R4 is said to be:

(1) timelike if 〈v, v〉 < 0; in this case, there exists an inertial frame
(x0′, x1′, x2′, x3′) such that

v = |v| ∂

∂x0′

(cf. Exercise 2.2.1), and consequently any two events p and p + v
occur on the same spatial location in this frame, separated by a
time interval |v|;

(2) spacelike if 〈v, v〉 > 0; in this case, there exists an inertial frame
(x0′, x1′, x2′, x3′) such that

v = |v| ∂

∂x1′

(cf. Exercise 2.2.1), and consequently any two events p and p + v
occur simultaneously in this frame, a distance |v| apart;
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(3) lightlike, or null, if 〈v, v〉 = 0; in this case any two events p and
p+v are connected by a motion at the speed of light in any inertial
frame.

The set of all null vectors is called the light cone, and it is in a way the
structure that replaces the absolute simultaneity hypersurfaces of Galileo
spacetime. It is the boundary of the set of all timelike vectors, which has
two connected components; we represent by C(v) the connected component
that contains a given timelike vector v. A time orientation for Minkowski
spacetime is a choice of one of these components, whose elements are said
to be future-pointing; this is easily extended to nonzero null vectors.

An inertial frame (x0, x1, x2, x3) determines a time orientation, namely
that for which the future-pointing timelike vectors are the elements of C

(
∂
∂x0

)
.

Up to translations and reflections, all coordinate transformations between in-
ertial frames belong to the (proper) Lorentz group SO0(3, 1), the group of
linear maps which preserve orientation, time orientation and the Minkowski
inner product (hence the light cone).

A curve c : I ⊂ R → R4 is said to be timelike if 〈ċ, ċ〉 < 0. Timelike
curves represent motions of particles with nonzero mass, since only for these
curves it is possible to find an inertial frame in which the particle is instanta-
neously at rest. In other words, massive particles must always move at less
than the speed of light (cf. Exercise 2.2.13). The proper time measured
by the particle between events c(a) and c(b) is

τ(c) :=

∫ b

a
|ċ(s)|ds.

When analyzing problems in which only one space dimension is impor-
tant, we can use a simpler 2-dimensional Minkowski spacetime. If (t, x) are
the spacetime coordinates associated to an inertial frame and T ∈ SO0(1, 1)
is a Lorentzian change of basis to a new inertial frame with global coordi-
nates (t′, x′), we must have

∂

∂t′
:= T

(
∂

∂t

)
= coshu

∂

∂t
+ sinhu

∂

∂x

∂

∂x′
:= T

(
∂

∂x

)
= sinhu

∂

∂t
+ coshu

∂

∂x

with u ∈ R (cf. Exercise 2.2.3). The change of basis matrix is

S =

(
coshu sinhu
sinhu coshu

)
,

with inverse

S−1 =

(
coshu − sinhu
− sinhu coshu

)
.
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p

null vector

timelike future-pointing vector

spacelike vector

∂
∂t

∂
∂x

∂
∂y

Figure 1. Minkowski geometry (traditionally represented
with the t-axis pointing upwards).

Therefore the corresponding coordinate transformation is
{
t′ = t coshu− x sinhu

x′ = x coshu− t sinhu

(Lorentz transformation), and hence the new frame is moving with ve-
locity v = tanhu with respect to the old one (as the curve x′ = 0 is the curve
x = vt; notice that |v| < 1). The matrix S−1 is obtained from S simply
by reversing the sign of u, or, equivalently, of v; therefore, the relativity
principle still holds for Lorentz transformations.

Moreover, since {
coshu =

(
1− v2

)− 1
2

sinhu = v
(
1− v2

)− 1
2

,

one can also write the Lorentz transformation as{
t′ =

(
1− v2

)− 1
2 t− v

(
1− v2

)− 1
2 x

x′ =
(
1− v2

)− 1
2 x− v

(
1− v2

)− 1
2 t

.

In everyday life situations, we deal with frames whose relative speed is much
smaller that the speed of light, |v| ≪ 1, and with events for which |x| ≪ |t|
(distances traveled by particles in one second are much smaller that 300,000
kilometers). An approximate expression for the Lorentz transformations in
these situations is then {

t′ = t

x′ = x− vt
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which is just a Galileo transformation. In other words, the Galileo group is
a convenient low-speed approximation of the Lorentz group.

Suppose that two distinct events p and q occur in the same spatial loca-
tion in the inertial frame (t′, x′),

q − p = ∆t′
∂

∂t′
= ∆t′ coshu

∂

∂t
+∆t′ sinhu

∂

∂x
= ∆t

∂

∂t
+∆x

∂

∂x
.

We see that the time separation between the two events in a different inertial
frame (t, x) is bigger,

∆t = ∆t′ coshu > ∆t′.

Loosely speaking, moving clocks run slower when compared to stationary
ones (time dilation).

If, on the other hand, two distinct events p and q occur simultaneously
in the inertial frame (t′, x′),

q − p = ∆x′
∂

∂x′
= ∆x′ sinhu

∂

∂t
+∆x′ coshu

∂

∂x
= ∆t

∂

∂t
+∆x

∂

∂x
,

then they will not be simultaneous in the inertial frame (t, x), where the
time difference between them is

∆t = ∆x′ sinhu 6= 0

(relativity of simultaneity).
Finally, consider two particles at rest in the inertial frame (t′, x′). Their

motions are the lines x′ = x′0 and x′ = x′0 + l′. In the inertial frame (t, x),
these lines have equations

x =
x′0

coshu
+ vt and x =

x′0 + l′

coshu
+ vt,

which describe motions of particles moving with velocity v and separated
by a distance

l =
l′

coshu
< l′.

Loosely speaking, moving objects shrink in the direction of their motion
(length contraction).

Exercises 2.2.

(1) Let 〈·, ·〉 be a nondegenerate symmetric 2-tensor on an n-dimensional
vector space V . Show that there always exists an orthonor-
mal basis {v1, . . . , vn}, i.e. a basis such that 〈vi, vj〉 = εij , where
εii = ±1 and εij = 0 for i 6= j. Moreover, show that s =

∑n
i=1 εii

(known as the signature of 〈·, ·〉) does not depend on the choice
of orthonormal basis.

(2) Consider the Minkowski inner product 〈·, ·〉 on R4 with the standard
time orientation.
(a) Let v ∈ R4 be timelike and future-pointing. Show that:

(i) if w ∈ R4 is timelike or null and future-pointing then
〈v, w〉 < 0;
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(ii) if w ∈ R4 is timelike or null and future-pointing then
v + w is timelike and future-pointing;

(iii) {v}⊥ := {w ∈ R4 | 〈v, w〉 = 0} is a hyperplane contain-
ing only spacelike vectors (and the zero vector).

(b) Let v ∈ R4 be null and future-pointing. Show that:
(i) if w ∈ R4 is timelike or null and future-pointing then

〈v, w〉 ≤ 0, with equality if and only if w = λv for some
λ > 0;

(ii) if w ∈ R4 is timelike or null and future-pointing then
v + w is timelike or null and future-pointing, being null
if and only if w = λv for some λ > 0;

(iii) {v}⊥ is a hyperplane containing only spacelike and null
vectors, all of which are multiples of v.

(c) Let v ∈ R4 be spacelike. Show that {v}⊥ is a hyperplane
containing timelike, null and spacelike vectors.

(3) Show that if (t, x) are the spacetime coordinates associated to an
inertial frame and T ∈ SO0(1, 1) is a Lorentzian change of basis to
a new inertial frame with global coordinates (t′, x′), we must have

∂

∂t′
= T

(
∂

∂t

)
= coshu

∂

∂t
+ sinhu

∂

∂x

∂

∂x′
= T

(
∂

∂x

)
= sinhu

∂

∂t
+ coshu

∂

∂x

for some u ∈ R.
(4) (Twin paradox) Twins Alice and Bob part on their 20th anniversary:

while Alice stays on the Earth (which is approximately an inertial
frame), Bob leaves at 80% of the speed of light towards Planet
X, 8 light-years away from the Earth, which he therefore reaches
10 years later (as measured in the Earth’s frame). After a short
stay, Bob returns to the Earth, again at 80% of the speed of light.
Consequently, Alice is 40 years old when they meet again.
(a) How old is Bob at this meeting?
(b) How do you explain the asymmetry in the twins’ ages? Notice

that, from Bob’s point of view, he is the one who is stationary,
while the the Earth moves away and back again.

(c) Imagine that each twin has a very powerful telescope. What
does each of them see? In particular, how much time elapses
for each of them as they see their twin experiencing one year?
(Hint: Notice that light rays are represented by null lines, i.e. lines whose

tangent vector is null; therefore, if event p in Alice’s history is seen by Bob at

event q then there must exist a future-directed null line connecting p to q).
(5) (Car and garage paradox) A 5-meter long car moves at 80% of light

speed towards a 4-meter long garage with doors at both ends.
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(a) Compute the length of the car in the garage’s frame, and show
that if the garage doors are closed at the right time the car
will be completely inside the garage for a few moments.

(b) Compute the garage’s length in the car’s frame, and show that
in this frame the car is never completely inside the garage.
How do you explain this apparent contradiction?

(6) Let (t′, x′) be an inertial frame moving with velocity v with respect
to the inertial frame (t, x). Prove the velocity addition formula:
if a particle moves with velocity w′ in the frame (t′, x′), the particle’s
velocity in the frame (t, x) is

w =
w′ + v

1 + w′v
.

What happens when w′ = ±1?
(7) (Hyperbolic angle)

(a) Show that

(i) so(1, 1) =

{(
0 u
u 0

)
| u ∈ R

}
;

(ii) exp

(
0 u
u 0

)
=

(
coshu sinhu
sinhu coshu

)
:= S(u);

(iii) S(u)S(u′) = S(u+ u′).
(b) Consider the Minkowski inner product 〈·, ·〉 on R2 with a given

time orientation. If v, w ∈ R2 are unit timelike future-pointing
vectors then there exists a unique u ∈ R such that w = S(u)v
(which we call the hyperbolic angle between v and w). Show
that:

(i) |u| is the length of the curve formed by all unit timelike
vectors between v and w;

(ii) 1
2 |u| is the area of the region swept by the position vector
of the curve above;

(iii) hyperbolic angles are additive;
(iv) the velocity addition formula of Exercise 6 is simply the

formula for the hyperbolic tangent of a sum.
(8) (Generalized twin paradox) Let p, q ∈ R4 be two events connected

by a timelike straight line l. Show that the proper time between
p and q measured along l is bigger than the proper time between
p and q measured along any other timelike curve connecting these
two events. In other words, if an inertial observer and a (necessar-
ily) accelerated observer separate at a given event and are rejoined
at a later event, then the inertial observer always measures a big-
ger (proper) time interval between the two events. In particular,
prove the reversed triangle inequality: if v, w ∈ R4 are timelike
vectors with w ∈ C(v) then |v + w| ≥ |v|+ |w|.

(9) (Doppler effect) Use the spacetime diagram in Figure 2 to show that
an observer moving with velocity v away from a source of light of
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period T measures the period to be

T ′ = T

√
1 + v

1− v
.

(Remark: This effect allows astronomers to measure the radial velocity of stars and

galaxies relative to the Earth).

t

x

x = vt

T

T ′

Figure 2. Doppler effect.

(10) (Aberration) Suppose that the position in the sky of the star Sir-
ius makes an angle θ with the x-axis of a given inertial observer.
Show that the angle θ′ measured by a second inertial observer mov-
ing with velocity v = tanhu along the x-axis of the first observer
satisfies

tan θ′ =
sin θ

coshu cos θ + sinhu
.

(11) Minkowski geometry can be used in many contexts. For instance,
let l = R ∂

∂t represent the motion of an observer at rest in the
atmosphere and choose units such that the speed of sound is 1.
(a) Let τ : R4 → R the map such that τ(p) is the t coordinate of

the event in which the observer hears the sound generated at
p. Show that the level surfaces of τ are the conical surfaces

τ−1(t0) =

{
p ∈ R4 | t0

∂

∂t
− p is null and future-pointing

}
.

(b) Show that c : I → R4 represents the motion of a supersonic
particle iff

〈
ċ,
∂

∂t

〉
6= 0 and 〈ċ, ċ〉 > 0.

(c) Argue that the observer hears a sonic boom whenever c is tan-
gent to a surface τ = constant. Assuming that c is a straight
line, what does the observer hear before and after the boom?
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(12) Let c : R → R4 be the motion of a particle in Minkowski spacetime
parameterized by the proper time τ .
(a) Show that

〈ċ, ċ〉 = −1

and

〈ċ, c̈〉 = 0.

Conclude that c̈ is the particle’s acceleration as measured in
the particle’s instantaneous rest frame, i.e., in the inertial
frame (t, x, y, z) for which ċ = ∂

∂t . For this reason, c̈ is called
the particle’s proper acceleration, and |c̈| is interpreted as
the acceleration measured by the particle.

(b) Compute the particle’s motion assuming that it is moving
along the x-axis and measures a constant acceleration |c̈| = a.

(c) Consider a spaceship launched from the Earth towards the
center of the Galaxy (at a distance of 30,000 light-years) with
a = g, where g represents the gravitational acceleration at the
surface of the Earth. Using the fact that g ≃ 1 year−1 in units
such that c = 1, compute the proper time measured aboard
the spaceship for this journey. How long would the journey
take as measured from the Earth?

(13) (The faster-than-light missile) While conducting a surveillance mis-
sion on the home planet of the wicked Klingons, the Enterprise un-
covers their evil plan to build a faster-than-light missile and attack
the Earth, 12 light-years away. Captain Kirk immediately orders
the Enterprise back to the Earth at its top speed (1213 of the speed
of light), and at the same time sends out a radio warning. Unfor-
tunately, it is too late: eleven years later (as measured by them),
the Klingons launch their missile, moving at 12 times the speed of
light. Therefore the radio warning, traveling at the speed of light,
reaches the Earth at the same time as the missile, twelve years after
its emission, and the Enterprise arrives at the ruins of the Earth
one year later.
(a) How long does the Enterprise’s trip take according to its crew?
(b) On the Earth’s frame, let (0, 0) be the (t, x) coordinates of the

event in which the Enterprise sends the radio warning, (11, 0)
the coordinates of the missile’s launch, (12, 12) the coordi-
nates of the Earth’s destruction and (13, 12) the coordinates
of the Enterprise’s arrival at the Earth’s ruins (cf. Figure 3).
Compute the (t′, x′) coordinates of the same events on the
Enterprise’s frame.

(c) Plot the motions of the Enterprise, the Klingon planet, the
Earth, the radio signal and the missile on the Enterprise’s
frame. Does the missile motion according to the Enterprise
crew make sense?
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(Remark: This exercise is based on an exercise in [TW92]).

t

x(0, 0)

(11, 0)

(12, 12)

(13, 12)

Planet Klingon Earth

Enterprise

missile

radio signal

Figure 3. Faster-than-light missile.

3. The Cartan Connection

Let (x0, x1, x2, x3) = (t, x, y, z) be an inertial frame on Galileo spacetime,
which we can therefore identify with R4. Recall that Newtonian gravity
is described by a gravitational potential Φ : R4 → R. This potential
determines the motions of free-falling particles through

d2xi

dt2
= − ∂Φ

∂xi

(i = 1, 2, 3), and is, in turn, determined by the matter density function
ρ : R4 → R through the Poisson equation

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 4πρ

(we are using units in which Newton’s universal gravitation constant G
is set equal to 1). The vacuum Poisson equation (corresponding to the
case in which all matter is concentrated on singularities of the gravitational
potential) is the well known Laplace equation

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0.



3. THE CARTAN CONNECTION 249

Notice that the equation of motion is the same for all particles, regard-
less of their mass. This observation, dating back to Galileo, was made into
the so-called equivalence principle by Einstein. It implies that a grav-
itational field determines special curves on Galileo spacetime, namely the
motions of free-falling particles. These curves are the geodesics of a sym-
metric connection, known as the Cartan connection, defined through the
nonvanishing Christoffel symbols

Γi00 =
∂Φ

∂xi
(i = 1, 2, 3)

(cf. Exercise 3.1.1), corresponding to the nonvanishing connection forms

ωi0 =
∂Φ

∂xi
dt.

It is easy to check that the Cartan structure equations

Ωµν = dωµν +

3∑

α=0

ωµα ∧ ωαν

still hold for arbitrary symmetric connections, and hence we have the non-
vanishing curvature forms

Ωi0 =

3∑

j=1

∂2Φ

∂xj∂xi
dxj ∧ dt.

The Ricci curvature tensor of this connection is

Ric =

(
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2

)
dt⊗ dt

(cf. Exercise 3.1.2), and hence the Poisson equation can be written as

Ric = 4πρ dt⊗ dt.

In particular, the Laplace equation can be written as

Ric = 0.

Exercises 3.1.

(1) Check that the motions of free-falling particles are indeed geodesics
of the Cartan connection. What other geodesics are there? How
would you interpret them?

(2) Check the formula for the Ricci curvature tensor of the Cartan
connection.

(3) Show that the Cartan connection ∇ is compatible with Galileo
structure, i.e., show that:
(a) ∇Xdt = 0 for all X ∈ X(R4) (cf. Exercise 2.6.3 in Chapter 3);
(b) if E,F ∈ X(R4) are tangent to the simultaneity hypersurfaces

and parallel along some curve c : R → R4, then 〈E,F 〉 is
constant.
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(4) Show that if the Cartan connection has nonzero curvature then it
is not the Levi-Civita connection of any pseudo-Riemannian metric
on R4 (cf. Section 4).

4. General Relativity

Gravity can be introduced in Newtonian mechanics through the sym-
metric Cartan connection, which preserves Galileo spacetime structure. A
natural idea for introducing gravity in special relativity is then to search for
symmetric connections preserving the Minkowski inner product. To formal-
ize this, we introduce the following definition.

Definition 4.1. A pseudo-Riemannian manifold is a pair (M, g),
where M is a connected n-dimensional differentiable manifold and g is a
symmetric nondegenerate differentiable 2-tensor field (g is said to be a pseudo-
Riemannian metric in M). The signature of a pseudo-Riemannian
manifold is just the signature of g at any tangent space. A Lorentzian
manifold is a pseudo-Riemannian manifold with signature n − 2 (that is,
(gµν) = diag(−1, 1, . . . , 1) for appropriate orthonormal frames).

The Minkowski spacetime (R4, 〈·, ·〉) is obviously a Lorentzian manifold.
The proof of the Levi-Civita theorem uses the non-degeneracy of the metric,
not its positivity. Therefore, the theorem still holds for pseudo-Riemannian
manifolds. In other words, given a pseudo-Riemannian manifold (M, g)
there exists a unique symmetric connection ∇ which is compatible with g
(given by the Koszul formula). Therefore there exists just one symmetric
connection preserving the Minkowski metric, which is the trivial connection
(obtained in Cartesian coordinates by taking all Christoffel symbols equal
to zero). Notice that the geodesics of this connection are straight lines,
corresponding to motions of free particles, which in particular do not feel
any gravitational field.

To introduce gravity through a symmetric connection we must therefore
consider more general 4-dimensional Lorentzian manifolds, which we will still
call spacetimes. These are no longer required to be diffeomorphic to R4,
nor to have inertial charts. The study of the geometry of these spacetimes
is usually called general relativity.

Each spacetime comes equipped with its unique Levi-Civita connection,
and hence with its geodesics. If c : I ⊂ R → M is a geodesic, then 〈ċ, ċ〉 is
constant, as

d

ds
〈ċ(s), ċ(s)〉 = 2

〈
Dċ

ds
(s), ċ(s)

〉
= 0.

A geodesic is called timelike, null, or spacelike according to whether
〈ċ, ċ〉 < 0, 〈ċ, ċ〉 = 0 or 〈ċ, ċ〉 > 0 (i.e. according to whether its tangent vector
is timelike, spacelike or null). By analogy with the Cartan connection, we
will take timelike geodesics to represent the free-falling motions of massive
particles. This ensures that the equivalence principle holds. Null geodesics
will be taken to represent the motions of light rays.
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In general, any curve c : I ⊂ R →M is said to be timelike if 〈ċ, ċ〉 < 0.
In this case, c represents the motion of a particle with nonzero mass (which
is accelerating unless c is a geodesic). The proper time measured by the
particle between events c(a) and c(b) is

τ(c) =

∫ b

a
|ċ(s)|ds,

where |v| = |〈v, v〉| 12 for any v ∈ TM .
To select physically relevant spacetimes we must impose some sort of

constraint. By analogy with the formulation of the Laplace equation in
terms of the Cartan connection, we make the following definition.

Definition 4.2. The Lorentzian manifold (M, g) is said to be a vac-
uum solution of the Einstein field equation if its Levi-Civita connection
satisfies Ric = 0.

The general Einstein field equation is

Ric− S

2
g = 8πE,

where S =
∑3

µ,ν=0 g
µνRµν is the scalar curvature and E is the so-called

energy-momentum tensor of the matter content of the spacetime. The
simplest example of a matter model is that of a pressureless perfect fluid,
which is described by a rest density function ρ ∈ C∞(M) and a unit
velocity vector field U ∈ X(M) (whose integral lines are the motions of
the fluid particles). The energy-momentum tensor for this matter model is

E = ρ ν ⊗ ν,

where ν ∈ Ω1(M) is the 1-form associated to U by the metric g.
The Einstein field equation can be rewritten as

Ric = 8πT,

where

T := E − 1

2




3∑

µ,ν=0

gµνEµν


 g

is the reduced energy-momentum tensor (cf. Exercise 4.3.2). For a
pressureless perfect fluid, the reduced energy-momentum tensor is

T = ρ

(
ν ⊗ ν +

1

2
g

)
,

and so Einstein field equation is

Ric = 4πρ(2ν ⊗ ν + g)

(compare this with the Poisson equation in terms of the Cartan connection).
It turns out that spacetimes satisfying the Einstein field equation for ap-

propriate choices of T model astronomical phenomena with great accuracy.
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Exercises 4.3.

(1) Show that the signature of a pseudo-Riemannian manifold (M, g)
is well defined, i.e., show that the signature of gp ∈ T 2(TpM) does
not depend on p ∈M .

(2) Show that:
(a) the Einstein field equation can be rewritten as

Ric = 8πT ;

(b) the reduced energy-momentum tensor for a pressureless perfect
fluid with rest density ρ and unit velocity 1-form ν is

T = ρ

(
ν ⊗ ν +

1

2
g

)
.

(3) Let (M, g) be a pseudo-Riemannian manifold and f : N → M an
immersion. Show that f∗g is not necessarily a pseudo-Riemannian
metric on N .

(4) Let (M, g) be the (n + 1)-dimensional Minkowski spacetime, i.e.,
M = Rn+1 and

g = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn.

Let i : N →M be the inclusion map, where

N := {v ∈M | 〈v, v〉 = −1 and v0 > 0}.
Show that (N, i∗g) is the n-dimensional hyperbolic space Hn.

(5) (Fermi-Walker transport) Let c : I ⊂ R → R4 be a timelike curve
in Minkowski space parameterized by the proper time, U := ċ the
tangent unit vector and A := c̈ the proper acceleration. A vector
field V : I → R4 is said to be Fermi-Walker transported along
c if

DV

dτ
= 〈V,A〉U − 〈V, U〉A.

(a) Show that U is Fermi-Walker transported along c.
(b) Show that if V and W are Fermi-Walker transported along c

then 〈V,W 〉 is constant.
(c) If 〈V, U〉 = 0 then V is tangent at U to the submanifold

N := {v ∈ R4 | 〈v, v〉 = −1 and v0 > 0},
which is isometric to the hyperbolic 3-space (cf. Exercise 4).
Show that, in this case, V is Fermi-Walker transported if and
only if it is parallel transported along U : I → N .

(d) Assume that c describes a circular motion with constant speed
v. Let V be a Fermi-Walker transported vector field, tangent
to the plane of the motion, such that 〈V, U〉 = 0. Compute
the angle by which V rotates (or precesses) after one revolu-
tion. (Remark: It is possible to prove that the angular momentum vector of

a spinning particle is Fermi-Walker transported along its motion and orthogonal
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to it; the above precession, which has been observed for spinning particles such

as electrons, is called the Thomas precession).
(6) (Twin paradox on a cylinder) The quotient of Minkowski space-

time by the discrete isometry group generated by the translation
ξ(t, x, y, z) = (t, x + 8, y, z) is a (flat) vacuum solution of the Ein-
stein field equation. Assume that the Earth’s motion is represented
by the line x = y = z = 0, and that once again Bob departs at 80%
of the speed of light along the x-axis, leaving his twin sister Alice on
the Earth, on their 20th anniversary (cf. Exercise 2.2.5). Because
of the topology of space, the two twins meet again after 10 years
(as measured on the Earth), without Bob ever having accelerated.
(a) Compute the age of each twin in their meeting.
(b) From Bob’s viewpoint, it is the Earth which moves away from

him. How do you explain the asymmetry in the twins’ ages?
(7) (Rotating frame)

(a) Show that the metric of Minkowski spacetime can be written
as

g = −dt⊗ dt+ dr ⊗ dr + r2dθ ⊗ dθ + dz ⊗ dz

by using cylindrical coordinates (r, θ, z) in R3.
(b) Let ω > 0 and consider the coordinate change given by θ =

θ′ + ωt. Show that in these coordinates the metric is written
as

g =− (1− ω2r2)dt⊗ dt+ ωr2dt⊗ dθ′ + ωr2dθ′ ⊗ dt

+ dr ⊗ dr + r2dθ′ ⊗ dθ′ + dz ⊗ dz.

(c) Show that in the region U = {r < 1
ω} the coordinate curves of

constant (r, θ′, z) are timelike curves corresponding to (accel-
erated) observers rotating rigidly with respect to the inertial
observers of constant (r, θ, z).

(d) The set of the rotating observers is a 3-dimensional smooth
manifold Σ with local coordinates (r, θ′, z), and there exists a
natural projection π : U → Σ. We introduce a Riemannian
metric h on Σ as follows: if v, w ∈ Tπ(p)Σ then

h(v, w) = g
(
v†, w†

)
,

where, for each u ∈ Tπ(p)Σ, the vector u† ∈ TpU satisfies

(dπ)p u
† = u and g

(
u†,

(
∂

∂t

)

p

)
= 0.

Show that h is well defined and

h = dr ⊗ dr +
r2

1− ω2r2
dθ′ ⊗ dθ′ + dz ⊗ dz.
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(Remark: This is the metric resulting from local distance measurements be-

tween the rotating observers; Einstein used the fact that this metric has cur-

vature to argue for the need to use non-Euclidean geometry in the relativistic

description of gravity).
(e) The image of a curve c : I ⊂ R → U consists of simultaneous

events from the point of view of the rotating observers if ċ is
orthogonal to ∂

∂t at each point. Show that this is equivalent to
requiring that α(ċ) = 0, where

α = dt− ωr2

1− ω2r2
dθ′.

In particular, show that, in general, synchronization of the
rotating observers’ clocks around closed paths leads to incon-
sistencies. (Remark: This is the so-called Sagnac effect; it must be taken

into account when synchronizing the very precise atomic clocks on the GPS

system ground stations, because of the Earth’s rotation).
(8) (Static spacetime) Let (Σ, h) be a 3-dimensional Riemannian man-

ifold and consider the 4-dimensional Lorentzian manifold (M, g)
determined by M := R× Σ and

g := −e2 (Φ ◦π)dt⊗ dt+ π∗h,

where t is the usual coordinate in R, π : M → Σ is the natural
projection and Φ : Σ → R is a smooth function.
(a) Let c : I ⊂ R → M be a timelike geodesic parameterized by

the proper time, and γ := π ◦ c. Show that

Dγ̇

dτ
= (1 + h(γ̇, γ̇))G,

where G = − grad(Φ) is the vector field associated to −dΦ by
h and can be thought of as the gravitational field. Show that
this equation implies that the quantity

E2 := (1 + h(γ̇, γ̇))e2Φ

is a constant of motion.
(b) Let c : I ⊂ R →M be a null geodesic, c̃ its reparameterization

by the coordinate time t, and γ̃ := π ◦ c̃. Show that γ̃ is a
geodesic of the Fermat metric

l := e−2 (Φ ◦π)h.

(Hint: Use Lemma 1.12 in Chapter 5).
(c) Show that the vacuum Einstein field equation for g is equiva-

lent to

divG = h(G,G);

Ric = ∇dΦ+ dΦ⊗ dΦ,

where divG is the divergence of G, Ric and ∇ are the Ricci
curvature and the Levi-Civita connection of h, and ∇dΦ is the
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tensor defined by (∇dΦ)(X,Y ) := (∇XdΦ) (Y ) for all X,Y ∈
X(Σ) (cf. Exercises 2.6.3 and 3.3.9 in Chapter 3).

5. The Schwarzschild Solution

The vacuum Einstein field equation is nonlinear, and hence much harder
to solve than the Laplace equation. One of the first solutions to be discovered
was the so-called Schwarzschild solution, which can be obtained from the
simplifying hypotheses of time independence and spherical symmetry, i.e. by
looking for solutions of the form

g = −A2(r)dt⊗ dt+B2(r)dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

for unknown positive smooth functions A,B : R → R. Notice that this
expression reduces to the Minkowski metric in spherical coordinates for A ≡
B ≡ 1).

It is easily seen that the Cartan structure equations still hold for pseudo-
Riemannian manifolds. We have

g = −ω0 ⊗ ω0 + ωr ⊗ ωr + ωθ ⊗ ωθ + ωϕ ⊗ ωϕ

with

ω0 = A(r)dt;

ωr = B(r)dr;

ωθ = rdθ;

ωϕ = r sin θdϕ,

and hence {ω0, ωr, ωθ, ωϕ} is an orthonormal coframe. The first structure
equations,

dωµ =
3∑

ν=0

ων ∧ ωµν ;

dgµν =

3∑

α=0

gµαω
α
ν + gναω

α
µ ,

which on an orthonormal frame are written as

dωµ =
3∑

ν=0

ων ∧ ωµν ;

ω0
0 = ωii = 0;

ω0
i = ωi0;

ωij = −ωji
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(i, j = 1, 2, 3), together with

dω0 =
A′

B
ωr ∧ dt;

dωr = 0;

dωθ =
1

B
ωr ∧ dθ;

dωϕ =
sin θ

B
ωr ∧ dϕ+ cos θ ωθ ∧ dϕ,

yield the nonvanishing connection forms

ω0
r = ωr0 =

A′

B
dt;

ωθr = −ωrθ =
1

B
dθ;

ωϕr = −ωrϕ =
sin θ

B
dϕ;

ωϕθ = −ωθϕ = cos θdϕ.

The curvature forms can be computed from the second structure equations

Ωµν = dωµν +

3∑

α=0

ωµα ∧ ωαν ,

and are found to be

Ω0
r = Ωr0 =

A′′B −A′B′

AB3
ωr ∧ ω0;

Ω0
θ = Ωθ0 =

A′

rAB2
ωθ ∧ ω0;

Ω0
ϕ = Ωϕ0 =

A′

rAB2
ωϕ ∧ ω0;

Ωθr = −Ωrθ =
B′

rB3
ωθ ∧ ωr;

Ωϕr = −Ωrϕ =
B′

rB3
ωϕ ∧ ωr;

Ωϕθ = −Ωθϕ =
B2 − 1

r2B2
ωϕ ∧ ωθ.

Thus the components of the curvature tensor on the orthonormal frame
can be read off from the curvature forms using

Ωµν =
∑

α<β

R µ
αβν ω

α ∧ ωβ .

and can in turn be used to compute the components of the Ricci curvature
tensor Ric on the same frame. The nonvanishing components of Ric on this
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frame turn out to be

R00 =
A′′B −A′B′

AB3
+

2A′

rAB2
;

Rrr = −A
′′B −A′B′

AB3
+

2B′

rB3
;

Rθθ = Rϕϕ = − A′

rAB2
+

B′

rB3
+
B2 − 1

r2B2
.

Thus the vacuum Einstein field equation Ric = 0 is equivalent to the
ODE system





A′′

A
− A′B′

AB
+

2A′

rA
= 0

A′′

A
− A′B′

AB
− 2B′

rB
= 0

A′

A
− B′

B
− B2 − 1

r
= 0

⇔





A′

A
+
B′

B
= 0

(
A′

A

)′
+ 2

(
A′

A

)2

+
2A′

rA
= 0

2B′

B
+
B2 − 1

r
= 0

.

The last equation can be immediately solved to yield

B =

(
1− 2m

r

)− 1
2

,

where m ∈ R is an integration constant. The first equation implies that
A = α

B for some constant α > 0. By rescaling the time coordinate t we
can assume that α = 1. Finally, it is easily checked that the second ODE
is identically satisfied. Therefore there exists a one-parameter family of
solutions of the vacuum Einstein field equation of the form we sought, given
by

g = −
(
1− 2m

r

)
dt⊗ dt+

(
1− 2m

r

)−1

dr ⊗ dr(28)

+r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ.

To interpret this family of solutions, we compute the proper acceleration
(cf. Exercise 2.2.12) of the stationary observers, whose motions are the
integral curves of ∂

∂t . If {E0, Er, Eθ, Eϕ} is the orthonormal frame obtained

by normalizing
{
∂
∂t ,

∂
∂r ,

∂
∂θ ,

∂
∂ϕ

}
(hence dual to {ω0, ωr, ωθ, ωϕ}), we have

∇E0E0 =
3∑

µ=0

ωµ0 (E0)Eµ = ωr0(E0)Er =
A′

AB
ω0(E0)Er =

m

r2

(
1− 2m

r

)− 1
2

Er.

Therefore, each stationary observer is accelerating with a proper acceleration

G(r) =
m

r2

(
1− 2m

r

)− 1
2
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away from the origin, to prevent falling towards it. In other words, they
are experiencing a gravitational field of intensity G(r), directed towards the
origin. Since G(r) approaches, for large values of r, the familiar acceleration
m/r2 of the Newtonian gravitational field generated by a point particle of
mass m, we interpret the Schwarzschild solution as the general relativistic
field of a point particle of mass m. Accordingly, we will assume that m > 0
(notice that m = 0 corresponds to Minkowski spacetime).

When obtaining the Schwarzschild solution we assumed A(r) > 0, and
hence r > 2m. However, it is easy to check that (28) is also a solution
of the Einstein vacuum field equation for r < 2m. Notice that the coordi-
nate system (t, r, θ, ϕ) is singular at r = 2m, and hence covers only the two
disconnected open sets {r > 2m} and {r < 2m}. Both these sets are geodesi-
cally incomplete, as for instance radial timelike or null geodesics cannot be
extended as they approach r = 0 or r = 2m (cf. Exercise 5.1.7). While
this is to be expected for r = 0, as the curvature blows up along geodesics
approaching this limit, this is not the case for r = 2m. It turns out that
it is possible to fit these two open sets together to obtain a solution of the
Einstein vacuum field equation regular at r = 2m. To do so, we introduce
the so-called Painlevé time coordinate

t′ = t+

∫ √
2m

r

(
1− 2m

r

)−1

dr.

In the coordinate system (t′, r, θ, ϕ), the Schwarzschild metric is written

g = −dt′⊗dt′+
(
dr +

√
2m

r
dt′
)
⊗
(
dr +

√
2m

r
dt′
)
+r2dθ⊗dθ+r2 sin2 θdϕ⊗dϕ.

This expression is nonsingular at r = 2m, and is a solution of the Einstein
vacuum field equation for {r > 2m} and {r < 2m}. By continuity, it must
be a solution also at r = 2m.

The submanifold r = 2m is called the event horizon, and is ruled by
null geodesics. This is easily seen from the fact that ∂

∂t′ =
∂
∂t becomes null

at r = 2m, and hence its integral curves are (reparameterizations of) null
geodesics.

The causal properties of the Schwarzschild spacetime are best under-
stood by studying the light cones, i.e. the set of tangent null vectors at
each point. For instance, radial null vectors v = v0 ∂

∂t′ + vr ∂∂r satisfy

−
(
v0
)2

+

(
vr +

√
2m

r
v0

)2

= 0 ⇔ vr =

(
±1−

√
2m

r

)
v0.

For r ≫ 2m we obtain approximately the usual light cones of Minkowski
spacetime. As r approaches 2m, however, the light cones “tip over” towards
the origin, becoming tangent to the event horizon at r = 2m (cf. Figure 4).
Since the tangent vector to a timelike curve must be inside the light cone,
we see that no particle which crosses the event horizon can ever leave the
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region r = 2m (which for this reason is called a black hole). Once inside
the black hole, the light cones tip over even more, forcing the particle into
the singularity r = 0.

t′

r

r = 2m

Figure 4. Light cones in Painlevé coordinates.

Notice that the Schwarzschild solution in Painlevé coordinates is still
not geodesically complete at the event horizon, as radial timelike and null
geodesics are incomplete to the past as they approach r = 2m (cf. Exer-
cise 5.1.7). Physically, this is not important: black holes are thought to
form through the collapse of (approximately) spherical stars, whose surface
follows a radial timelike curve in the spacetime diagram of Figure 4. Since
only outside the star is there vacuum, the Schwarzschild solution is expected
to hold only above this curve, thereby removing the region of r = 2m lead-
ing to incompleteness. Nevertheless, it is possible to glue two copies of the
Schwarzschild spacetime in Painlevé coordinates to obtain a solution of the
vacuum Einstein field equation which is geodesically incomplete only at the
two copies of r = 0. This solution, known as the Kruskal extension,
contains a black hole and its time-reversed version, known as a white hole.

For some time it was thought that the curvature singularity at r = 0
was an artifact of the high symmetry of Schwarzschild spacetime, and that
more realistic models of collapsing stars would be singularity-free. Hawking
and Penrose proved that this is not the case: once the collapse has begun,
no matter how asymmetric, nothing can prevent a singularity from forming
(cf. Sections 8 and 9).

Exercises 5.1.

(1) Let (M, g) be a 2-dimensional Lorentzian manifold.
(a) Consider an orthonormal frame {E0, E1} on an open set U ⊂

M , with associated coframe {ω0, ω1}. Check that the Cartan
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structure equations are

ω0
1 = ω1

0;

dω0 = ω1 ∧ ω0
1;

dω1 = ω0 ∧ ω0
1;

Ω0
1 = dω0

1.

(b) Let {F0, F1} be another orthonormal frame such that F0 ∈
C(E0), with associated coframe {ω0, ω1} and connection form
ω0
1. Show that σ = ω0

1−ω0
1 is given locally by σ = du, where u

is the hyperbolic angle between F0 and E0 (cf. Exercise 2.2.7).
(c) Consider a triangle ∆ ⊂ U whose sides are timelike geodesics,

and let α, β and γ be the hyperbolic angles between them
(cf. Figure 5). Show that

γ = α+ β −
∫

∆
Ω0
1,

where, following the usual convention for spacetime diagrams,
we orient U so that {E0, E1} is negative.

(d) Provide a physical interpretation for the formula above in the
case in which (M, g) is a totally geodesic submanifold of the
Schwarzschild spacetime obtained by fixing (θ, ϕ) (cf. Exer-
cise 5.7.3 in Chapter 4).

α

β

γ

Figure 5. Timelike geodesic triangle.
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(2) Consider the Schwarzschild spacetime with local coordinates (t, r, θ, ϕ).
An equatorial circular curve is a curve given in these coordi-
nates by (t(τ), r(τ), θ(τ), ϕ(τ)) with ṙ(τ) ≡ 0 and θ(τ) ≡ π

2 .
(a) Show that the conditions for such a curve to be a timelike

geodesic parameterized by its proper time are





ẗ = 0

ϕ̈ = 0

rϕ̇2 = m
r2
ṫ2(

1− 3m
r

)
ṫ2 = 1

.

Conclude that massive particles can orbit the central mass in
circular orbits for all r > 3m.

(b) Show that there exists an equatorial circular null geodesic for
r = 3m. What does a stationary observer placed at r = 3m,
θ = π

2 see as he looks along the direction of this null geodesic?
(c) The angular momentum vector of a free-falling spinning par-

ticle is parallel-transported along its motion, and orthogonal
to it (cf. Exercise 4.3.5). Consider a spinning particle on a cir-
cular orbit around a pointlike mass m. Show that the angular
momentum vector precesses by an angle

δ = 2π

(
1−

(
1− 3m

r

) 1
2

)
,

after one revolution, if initially aligned with the radial direc-
tion. (Remark: The above precession, which has been observed for spinning

quartz spheres in orbit around the Earth during the Gravity Probe B experiment,

is called the geodesic precession).
(3) (Gravitational redshift) We consider again the Schwarzschild space-

time with local coordinates (t, r, θ, ϕ).
(a) Show that the proper time interval ∆τ measured by a station-

ary observer between two events on his history is

∆τ =

(
1− 2m

r

) 1
2

∆t,

where ∆t is the difference between the time coordinates of
the two events. (Remark: This effect has been measured experimentally;

loosely speaking, gravity delays time).
(b) Show that if (t(s), r(s), θ(s), ϕ(s)) is a geodesic then so is

(t(s) + ∆t, r(s), θ(s), ϕ(s)) for any ∆t ∈ R.
(c) Use the spacetime diagram in Figure 6 to show that if a sta-

tionary observer at r = r0 measures a light signal to have
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t

r

r0 r1

T

T ′

Figure 6. Gravitational redshift.

period T , a stationary observer at r = r1 measures a period

T ′ = T

√√√√1− 2m
r1

1− 2m
r0

for the same signal. (Remark: This gravitational redshift has been mea-

sured experimentally, confirming that spacetime must be curved – in Minkowski

spacetime one would necessarily have T = T ′).
(4) Let (M, g) be the region r > 2m of the Schwarzschild solution with

the Schwarzschild metric. The set of all stationary observers in
M is a 3-dimensional smooth manifold Σ with local coordinates
(r, θ, ϕ), and there exists a natural projection π : M → Σ. We
introduce a Riemannian metric h on Σ as follows: if v, w ∈ Tπ(p)Σ
then

h(v, w) = g
(
v†, w†

)
,

where, for each u ∈ Tπ(p)Σ, the vector u† ∈ TpU satisfies

(dπ)p u
† = u and g

(
u†,

(
∂

∂t

)

p

)
= 0

(cf. Exercise 4.3.7).
(a) Show that h is well defined and

h =

(
1− 2m

r

)−1

dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ.
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(b) Show that h is not flat, but has zero scalar curvature.
(c) Show that the equatorial plane θ = π

2 is isometric to the rev-

olution surface generated by the curve z(r) =
√
8m(r − 2m)

when rotated around the z-axis (cf. Figure 7).
(Remark: This is the metric resulting from local distance measurements between the

stationary observers; loosely speaking, gravity deforms space).

Figure 7. Surface of revolution isometric to the equatorial plane.

(5) In this exercise we study in detail the timelike and null geodesics of
the Schwarzschild spacetime. We start by observing that the sub-
manifold θ = π

2 is totally geodesic (cf. Exercise 5.7.3 in Chapter 4).
By adequately choosing the angular coordinates (θ, ϕ), one can al-
ways assume that the initial condition of the geodesic is tangent to
this submanifold; hence it suffices to study the timelike and null
geodesics of the 3-dimensional Lorentzian manifold (M, g), where

g = −
(
1− 2m

r

)
dt⊗ dt+

(
1− 2m

r

)−1

dr ⊗ dr + r2dϕ⊗ dϕ.

(a) Show that ∂
∂t and ∂

∂ϕ are Killing fields (cf. Exercise 3.3.8 in

Chapter 3).
(b) Conclude that the equations for a curve c : R → M to be

a future-directed geodesic (parameterized by proper time if
timelike) can be written as




g(ċ, ċ) = −σ
g
(
∂
∂t , ċ

)
= −E

g
(
∂
∂ϕ , ċ

)
= L

⇔





ṙ2 = E2 −
(
σ + L2

r2

) (
1− 2m

r

)
(
1− 2m

r

)
ṫ = E

r2ϕ̇ = L

where E > 0 and L are integration constants, σ = 1 for time-
like geodesics and σ = 0 for null geodesics.

(c) Show that if L 6= 0 then u = 1
r satisfies

d2u

dϕ2
+ u =

mσ

L2
+ 3mu2.
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(d) For situations where relativistic corrections are small one has
mu≪ 1, and hence the approximate equation

d2u

dϕ2
+ u =

m

L2

holds for timelike geodesics. Show that the solution to this
equation is the conic section given in polar coordinates by

u =
m

L2
(1 + ε cos(ϕ− ϕ0)),

where the integration constants ε ≥ 0 and ϕ0 are the eccen-
tricity and the argument of the pericenter.

(e) Show that for ε≪ 1 this approximate solution satisfies

u2 ≃ 2m

L2
u− m2

L4
.

Argue that timelike geodesics close to circular orbits where
relativistic corrections are small yield approximate solutions
of the equation

d2u

dϕ2
+

(
1− 6m2

L2

)
u =

m

L2

(
1− 3m2

L2

)
,

and hence the pericenter advances by approximately

6πm

r

radians per revolution. (Remark: The first success of general relativity

was due to this effect, which explained the anomalous precession of Mercury’s

perihelion – 43 arcseconds per century).
(f) Show that if one neglects relativistic corrections then null

geodesics satisfy

d2u

dϕ2
+ u = 0.

Show that the solution to this equation is the equation for a
straight line in polar coordinates,

u =
1

b
sin(ϕ− ϕ0),

where the integration constants b > 0 and ϕ0 are the impact
parameter (distance of closest approach to the center) and
the angle between the line and the x-axis.

(g) Assume that mu ≪ 1. Let us include relativistic corrections
by looking for approximate solutions of the form

u =
1

b

(
sinϕ+

m

b
v
)
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(where we take ϕ0 = 0 for simplicity). Show that v is an
approximate solution of the equation

d2v

dϕ2
+ v = 3 sin2 ϕ,

and hence u is approximately given by

u =
1

b

(
sinϕ+

m

b

(
3

2
+

1

2
cos(2ϕ) + α cosϕ+ β sinϕ

))
,

where α and β are integration constants.
(h) Show that for the incoming part of the null geodesic (ϕ ≃ 0)

one approximately has

u = 0 ⇔ ϕ = −m
b
(2 + α) .

Similarly, show that for the outgoing part of the null geodesic
(ϕ ≃ π) one approximately has

u = 0 ⇔ ϕ = π +
m

b
(2− α) .

Conclude that ϕ varies by approximately

∆ϕ = π +
4m

b

radians along its path, and hence the null geodesic is deflected
towards the center by approximately

4m

b

radians. (Remark: The measurement of this deflection of light by the Sun

– 1.75 arcseconds – was the first experimental confirmation of general relativity,

and made Einstein a world celebrity overnight).
(6) (Birkhoff theorem) Prove that the only Ricci-flat Lorentzian metric

given in local coordinates (t, r, θ, ϕ) by

g = A2(t, r)dt⊗dt+B2(t, r)dr⊗dr+r2dθ⊗dθ+r2 sin2 θdϕ⊗dϕ
is the Schwarzschild metric. Loosely speaking, spherically symmet-
ric mass configurations do not radiate.

(7) (a) Show that the radial timelike or null geodesics in the regions
{r > 2m} and {r < 2m} of the Schwarzschild spacetime can-
not be extended as they approach r = 0 or r = 2m.

(b) Show that the radial timelike or null geodesics in the Painlevé
extension of the Schwarzschild spacetime can be extended to
the future, but not to the past, as they approach r = 2m.

(c) Show that radial observers satisfying

dr

dt′
= −

√
2m

r
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in the Painlevé coordinates are free-falling, and that t′ is their
proper time.

(d) What does a stationary observer see as a particle falls into a
black hole?

(8) Show that an observer who crosses the horizon will hit the singu-
larity in a proper time interval ∆τ ≤ πm.

6. Cosmology

Cosmology studies the behavior of the universe as a whole. Experimen-
tal observations (chiefly that of the cosmic background radiation) suggest
that space is isotropic at the Earth’s location. Assuming the Copernican
principle that the Earth’s location in the universe is not in any way special,
we take an isotropic (hence constant curvature) 3-dimensional Riemannian
manifold (Σ, h) as our model of space. We can always find local coordinates
(r, θ, ϕ) on Σ such that

h = a2
(

1

1− kr2
dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

)
,

where a > 0 is the “radius” of space and k = −1, 0, 1 according to whether
the curvature is negative, zero or positive (cf. Exercise 6.1.1). Allowing for
the possibility that the “radius” of space may be varying in time, we take
our model of the universe to be (M, g), where M = R× Σ and

g = −dt⊗ dt+ a2(t)

(
1

1− kr2
dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

)
.

These are the so-called Friedmann-Lemâıtre-Robertson-Walker (FLRW)
models of cosmology.

One can easily compute the Ricci curvature for the metric g. We have

g = −ω0 ⊗ ω0 + ωr ⊗ ωr + ωθ ⊗ ωθ + ωϕ ⊗ ωϕ

with

ω0 = dt;

ωr = a(t)
(
1− kr2

)− 1
2 dr;

ωθ = a(t)rdθ;

ωϕ = a(t)r sin θdϕ,
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and hence {ω0, ωr, ωθ, ωϕ} is an orthonormal coframe. The first structure
equations yield

ω0
r = ωr0 = ȧ

(
1− kr2

)− 1
2 dr;

ω0
θ = ωθ0 = ȧrdθ;

ω0
ϕ = ωϕ0 = ȧr sin θdϕ;

ωθr = −ωrθ =
(
1− kr2

) 1
2 dθ;

ωϕr = −ωrϕ =
(
1− kr2

) 1
2 sin θdϕ;

ωϕθ = −ωθϕ = cos θdϕ.

The curvature forms can be computed from the second structure equa-
tions, and are found to be

Ω0
r = Ωr0 =

ä

a
ω0 ∧ ωr;

Ω0
θ = Ωθ0 =

ä

a
ω0 ∧ ωθ;

Ω0
ϕ = Ωϕ0 =

ä

a
ω0 ∧ ωϕ;

Ωθr = −Ωrθ =

(
k

a2
+
ȧ2

a2

)
ωθ ∧ ωr;

Ωϕr = −Ωrϕ =

(
k

a2
+
ȧ2

a2

)
ωϕ ∧ ωr;

Ωϕθ = −Ωθϕ =

(
k

a2
+
ȧ2

a2

)
ωϕ ∧ ωθ.

The components of the curvature tensor on the orthonormal frame can
be read off from the curvature forms, and can in turn be used to compute
the components of the Ricci curvature tensor Ric on the same frame. The
nonvanishing components of Ric on this frame turn out to be

R00 = −3ä

a
;

Rrr = Rθθ = Rϕϕ =
ä

a
+

2ȧ2

a2
+

2k

a2
.

At very large scales, galaxies and clusters of galaxies are expected to
behave as particles of a pressureless fluid, which we take to be our matter
model. By isotropy, the average spatial motion of the galaxies must vanish,
and hence their unit velocity vector field must be ∂

∂t (corresponding to the
1-form −dt). Therefore the Einstein field equation is

Ric = 4πρ(2dt⊗ dt+ g),
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which is equivalent to the ODE system




−3ä

a
= 4πρ

ä

a
+

2ȧ2

a2
+

2k

a2
= 4πρ

⇔





ä+
ȧ2

2a
+

k

2a
= 0

ρ = − 3ä

4πa

.

The first equation allows us to determine the function a(t), and the
second yields ρ (which in particular must be a function of the t coordinate
only; this is to be taken to mean that the average density of matter at
cosmological scales is spatially constant). On the other hand, the quantity

4πρa3

3
= −äa2

is constant, since

d

dt

(
−äa2

)
=

d

dt

(
aȧ2

2
+
ka

2

)
= aȧä+

ȧ3

2
+
kȧ

2
= 0.

Hence we have

ä = − α

a2

for some integration constant α (we take α > 0 so that ρ > 0). Substituting
in the equation for a(t) we get the first order ODE

ȧ2

2
− α

a
= −k

2
.

This can be used to show that a(t) is bounded if and only if k = 1 (cf. Ex-
ercise 6.1.4). Moreover, in all cases a(t) vanishes (and hence ȧ(t), ä(t) and
ρ(t) blow up) for some value of t, usually taken to be t = 0. This singularity
is called the big bang of the solution defined for t > 0. It was once thought
to be a consequence of the high degree of symmetry of the FLRW mod-
els. Hawking and Penrose, however, showed that the big bang is actually a
generic feature of cosmological models (cf. Sections 8 and 9).

The function

H(t) =
ȧ

a
is (somewhat confusingly) called the Hubble constant. It is easy to see
from the above equations that

H2 +
k

a2
=

8π

3
ρ.

Therefore, in these models one has k = −1, k = 0 or k = 1 according to
whether the average density ρ of the universe is smaller than, equal to or
bigger than the so-called critical density

ρc =
3H2

8π
.
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These models were the standard models for cosmology for a long time.
Currently, however, things are thought to be slightly more complicated
(cf. Exercise 6.1.7).

Exercises 6.1.

(1) Show that the Riemannian metric h given in local coordinates
(r, θ, ϕ) by

h = a2
(

1

1− kr2
dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

)

has constant curvature K = k
a2
.

(2) The motions of galaxies and groups of galaxies in the FLRWmodels
are the integral curves of ∂

∂t . Show that these are timelike geodesics,
and that the time coordinate t is the proper time of such observers.

(3) Consider two galaxies in a FLRW model, whose spatial locations
can be assumed to be r = 0 and (r, θ, ϕ) = (r1, θ1, ϕ1). Show that:
(a) the spatial distance d(t) between the two galaxies along the

spatial Riemannian manifold of constant t satisfies the Hub-
ble law

ḋ = Hd,

where H = ȧ/a is the Hubble constant;
(b) the family (reparameterized) null geodesics connecting the first

galaxy to the second galaxy can be written as

(t, r, θ, ϕ) = (t(r, t0), r, θ1, ϕ1) (0 < r < r1),

where t(r, t0) is the solution of




dt

dr
=

a(t)√
1− kr2

t(0, t0) = t0

;

(c)
∂t

∂t0
(r1, t0) =

a(t1)

a(t0)
, where t1 = t(r1, t0).

(Remark: This means that light emitted by the first galaxy with period T is

measured by the second galaxy to have period T ′ = a(t1)
a(t0)

T).

(4) Recall that in a FLRW model the “radius” of space, a(t), evolves
according to the ODE

ȧ2

2
− α

a
= −k

2
⇒ ä = − α

a2
.

Show that:
(a) a(t) vanishes in finite time (assume that this happens at t = 0);
(b) if k = −1 or k = 0 then the solution can be extended to all

values of t > 0;
(c) if k = 1 then the solution cannot be extended past t = 2πα

(big crunch);
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(d) if k = 1 then no observer can circumnavigate the universe, no
matter how fast he moves;

(e) the solution can be given parametrically by:
(i) k = 1:

{
a = α(1− cosu)

t = α(u− sinu)
;

(ii) k = 0: {
a = α

2u
2

t = α
6u

3
;

(iii) k = −1:
{
a = α(coshu− 1)

t = α(sinhu− u)
.

(5) Show that the FLRW model with k = 1 is isometric to the hyper-
surface with equation

√
x2 + y2 + z2 + w2 = 2α− t2

8α

in the 5-dimensional Minkowski spacetime (R5, g) with metric

g = −dt⊗ dt+ dx⊗ dx+ dy ⊗ dy + dz ⊗ dz + dw ⊗ dw.

(6) (A model of collapse) Show that the radius of a spherical shell r = r0
in a FLRW model changes with proper time in exactly the same
fashion as the radius of a radially free-falling spherical shell in a
Schwarzschild spacetime of mass parameter m moving with energy
parameter E (cf. Exercise 5.1.5), provided that

{
m = αr0

3

E2 − 1 = −kr02
.

Therefore these two spacetimes can be matched along the 3-di-
mensional hypersurface determined by the spherical shell’s motion
to yield a model of collapsing matter. Can you give a physical
interpretation of this model?

(7) Show that if we allow for a cosmological constant Λ ∈ R, i.e. for
an Einstein equation of the form

Ric = 4πρ(2ν ⊗ ν + g) + Λg

then the equations for the FLRW models become




ȧ2

2
− α

a
− Λ

6
a2 = −k

2

4π

3
a3ρ = α

.
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Analyze the possible behaviors of the function a(t). (Remark: It is

currently thought that there exists indeed a positive cosmological constant, also known

as dark energy. The model favored by experimental observations seems to be k = 0,

Λ > 0).
(8) Consider the 5-dimensional Minkowski spacetime (R5, g) with met-

ric

g = −dt⊗ dt+ dx⊗ dx+ dy ⊗ dy + dz ⊗ dz + dw ⊗ dw.

Show that the induced metric on each of the following hypersurfaces
determines FLRW models with the indicated parameters.
(a) Einstein universe: the “cylinder” of equation

x2 + y2 + z2 + w2 =
1

Λ
,

satisfies k = 1, Λ > 0 and ρ = Λ
4π .

(b) de Sitter universe: the “sphere” of equation

−t2 + x2 + y2 + z2 + w2 =
3

Λ

satisfies k = 1, Λ > 0 and ρ = 0.
(9) A light signal emmitted with period T and received with period T ′

is said to have suffered a redshift

z =
T ′

T
− 1

(so that in the case of the Doppler effect one has z ≃ v for small
velocities, cf. Exercise 2.2.9). If the light is emitted by a galaxy at
r = 0 at time t = t0 and received by a galaxy at r = r1 at time
t = t1 then its redshift is

z =
a(t1)

a(t0)
− 1

(cf. Exercise 3). This light is spread over a sphere of radius R =
a(t1)r1, and so its brightness is inversely proportional to R2. Com-
pute R as a function of z for the following FLRW models:
(a) Milne universe (k = −1, α = Λ = 0), for which a(t) = t;
(b) Flat de Sitter universe (k = α = 0, Λ = 3H2), for which

a(t) = eHt;
(c) Einstein-de Sitter universe (k = Λ = 0, α = 2/9t1

2), for

which a(t) = (t/t1)
2/3.

(Remark: The brightness of distant galaxies is further reduced by a factor of (1+z)2,

since each photon has frequency, hence energy, (1+ z) times smaller at reception, and

the rate of detection of photons is (1+ z) times smaller than the rate of emission; with

this correction, R can be deduced from the observed brightness for galaxies of known

luminosity, and the correct FLRW model chosen as the one whose curve R = R(z)

best fits observations).
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7. Causality

In this section we will study the causal features of spacetimes. This is
a subject which has no parallel in Riemannian geometry, where the metric
is positive definite. Although we will focus on 4-dimensional Lorentzian
manifolds, the discussion can be easily generalized to any dimension n ≥ 2.

A spacetime (M, g) is said to be time-orientable if there exists a vector
field X ∈ X(M) such that 〈X,X〉 < 0. In this case, we can define a time
orientation on each tangent space TpM (which is, of course, isometric to
Minkowski spacetime) by choosing the timelike vectors in the connected
component C(Xp) to be future-pointing.

Assume that (M, g) is time-oriented (i.e. time-orientable with a def-
inite choice of time orientation). A timelike curve c : I ⊂ R → M is said
to be future-directed if ċ is future-pointing. The chronological future
of p ∈ M is the set I+(p) of all points to which p can be connected by
a future-directed timelike curve. A future-directed causal curve is a
curve c : I ⊂ R → M such that ċ is timelike or null and future-pointing
(if nonzero). The causal future of p ∈ M is the set J+(p) of all points
to which p can be connected by a future-directed causal curve. Notice that
I+(p) is simply the set of all events which are accessible to a particle with
nonzero mass at p, whereas J+(p) is the set of events which can be causally
influenced by p (as this causal influence cannot propagate faster than the
speed of light). Analogously, the chronological past of p ∈ M is the set
I−(p) of all points which can be connected to p by a future-directed timelike
curve, and the causal past of p ∈ M is the set J−(p) of all points which
can be connected to p by a future-directed causal curve.

In general, the chronological and causal pasts and futures can be quite
complicated sets, because of global features of the spacetime. Locally, how-
ever, causal properties are similar to those of Minkowski spacetime. More
precisely, we have the following statement:

Proposition 7.1. Let (M, g) be a time-oriented spacetime. Then each
point p0 ∈ M has an open neighborhood V ⊂ M such that the spacetime
(V, g) obtained by restricting g to V satisfies:

(1) V is a normal neighborhood of each of its points, and given p, q ∈ V
there exists a unique geodesic (up to reparameterization) joining p
to q (i.e. V is geodesically convex);

(2) q ∈ I+(p) if and only if there exists a future-directed timelike geo-
desic connecting p to q;

(3) J+(p) = I+(p);
(4) q ∈ J+(p) \ I+(p) if and only if there exists a future-directed null

geodesic connecting p to q.

Proof. Let U be a normal neighborhood of p0 and choose normal
coordinates (x0, x1, x2, x3) on U , given by the parameterization

ϕ(x0, x1, x2, x3) = expp0(x
0v0 + x1v1 + x2v2 + x3v3),
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where {v0, v1, v2, v3} is a basis of Tp0(M) (cf. Exercise 4.8.2 in Chapter 3).
Let D : U → R be the differentiable function

D(p) :=
3∑

α=0

(xα(p))2 ,

and let us define for each ε > 0 the set

Bε := {p ∈ U | D(p) < ε},
which for sufficiently small ε is diffeomorphic to an open ball in Tp0M .
Assume, for simplicity, that U is of this form.

Let us show that there exists ρ > 0 such that if c : I ⊂ R → Bρ is a
geodesic then all critical points of D(t) := D(c(t)) are strict local minima.
In fact, setting xµ(t) := xµ(c(t)), we have

Ḋ(t) = 2

3∑

α=0

xα(t)ẋα(t);

D̈(t) = 2
3∑

α=0

(ẋα(t))2 + 2
3∑

α=0

xα(t)ẍα(t)

= 2
3∑

µ,ν=0

(
δµν −

3∑

α=0

Γαµν(c(t))x
α(t)

)
ẋµ(t)ẋν(t),

and for ρ sufficiently small the matrix

δµν −
3∑

α=0

Γαµνx
α

is positive definite on Bρ.
Consider the map F : W ⊂ TM → M × M , defined on some open

neighborhood W of 0 ∈ Tp0M by

F (v) = (π(v), exp(v)).

As we saw in the Riemannian case (cf. Chapter 3, Section 4), this map is
a local diffeomorphism at 0 ∈ Tp0M . Choosing δ > 0 sufficiently small and
reducing W , we can assume that F maps W diffeomorphically to Bδ × Bδ,
and that exp(tv) ∈ Bρ for all t ∈ [0, 1] and v ∈W (as otherwise it would be
possible to construct a sequence vn → 0 ∈ Tp0M such that exp(vn) 6→ p0).

Finally, set V = Bδ. If p, q ∈ V and v = F−1(p, q), then c(t) = expp(tv)
is a geodesic connecting p to q whose image is contained in Bρ. If its im-
age were not contained in V , there would necessarily exist a point of local
maximum of D(t), which cannot occur. Therefore, there is a geodesic in V
connecting p to q. Since expp is a diffeomorphism onto V , this geodesic is
unique (up to reparameterization). This proves (1).

To prove assertion (2), we start by noticing that if there exists a future-
directed timelike geodesic connecting p to q then it is obvious that q ∈ I+(p).
Suppose now that q ∈ I+(p); then there exists a future-directed timelike
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curve c : [0, 1] → V such that c(0) = p and c(1) = q. Choose normal
coordinates (x0, x1, x2, x3) given by the parameterization

ϕ(x0, x1, x2, x3) = expp(x
0E0 + x1E1 + x2E2 + x3E3),

where {E0, E1, E2, E3} is an orthonormal basis of TpM with E0 timelike and
future-pointing. These are global coordinates in V , since F : W → V × V
is a diffeomorphism. Defining

Wp(q) := −
(
x0(q)

)2
+
(
x1(q)

)2
+
(
x2(q)

)2
+
(
x3(q)

)2

=
3∑

µ,ν=0

ηµνx
µ(q)xν(q),

with (ηµν) = diag(−1, 1, 1, 1), we have to show thatWp(q) < 0. LetWp(t) :=
Wp(c(t)). Since xµ(p) = 0 (µ = 0, 1, 2, 3), we have Wp(0) = 0. Setting
xµ(t) := xµ(c(t)), we obtain

Ẇp(t) = 2
3∑

µ,ν=0

ηµνx
µ(t)ẋν(t);

Ẅp(t) = 2
3∑

µ,ν=0

ηµνx
µ(t)ẍν(t) + 2

3∑

µ,ν=0

ηµν ẋ
µ(t)ẋν(t),

and consequently (recalling that
(
d expp

)
0
= id)

Ẇp(0) = 0;

Ẅp(0) = 2〈ċ(0), ċ(0)〉 < 0.

Therefore there exists ε > 0 such that Wp(t) < 0 for t ∈ (0, ε).
Using the same ideas as in the Riemannian case (cf. Chapter 3, Sec-

tion 4), it is easy to prove that the level surfaces of Wp are orthogonal to
the geodesics through p. Therefore, if cv(t) = expp(tv) is the geodesic with
initial condition v ∈ TpM , we have

(gradWp)cv(1) = a(v)ċv(1),

where the gradient of a function is defined as in the Riemannian case (notice
however that in the Lorentzian case a smooth function f decreases along
the direction of grad f if grad f is timelike). Now

〈
(gradWp)cv(t), ċv(t)

〉
=

d

dt
Wp(cv(t)) =

d

dt
Wp(ctv(1))

=
d

dt

(
t2Wp(cv(1))

)
= 2tWp(cv(1)),

and hence 〈
(gradWp)cv(1), ċv(1)

〉
= 2Wp(cv(1)).
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On the other hand,
〈
(gradWp)cv(1), ċv(1)

〉
= 〈a(v)ċv(1), ċv(1)〉
= a(v)〈v, v〉 = a(v)Wp(cv(1)).

We conclude that a(v) = 2, and therefore

(gradWp)cv(1) = 2ċv(1).

Consequently, gradWp is tangent to geodesics through p, being future-
pointing on future-directed geodesics.

Suppose that Wp(t) < 0. Then (gradWp)c(t) is timelike future-pointing,

and so

Ẇ (t) =
〈
(gradWp)c(t) , ċ(t)

〉
< 0,

as ċ(t) is also timelike future-pointing (cf. Exercise 2.2.2). We conclude that
we must have Wp(t) < 0 for all t ∈ [0, 1]. In particular, Wp(q) =Wp(1) < 0,
and hence there exists a future-directed timelike geodesic connecting p to q.

To prove assertion (3), let us see first that I+(p) ⊂ J+(p). If q ∈ I+(p),
then q is the limit of a sequence of points qn ∈ I+(p). By (2), qn = expp(vn)
with vn ∈ TpM timelike future-pointing. Since expp is a diffeomorphism, vn
converges to a causal future-pointing vector v ∈ TpM , and so q = expp(v)
can be reached from p by a future-directed causal geodesic. The converse
inclusion J+(p) ⊂ I+(p) holds in general (cf. Proposition 7.2).

Finally, (4) is obvious from (3) and the fact that expp is a diffeomorphism
onto V . �

This local behavior can be used to prove the following global result.

Proposition 7.2. Let (M, g) be a time oriented spacetime and p ∈ M .
Then:

(1) I+(p) is open;

(2) J+(p) ⊂ I+(p);
(3) I+(p) = int J+(p)
(4) if r ∈ J+(p) and q ∈ I+(r) then q ∈ I+(p);
(5) if r ∈ I+(p) and q ∈ J+(r) then q ∈ I+(p).

Proof. Exercise 7.10.2. �

The generalized twin paradox (cf. Exercise 2.2.8) also holds locally for
general spacetimes. More precisely, we have the following statement:

Proposition 7.3. Let (M, g) be a time-oriented spacetime, p0 ∈M and
V ⊂M a geodesically convex open neighborhood of p0. The spacetime (V, g)
obtained by restricting g to V satisfies the following property: if p, q ∈ V
with q ∈ I+(p), c is the timelike geodesic connecting p to q and γ is any
timelike curve connecting p to q, then τ(γ) ≤ τ(c), with equality if and only
if γ is a reparameterization of c.
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Proof. Any timelike curve γ : [0, 1] → V satisfying γ(0) = p, γ(1) = q
can be written as

γ(t) = expp(r(t)n(t)),

for t ∈ [0, 1], where r(t) ≥ 0 and 〈n(t), n(t)〉 = −1. We have

γ̇(t) = (expp)∗ (ṙ(t)n(t) + r(t)ṅ(t)) .

Since 〈n(t), n(t)〉 = −1, we have 〈ṅ(t), n(t)〉 = 0, and consequently ṅ(t) is
tangent to the level surfaces of the function v 7→ 〈v, v〉. We conclude that

γ̇(t) = ṙ(t)Xγ(t) + Y (t),

where X is the unit tangent vector field to timelike geodesics through p
and Y (t) = r(t)(expp)∗ṅ(t) is tangent to the level surfaces of Wp (hence
orthogonal to Xγ(t)). Consequently,

τ(γ) =

∫ 1

0

∣∣〈ṙ(t)Xγ(t) + Y (t), ṙ(t)Xγ(t) + Y (t)
〉∣∣ 12 dt

=

∫ 1

0

(
ṙ(t)2 − |Y (t)|2

) 1
2 dt

≤
∫ 1

0
ṙ(t)dt = r(1) = τ(c),

where we have used the facts that γ is timelike, ṙ(t) > 0 for all t ∈ [0, 1]
(as γ̇ is future-pointing) and τ(c) = r(1) (as q = expp(r(1)n(1))). It should
be clear that τ(γ) = τ(c) if and only if |Y (t)| ≡ 0 ⇔ Y (t) ≡ 0 (Y (t) is
spacelike or zero) for all t ∈ [0, 1], implying that n is constant. In this case,
γ(t) = expp(r(t)n) is, up to reparameterization, the geodesic through p with
initial condition n ∈ TpM . �

There is also a local property characterizing null geodesics.

Proposition 7.4. Let (M, g) be a time-oriented spacetime, p0 ∈M and
V ⊂M a geodesically convex open neighborhood of p0. The spacetime (V, g)
obtained by restricting g to V satisfies the following property: if for p, q ∈ V
there exists a future-directed null geodesic c connecting p to q and γ is a
causal curve connecting p to q then γ is a reparameterization of c.

Proof. Since p and q are connected by a null geodesic, we conclude
from Proposition 7.1 that q ∈ J+(p) \ I+(p). Let γ : [0, 1] → V be a
causal curve connecting p to q. Then we must have γ(t) ∈ J+(p) \ I+(p)
for all t ∈ [0, 1], since γ(t0) ∈ I+(p) implies γ(t) ∈ I+(p) for all t > t0 (see
Proposition 7.2). Consequently, we have

〈
(gradWp)γ(t) , γ̇(t)

〉
= 0,

where Wp was defined in the proof of Proposition 7.1. The formula

(gradWp)cv(1) = 2ċv(1),
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which was proved for timelike geodesics cv with initial condition v ∈ TpM ,
must also hold for null geodesics (by continuity). Hence gradWp is tangent
to the null geodesics ruling J+(p) \ I+(p) and future-pointing. Since γ̇(t) is
also future-pointing, we conclude that γ̇ is proportional to gradWp (cf. Ex-
ercise 2.2.8), and therefore γ must be a reparameterization of a null geodesic
(which must be c). �

Corollary 7.5. Let (M, g) be a time-oriented spacetime and p ∈ M .
If q ∈ J+(p) \ I+(p) then any future-directed causal curve connecting p to q
must be a reparameterized null geodesic. �

For physical applications, it is important to require that the spacetime
satisfies reasonable causality conditions. The simplest of these conditions
excludes time travel, i.e. the possibility of a particle returning to an event
in its past history.

Definition 7.6. A spacetime (M, g) is said to satisfy the chronology
condition if it does not contain closed timelike curves.

This condition is violated by compact spacetimes:

Proposition 7.7. Any compact spacetime (M, g) contains closed time-
like curves.

Proof. Taking if necessary the time-orientable double covering (cf. Ex-
ercise 7.10.1), we can assume that (M, g) is time-oriented. Since I+(p) is an
open set for any p ∈M , it is clear that {I+(p)}p∈M is an open cover of M .
IfM is compact, we can obtain a finite subcover {I+(p1), . . . , I+(pN )}. Now
if p1 ∈ I+(pi) for i 6= 1 then I+(p1) ⊂ I+(pi), and we can exclude I+(p1)
from the subcover. Therefore, we can assume without loss of generality that
p1 ∈ I+(p1), and hence there exists a closed timelike curve starting and
ending at p1. �

A stronger restriction on the causal behavior of the spacetime is the
following:

Definition 7.8. A spacetime (M, g) is said to be stably causal if there
exists a global time function, i.e. a smooth function t :M → R such that
grad(t) is timelike.

In particular, a stably causal spacetime is time-orientable. We choose
the time orientation defined by − grad(t), so that t increases along future-
directed timelike curves. Notice that this implies that no closed timelike
curves can exist, i.e. any stably causal spacetime satisfies the chronology
condition. In fact, any small perturbation of a stably causal spacetime still
satisfies the chronology condition (cf. Exercise 7.10.4).

Let (M, g) be a time-oriented spacetime. A smooth future-directed
causal curve c : (a, b) → M (with possibly a = −∞ or b = +∞) is said
to be future-inextendible if limt→b c(t) does not exist. The definition of
a past-inextendible causal curve is analogous. The future domain of
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dependence of S ⊂ M is the set D+(S) of all events p ∈ M such that
any past-inextendible causal curve starting at p intersects S. Therefore any
causal influence on an event p ∈ D+(S) had to register somewhere in S,
and one can expect that what happens at p can be predicted from data on
S. Similarly, the past domain of dependence of S is the set D−(S) of
all events p ∈ M such that any future-inextendible causal curve starting at
p intersects S. Therefore any causal influence of an event p ∈ D−(S) will
register somewhere in S, and one can expect that what happened at p can
be retrodicted from data on S. The domain of dependence of S is simply
the set D(S) = D+(S) ∪D−(S).

Let (M, g) be a stably causal spacetime with time function t : M →
R. The level sets Sa = t−1(a) are said to be Cauchy hypersurfaces if
D(Sa) = M . Spacetimes for which this happens have particularly good
causal properties.

Definition 7.9. A stably causal spacetime possessing a time function
whose level sets are Cauchy hypersurfaces is said to be globally hyper-
bolic.

Notice that the future and past domains of dependence of the Cauchy
hypersurfaces Sa are D+(Sa) = t−1([a,+∞)) and D−(Sa) = t−1((−∞, a]).

Exercises 7.10.

(1) (Time-orientable double covering) Using ideas similar to those of
Exercise 8.6.9 in Chapter 1, show that if (M, g) is a non-time-
orientable Lorentzian manifold then there exists a time-orientable
double covering, i.e. a time-orientable Lorentzian manifold (M, g)
and a local isometry π : M → M such that every point in M has
two preimages by π. Use this to conclude that the only compact
surfaces which admit a Lorentzian metric are the torus T 2 and the
Klein bottle K2.

(2) Let (M, g) be a time oriented spacetime and p ∈M . Show that:
(a) I+(p) is open;
(b) J+(p) is not necessarily closed;

(c) J+(p) ⊂ I+(p);
(d) I+(p) = int J+(p)
(e) if r ∈ J+(p) and q ∈ I+(r) then q ∈ I+(p);
(f) if r ∈ I+(p) and q ∈ J+(r) then q ∈ I+(p);
(g) it may happen that I+(p) =M .

(3) Consider the 3-dimensional Minkowski spacetime (R3, g), where

g = −dt⊗ dt+ dx⊗ dx+ dy ⊗ dy.

Let c : R → R3 be the curve c(t) = (t, cos t, sin t). Show that
although ċ(t) is null for all t ∈ R we have c(t) ∈ I+(c(0)) for all
t > 0. What kind of motion does this curve represent?
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(4) Let (M, g) be a stably causal spacetime and h an arbitrary sym-
metric (2, 0)-tensor field with compact support. Show that for suf-
ficiently small |ε| the tensor field gε := g + εh is still a Lorentzian
metric on M , and (M, gε) satisfies the chronology condition.

(5) Let (M, g) be the quotient of the 2-dimensional Minkowski space-
time by the discrete group of isometries generated by the map
f(t, x) = (t + 1, x + 1). Show that (M, g) satisfies the chronology
condition, but there exist arbitrarily small perturbations of (M, g)
(in the sense of Exercise 7.10.4) which do not.

(6) Let (M, g) be a time oriented spacetime and S ⊂M . Show that:
(a) S ⊂ D+(S);
(b) D+(S) is not necessarily open;
(c) D+(S) is not necessarily closed.

(7) Let (M, g) be the 2-dimensional spacetime obtained by remov-
ing the positive x-semi-axis of Minkowski 2-dimensional spacetime
(cf. Figure 8). Show that:
(a) (M, g) is stably causal but not globally hyperbolic;
(b) there exist points p, q ∈ M such that J+(p) ∩ J−(q) is not

compact;
(c) there exist points p, q ∈ M with q ∈ I+(p) such that the

supremum of the lengths of timelike curves connecting p to q
is not attained by any timelike curve.

tt

xx

S

D(S)

p

J+(p)

Figure 8. Stably causal but not globally hyperbolic spacetime.

(8) Let (Σ, h) be a 3-dimensional Riemannian manifold. Show that the
spacetime (M, g) = (R × Σ,−dt ⊗ dt + h) is globally hyperbolic if
and only if (Σ, h) is complete.

(9) Show that the following spacetimes are globally hyperbolic:
(a) the Minkowski spacetime;
(b) the FLRW spacetimes;
(c) the region {r > 2m} of Schwarzschild spacetime;
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(d) the region {r < 2m} of Schwarzschild spacetime.
(10) Let (M, g) be a global hyperbolic spacetime with Cauchy hyper-

surface S. Show that M is diffeomorphic to R× S.

8. Hawking Singularity Theorem

As we have seen in Sections 5 and 6, both the Schwarzschild solution and
the FLRW cosmological models display singularities, beyond which timelike
and null geodesics cannot be continued.

Definition 8.1. A spacetime (M, g) is said to be singular if it is not
geodesically complete.

It was once thought that the examples above were singular due to their
high degree of symmetry, and that more realistic spacetimes would be non-
singular. Following Hawking and Penrose [Pen65, Haw67, HP70], we will
show that this is not the case: any sufficiently small perturbation of these
solutions will still be singular.

The question of whether a given Riemannian manifold is geodesically
complete is settled by the Hopf-Rinow theorem. Unfortunately, this theo-
rem does not hold in Lorentzian geometry (essentially because one cannot
use the metric to define a distance function). For instance, compact man-
ifolds are not necessarily geodesically complete (cf. Exercise 8.12.1), and
the exponential map is not necessarily surjective in geodesically complete
manifolds (cf. Exercise 8.12.2).

Let (M, g) be a globally hyperbolic spacetime and S a Cauchy hypersur-
face with future-pointing unit normal vector field n. Let cp be the timelike
geodesic with initial condition np for each point p ∈ S. We define a smooth
map exp : U → M on an open set U ⊂ R × S containing {0} × S as
exp(t, p) = cp(t).

Definition 8.2. The critical values of exp are said to be conjugate
points to S.

Loosely speaking, conjugate points are points where geodesics starting
orthogonally at nearby points of S intersect.

Let q = exp(t0, p) be a point not conjugate to S, and let (x1, x2, x3) be
local coordinates on S around p . Then (t, x1, x2, x3) are local coordinates
on some open set V ∋ q. Since ∂

∂t is the unit tangent field to the geodesics

orthogonal to S, we have g00 =
〈
∂
∂t ,

∂
∂t

〉
= −1. On the other hand, we have

∂g0i
∂t

=
∂

∂t

〈
∂

∂t
,
∂

∂xi

〉
=

〈
∂

∂t
,∇ ∂

∂t

∂

∂xi

〉

=

〈
∂

∂t
,∇ ∂

∂xi

∂

∂t

〉
=

1

2

∂

∂xi

〈
∂

∂t
,
∂

∂t

〉
= 0

for i = 1, 2, 3, and, since g0i = 0 on S, we have g0i = 0 on V . Therefore
the surfaces of constant t are orthogonal to the geodesics tangent to ∂

∂t . For
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this reason, (t, x1, x2, x3) is said to be a synchronized coordinate system.
On this coordinate system we have

g = −dt⊗ dt+
3∑

i,j=1

γijdx
i ⊗ dxj ,

where the functions

γij :=

〈
∂

∂xi
,
∂

∂xj

〉

form a positive definite matrix. Since the vector fields ∂
∂xi

can always be
defined along cp, the matrix (γij) is also well defined along cp, even at points
where the synchronized coordinate system breaks down, i.e. at points which
are conjugate to S. These are the points for which γ(t) := det (γij(t)) van-

ishes, since only then will
{
∂
∂t ,

∂
∂x1

, ∂
∂x2

, ∂
∂x3

}
fail to be linearly independent.

(In fact the vector fields ∂
∂xi

are Jacobi fields along cp – see Exercise 4.8.6
in Chapter 3).

It is easy to see that

Γ0
00 = Γi00 = 0 and Γi0j =

3∑

k=1

γikβkj ,

where (γij) = (γij)
−1 and βij =

1
2
∂γij
∂t (cf. Exercise 8.12.4). Consequently,

R00 =
3∑

i=1

R i
i00 =

3∑

i=1


∂Γ

i
00

∂xi
− ∂Γii0

∂t
+

3∑

j=1

Γj00Γ
i
ij −

3∑

j=1

Γji0Γ
i
0j




= − ∂

∂t




3∑

i,j=1

γijβij


−

3∑

i,j,k,l=1

γjkγilβkiβlj .

(cf. Chapter 4, Section 1). The quantity

θ :=
3∑

i,j=1

γijβij

appearing in this expression is called the expansion of the synchronized
observers, and has an important geometric meaning:

θ =
1

2
tr

(
(γij)

−1 ∂

∂t
(γij)

)
=

1

2

∂

∂t
log γ =

∂

∂t
log γ

1
2 .

Here we have used the formula

(log(detA))′ = tr
(
A−1A′)

which holds for any smooth matrix function A : R → GL(n) (cf. Exam-
ple 7.1.4 in Chapter 1). Therefore the expansion yields the variation of the
3-dimensional volume element measured by synchronized observers. More
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importantly for our purposes, we see that a singularity of the expansion
indicates a zero of γ, i.e. a conjugate point to S.

Definition 8.3. A spacetime (M, g) is said to satisfy the strong en-
ergy condition if Ric(V, V ) ≥ 0 for any timelike vector field V ∈ X(M).

By the Einstein equation, this is equivalent to requiring that the reduced
energy-momentum tensor T satisfies T (V, V ) ≥ 0 for any timelike vector field
V ∈ X(M). In the case of a pressureless fluid with rest density function
ρ ∈ C∞(M) and unit velocity vector field U ∈ X(M), this requirement
becomes

ρ

(
〈U, V 〉2 + 1

2
〈V, V 〉

)
≥ 0,

or, since the term in brackets is always positive (cf. Exercise 8.12.5), simply
ρ ≥ 0. For more complicated matter models, the strong energy condition
produces equally reasonable restrictions.

Proposition 8.4. Let (M, g) be a globally hyperbolic spacetime satisfy-
ing the strong energy condition, S ⊂ M a Cauchy hypersurface and p ∈ S
a point where θ = θ0 < 0. Then the geodesic cp contains at least a point
conjugate to S, at a distance of at most − 3

θ0
to the future of S (assuming

that it can be extended that far).

Proof. Since (M, g) satisfies the strong energy condition, we haveR00 =
Ric

(
∂
∂t ,

∂
∂t

)
≥ 0 on any synchronized frame. Consequently,

∂θ

∂t
+

3∑

i,j,k,l=1

γjkγilβkiβlj ≤ 0

on such a frame. Choosing an orthonormal basis (where γij = δij) and using
the inequality

(trA)2 ≤ n tr(AtA),

which holds for square n×nmatrices (as a simple consequence of the Cauchy-
Schwarz inequality), it is easy to show that

3∑

i,j,k,l=1

γjkγilβkiβlj =
3∑

i,j=1

βjiβij = tr
(
(βij)(βij)

t
)
≥ 1

3
θ2.

Consequently θ must satisfy

∂θ

∂t
+

1

3
θ2 ≤ 0.

Integrating this inequality yields

1

θ
≥ 1

θ0
+
t

3
,

and hence θ must blow up at a value of t no greater than − 3
θ0
. �
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Proposition 8.5. Let (M, g) be a globally hyperbolic spacetime, S a
Cauchy hypersurface, p ∈M and c a timelike geodesic through p orthogonal
to S. If there exists a conjugate point between S and p then c does not
maximize length (among the timelike curves connecting S to p).

Proof. We will offer only a sketch of the proof. Let q be the first con-
jugate point along c between S and p. Then we can use a synchronized
coordinate system around the portion of c between S and q. Since q is con-
jugate to S, there exists another geodesic c̃, orthogonal to S, with the same
length t(q), which (approximately) intersects c at q. Let V be a geodesically
convex neighborhood of q, let r ∈ V be a point along c̃ between S and q,
and let s ∈ V be a point along c between q and p (cf. Figure 9). Then the
piecewise smooth timelike curve obtained by following c̃ between S and r,
the unique geodesic in V between r and s, and c between s and p, connects S
to p and has strictly bigger length than c (by the generalized twin paradox).
This curve can be easily smoothed while retaining bigger length than c. �

p

q

r

s

S

cc̃

Figure 9. Proof of Proposition 8.5.

Proposition 8.6. Let (M, g) be a globally hyperbolic spacetime, S a
Cauchy hypersurface and p ∈ D+(S). Then D+(S) ∩ J−(p) is compact.

Proof. Let us define a simple neighborhood U ⊂M to be a geodesi-
cally convex open set diffeomorphic to an open ball whose boundary is a
compact submanifold of a larger geodesically convex open set (therefore ∂U
is diffeomorphic to S3 and U is compact). It is clear that simple neighbor-
hoods form a basis for the topology of M . Also, it is easy to show that any
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open cover {Vα}α∈A has a countable, locally finite refinement {Un}n∈N by
simple neighborhoods (cf. Exercise 8.12.7).

If A = D+(S)∩ J−(p) were not compact, there would exist a countable,
locally finite open cover {Un}n∈N of A by simple neighborhoods not admit-
ting any finite subcover. Take qn ∈ A ∩ Un such that qm 6= qn for m 6= n.
The sequence {qn}n∈N cannot have accumulation points, since any point in
M has a neighborhood intersecting only finite simple neighborhoods Un. In
particular, each simple neighborhood Un contains only a finite number of
points in the sequence (as Un is compact).

Set p1 = p. Since p1 ∈ A, we have p1 ∈ Un1 for some n1 ∈ N. Let
qn 6∈ Un1 . Since qn ∈ J−(p1), there exists a future-directed causal curve cn
connecting qn to p1. This curve will necessarily intersect ∂Un1 . Let r1,n be an
intersection point. Since Un1 contains only a finite number of points in the
sequence {qn}n∈N, there will exist infinite intersection points r1,n. As ∂Un1

is compact, these will accumulate to some point p2 ∈ ∂Un1 (cf. Figure 10).
Because Un1 is contained in a geodesically convex open set V , which can

be chosen so that v 7→ (π(v), exp(v)) is a diffeomorphism onto V × V , we
have p2 ∈ J−(p1): if γ1,n is the unique causal geodesic connecting p1 to r1,n,
parameterized by the global time function t :M → R, then the subsequence
of {γ1,n} corresponding to a convergent subsequence of {r1,n} will converge
to a causal geodesic γ1 connecting p1 to p2. If S = t−1(0) then we have
t(r1,n) ≥ 0, implying that t(p2) ≥ 0 and hence p2 ∈ A. Since p2 6∈ Un1 , there
must exist n2 ∈ N such that p2 ∈ Un2 .

Since Un2 contains only a finite number of points in the sequence {qn}n∈N,
an infinite number of curves cn must intersect ∂Un2 to the past of r1,n. Let
r2,n be the intersection points. As ∂Un2 is compact, {r2,n} must accumulate

to some point p3 ∈ ∂Un2 . Because Un2 is contained in a geodesically con-
vex open set, p3 ∈ J−(p2): if γ2,n is the unique causal geodesic connecting
r1,n to r2,n, parameterized by the global time function, then the subse-
quence of {γ2,n} corresponding to convergent subsequences of both {r1,n}
and {r2,n} will converge to a causal geodesic connecting p2 to p3. Since
J−(p2) ⊂ J−(p1) and t(r2,n) ≥ 0 ⇒ t(p3) ≥ 0, we have p3 ∈ A.

Iterating the procedure above, we can construct a sequence {pi}i∈N of
points in A satisfying pi ∈ Uni with ni 6= nj if i 6= j, such that pi is connected
to pi+1 by a causal geodesic γi. It is clear that γi cannot intersect S, for
t(pi+1) > t(pi+2) ≥ 0. On the other hand, the piecewise smooth causal curve
obtained by joining the curves γi can easily be smoothed into a past-directed
causal curve starting at p1 which does not intersect S. Finally, such curve is
inextendible: it cannot converge to any point, as {pi}i∈N cannot accumulate.
But since p1 ∈ D+(S), this curve would have to intersect S. Therefore A
must be compact. �

Corollary 8.7. Let (M, g) be a globally hyperbolic spacetime and p, q ∈
M . Then

(i) J+(p) is closed;
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p = p1

p2

p3

Un1

Un2

Figure 10. Proof of Proposition 8.6.

(ii) J+(p) ∩ J−(q) is compact.

Proof. Exercise 8.12.8. �

Proposition 8.6 is a key ingredient in establishing the following funda-
mental result.

Theorem 8.8. Let (M, g) be a globally hyperbolic spacetime with Cauchy
hypersurface S, and p ∈ D+(S). Then, among all timelike curves connecting
p to S, there exists a timelike curve with maximal length. This curve is a
timelike geodesic, orthogonal to S.

Proof. Consider the set T (S, p) of all timelike curves connecting S to p.
Since we can always use the global time function t :M → R as a parameter,
these curves are determined by their images, which are compact subsets of
the compact set A = D+(S) ∩ J−(p). As it is well known (cf. [Mun00]),
the set C(A) of all compact subsets of A is a compact metric space for the
Hausdorff metric dH , defined as follows: if d : M ×M → R is a metric
yielding the topology of M ,

dH(K,L) = inf{ε > 0 | K ⊂ Uε(L) and L ⊂ Uε(K)},
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where Uε(K) is a ε-neighborhood of K for the metric d. Therefore, the

closure C(S, p) := T (S, p) is a compact subset of C(A). It is not difficult
to show that C(S, p) can be identified with the set of continuous causal
curves connecting S to p (a continuous curve c : [0, t(p)] →M is said to be
causal if c(t2) ∈ J+(c(t1)) whenever t2 > t1).

The length function τ : T (S, p) → R is defined by

τ(c) :=

∫ t(p)

0
|ċ(t)|dt.

This function is upper semicontinuous, i.e. continuous for the topology

O = {(−∞, a) | −∞ ≤ a ≤ +∞}
in R. Indeed, let c ∈ T (S, p) be parameterized by its arclength u. For a suf-
ficiently small ε > 0, the function u can be extended to the ε-neighborhood
Uε(c) in such a way that its level hypersurfaces are spacelike and orthogonal
to c, that is, − gradu is timelike and coincides with ċ on c (cf. Figure 11).
If γ ∈ T (S, p) is in the open ball Bε(c) ⊂ C(A) for the Hausdorff metric dH
then we can use u as a parameter, thus obtaining

du(γ̇) = 1 ⇔ 〈γ̇, gradu〉 = 1.

Therefore γ̇ can be decomposed as

γ̇ =
1

〈gradu, gradu〉 gradu+X,

where X is spacelike and orthogonal to gradu, and so

|γ̇| =
∣∣∣∣

1

〈gradu, gradu〉 + 〈X,X〉
∣∣∣∣
1
2

.

Given δ > 0, we can choose ε > 0 sufficiently small so that

− 1

〈gradu, gradu〉 <
(
1 +

δ

2τ(c)

)2

on the ε-neighborhood Uε(c) (as 〈gradu, gradu〉 = −1 along c). We have

τ(γ) =

∫ t(p)

0

∣∣∣∣
dγ

dt

∣∣∣∣ dt =
∫ t(p)

0
|γ̇|du

dt
dt =

∫ τ(c)

u(γ∩S)
|γ̇| du,

where we have to allow for the fact that c is not necessarily orthogonal to
S, and so the initial point of γ is not necessarily at u = 0 (cf. Figure 11).
Consequently,

τ(γ) =

∫ τ(c)

u(γ∩S)

∣∣∣∣−
1

〈gradu, gradu〉 − 〈X,X〉
∣∣∣∣
1
2

du

<

∫ τ(c)

u(γ∩S)

(
1 +

δ

2τ(c)

)
du =

(
1 +

δ

2τ(c)

)
(τ(c)− u(γ ∩ S)) .
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Choosing ε sufficiently small so that

|u| <
(

1

τ(c)
+

2

δ

)−1

on S ∩ Uε(c), we obtain τ(γ) < τ(c) + δ, proving upper semicontinuity in
T (S, p). As a consequence, the length function can be extended to C(S, p)
through

τ(c) = lim
ε→0

sup{τ(γ) | γ ∈ Bε(c) ∩ T (S, p)}

(as for ε > 0 sufficiently small the supremum will be finite). Also, it is clear
that if c ∈ T (S, p) then the upper semicontinuity of the length forces the
two definitions of τ(c) to coincide. The extension of the length function to
C(S, p) is trivially upper semicontinuous: given c ∈ C(S, p) and δ > 0, let
ε > 0 be such that τ(γ) < τ(c) + δ

2 for any γ ∈ B2ε(c) ∩ T (S, p). Then it is

clear that τ(c′) ≤ τ(c) + δ
2 < τ(c) + δ for any c′ ∈ Bε(c).

Finally, we notice that the compact sets of R for the topology O are the
sets with a maximum. Therefore, the length function attains a maximum
at some point c ∈ C(S, p). All that remains to be seen is that the maximum
is also attained at a smooth timelike curve γ. To do so, cover c with finitely
many geodesically convex neighborhoods and choose points p1, . . . , pk in c
such that p1 ∈ S, pk = p and the portion of c between pi−1 and pi is contained
in a geodesically convex neighborhood for all i = 2, . . . , k. It is clear that
there exists a sequence cn ∈ T (S, p) such that cn → c and τ(cn) → τ(c).
Let ti = t(pi) and pi,n be the intersection of cn with t−1(ti). Replace cn
by the sectionally geodesic curve γn obtained by joining pi−1,n to pi,n in
the corresponding geodesically convex neighborhood. Then τ(γn) ≥ τ(cn),
and therefore τ(γn) → τ(c). Since each sequence pi,n converges to pi, γn
converges to the sectionally geodesic curve γ obtained by joining pi−1 to pi
(i = 2, . . . , k), and it is clear that τ(γn) → τ(γ) = τ(c). Therefore γ is a
point of maximum for the length. Finally, we notice that γ must be smooth
at the points pi, for otherwise we could increase its length by using the
generalized twin paradox. Therefore γ must be a timelike geodesic. Using
a synchronized coordinate system around γ(0), it is clear that γ must be
orthogonal to S, for otherwise it would be possible to increase its length. �

We have now all the necessary ingredients to prove the Hawking singu-
larity theorem:

Theorem 8.9. (Hawking) Let (M, g) be a globally hyperbolic spacetime
satisfying the strong energy condition, and suppose that the expansion sat-
isfies θ ≤ θ0 < 0 on a Cauchy hypersurface S. Then (M, g) is singular.

Proof. We will show that no future-directed timelike geodesic orthog-
onal to S can be extended to proper time greater than τ0 = − 3

θ0
to the

future of S. Suppose that this was not so. Then there would exist a future-
directed timelike geodesic c orthogonal to S, parameterized by proper time,
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p

cγ

S u = 0

u = τ(c)

Uε(c)

Figure 11. Proof of Theorem 8.8.

defined in an interval [0, τ0 + ε] for some ε > 0. Let p = c(τ0 + ε). Accord-
ing to Theorem 8.8, there would exist a timelike geodesic γ with maximal
length connecting S to p, orthogonal to S. Because τ(c) = τ0 + ε, we would
necessarily have τ(γ) ≥ τ0 + ε. Proposition 8.4 guarantees that γ would
develop a conjugate point at a distance of at most τ0 to the future of S,
and Proposition 8.5 states that γ would cease to be maximizing beyond this
point. Therefore we arrive at a contradiction. �

Remark 8.10. It should be clear that (M, g) is singular if the condition
θ ≤ θ0 < 0 on a Cauchy hypersurface S is replaced by the condition θ ≥
θ0 > 0 on S. In this case, no past-directed timelike geodesic orthogonal
to S can be extended to proper time greater than τ0 =

3
θ0

to the past of S.

Example 8.11.

(1) The FLRW models are globally hyperbolic (cf. Exercise 7.10.9),
and satisfy the strong energy condition (as ρ > 0). Moreover,

βij =
ȧ

a
γij ⇒ θ =

3ȧ

a
.

Assume that the model is expanding at time t0. Then θ = θ0 =
3ȧ(t0)
a(t0)

> 0 on the Cauchy hypersurface S = {t = t0}, and hence

Theorem 8.9 guarantees that this model is singular to the past of S
(i.e. there exists a big bang). Moreover, Theorem 8.9 implies that
this singularity is generic: any sufficiently small perturbation of an
expanding FLRW model satisfying the strong energy condition will
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also be singular. Loosely speaking, any expanding universe must
have begun at a big bang.

(2) The region {r < 2m} of the Schwarzschild solution is globally hy-
perbolic (cf. Exercise 7.10.9), and satisfies the strong energy con-
dition (as Ric = 0). The metric can be written in this region as

g = −dτ ⊗dτ +
(
2m

r
− 1

)
dt⊗dt+r2dθ⊗dθ+r2 sin2 θdϕ⊗dϕ,

where

τ =

∫ 2m

r

(
2m

u
− 1

)− 1
2

du.

Therefore the inside of the black hole can be pictured as a cylinder
R×S2 whose shape is evolving in time. As r → 0, the S2 contracts
to a singularity, with the t-direction expanding. Since

3∑

i,j=1

βijdx
i⊗dxj = dr

dτ

(
−m
r2
dt⊗ dt+ rdθ ⊗ dθ + r sin2 θdϕ⊗ dϕ

)
,

we have

θ =

(
2m

r
− 1

)− 1
2
(
2

r
− 3m

r2

)
.

Therefore we have θ = θ0 < 0 on any Cauchy hypersurface S =
{r = r0} with r0 <

3m
2 , and hence Theorem 8.9 guarantees that

the Schwarzschild solution is singular to the future of S. More-
over, Theorem 8.9 implies that this singularity is generic: any suf-
ficiently small perturbation of the Schwarzschild solution satisfying
the strong energy condition will also be singular. Loosely speaking,
once the collapse has advanced long enough, nothing can prevent
the formation of a singularity.

Exercises 8.12.

(1) (Clifton-Pohl torus) Consider the Lorentzian metric

g :=
1

u2 + v2
(du⊗ dv + dv ⊗ du)

on M = R2 \ {0}. The Lie group Z acts freely and properly on M
by isometries through

n · (u, v) = (2nu, 2nv),

and this determines a Lorentzian metric g on M = M/Z ∼= T 2.
Show that (M, g) is not geodesically complete (althoughM is com-
pact). (Hint: Look for null geodesics with v ≡ 0).

(2) (2-dimensional Anti-de Sitter universe) Consider R3 with the pseudo-
Riemannian metric

g = −du⊗ du− dv ⊗ dv + dw ⊗ dw,
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and let (M, g) be the universal covering of the submanifold

H = {(u, v, w) ∈ R3 | u2 + v2 − w2 = 1)}
with the induced metric. Show that:
(a) a model for (M, g) is M = R×

(
−π

2 ,
π
2

)
and

g =
1

cos2 x
(−dt⊗ dt+ dx⊗ dx)

(hence (M, g) is not globally hyperbolic);
(b) (M, g) is geodesically complete, but expp is not surjective for

any p ∈ M (Hint: Notice that each isometry of (R3, g) determines an

isometry of (M, g));
(c) there exist points p, q ∈M connected by arbitrarily long time-

like curves (cf. Exercise 10).

t

x

(−π, 0)

(π, 0)

π
2−π

2

Figure 12. The exponential map is not surjective in the
2-dimensional Anti-de Sitter universe.

(3) By analogy with Exercise 3.3.5 in Chapter 3, we can define a left-
invariant Lorentzian metric on the Lie group H = R×R+ of Exer-
cise 7.17.3 in Chapter 1 as

g :=
1

x2
(−dt⊗ dt+ dx⊗ dx).

Show that this metric is not geodesically complete. (Remark: This

cannot happen in Riemannian geometry – cf. Exercise 5.8.4 in Chapter 3).
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(4) Show that the Christoffel symbols for the metric

g = −dt⊗ dt+
3∑

i,j=1

γijdx
i ⊗ dxj ,

satisfy

Γ0
00 = Γi00 = 0 and Γi0j =

3∑

k=1

γikβkj ,

where (γij) = (γij)
−1 and βij =

1
2
∂γij
∂t .

(5) Show that if U is a unit timelike vector field and V is any timelike

vector field then 〈U, V 〉2 + 1
2 〈V, V 〉 is a positive function.

(6) Show that a spacetime (M, g) whose matter content is a pressure-
less fluid with rest density function ρ ∈ C∞(M) and a cosmological
constant Λ ∈ R (cf. Exercise 6.1.7) satisfies the strong energy con-
dition if and only if ρ ≥ 0 and ρ ≥ Λ

4π .
(7) Let (M, g) be a spacetime. Show that any open cover {Vα}α∈A has

a countable, locally finite refinement {Un}n∈N by simple neighbor-
hoods (i.e., ∪n∈NUn = ∪α∈AVα, for each n ∈ N there exists α ∈ A
such that Un ⊂ Vα, and each point p ∈ M has a neighborhood
which intersects only finite simple neighborhoods Un).

(8) Prove Corollary 8.7.
(9) Let (M, g) be a globally hyperbolic spacetime, t :M → R a global

time function, S = t−1(0) a Cauchy hypersurface, p ∈ D+(S) and

A = D+(S) ∩ J−(p). Show that the closure C(S, p) := T (S, p)
in the space C(A) of all compact subsets of A with the Hausdorff
metric can be identified with the set of continuous causal curves
connecting S to p (parameterized by t).

(10) Let (M, g) be a globally hyperbolic spacetime and p, q ∈ M with
q ∈ I+(p). Show that among all timelike curves connecting p to
q there exists a timelike curve with maximal length, which is a
timelike geodesic.

(11) Consider two events p and q on Schwarzschild spacetime corre-
sponding to the beginning and the end of a complete circular orbit
of radius r (cf. Exercise 5.1.2). Show that the corresponding time-
like geodesic is not maximal.

(12) (Myers theorem) Use ideas similar to those leading to the proof
of Theorem 8.9 to prove the Myers theorem: if (M, 〈·, ·〉) is
a complete Riemannian manifold whose Ricci curvature satisfies
Ric(X,X) ≥ ε〈X,X〉 for some ε > 0 then M is compact. Can
these ideas be used to prove a singularity theorem in Riemannian
geometry?

(13) Explain why the Hawking singularity theorem does not apply to
each of the following spacetimes:
(a) Minkowski spacetime;
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(b) Einstein universe (cf. Exercise 6.1.8);
(c) de Sitter universe (cf. Exercise 6.1.8);
(d) 2-dimensional Anti-de Sitter universe (cf. Exercise 2).

9. Penrose Singularity Theorem

Let (M, g) be a globally hyperbolic spacetime, S a Cauchy hypersurface
with future-pointing unit normal vector field n, and Σ ⊂ S a compact 2-
dimensional submanifold with unit normal vector field ν in S. Let cp be the
null geodesic with initial condition np + νp for each point p ∈ Σ. We define
a smooth map exp : (−ε, ε)× Σ →M for some ε > 0 as exp(r, p) = cp(r).

Definition 9.1. The critical values of exp are said to be conjugate
points to Σ.

Loosely speaking, conjugate points are points where geodesics starting
orthogonally at nearby points of Σ intersect (see also Exercise 4.8.6 in Chap-
ter 3).

Let q = exp(r0, p) be a point not conjugate to Σ. If ϕ is a local parame-
terization of Σ around p, then we can construct a system of local coordinates
(u, r, x2, x3) on some open set V ∋ q by using the map

(u, r, x2, x3) 7→ exp(r, ψu(ϕ(x
2, x3))),

where ψu is the flow along the timelike geodesics orthogonal to S and the
map exp : (−ε, ε)× ψu(Σ) →M is defined as above.

Since ∂
∂r is tangent to null geodesics, we have grr =

〈
∂
∂r ,

∂
∂r

〉
= 0. On

the other hand, we have

∂grµ
∂r

=
∂

∂r

〈
∂

∂r
,
∂

∂xµ

〉
=

〈
∂

∂r
,∇ ∂

∂r

∂

∂xµ

〉

=

〈
∂

∂r
,∇ ∂

∂xµ

∂

∂r

〉
=

1

2

∂

∂xµ

〈
∂

∂r
,
∂

∂r

〉
= 0,

for µ = 0, 1, 2, 3. Since gru = −1 and gr2 = gr3 = 0 on ψu(Σ), we have
gru = −1 and gr2 = gr3 = 0 on V . Therefore the metric is written in this
coordinate system as

g = αdu⊗du−du⊗dr−dr⊗du+
3∑

i=2

βi
(
du⊗ dxi + dxi ⊗ du

)
+

3∑

i,j=2

γijdx
i⊗dxj .

Since

det




α −1 β2 β3
−1 0 0 0
β2 0 γ22 γ23
β3 0 γ32 γ33


 = − det

(
γ22 γ23
γ32 γ33

)
,

we see that the functions

γij :=

〈
∂

∂xi
,
∂

∂xj

〉
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form a positive definite matrix, and so g induces a Riemannian metric on
the 2-dimensional surfaces exp(r, ψu(Σ)), which are then spacelike. Since
the vector fields ∂

∂xi
can always be defined along cp, the matrix (γij) is also

well defined along cp, even at points where the coordinate system breaks
down, i.e. at points which are conjugate to Σ. These are the points for
which γ := det (γij) vanishes, since only then will

{
∂
∂u ,

∂
∂r ,

∂
∂x2

, ∂
∂x3

}
fail to

be linearly independent. (In fact the vector fields ∂
∂xi

are Jacobi fields along
cp – see Exercise 4.8.6 in Chapter 3).

It is easy to see that

Γuur = Γurr = Γuri = Γrrr = Γirr = 0 and Γirj =
3∑

k=2

γikβkj ,

where (γij) = (γij)
−1 and βij =

1
2
∂γij
∂r (cf. Exercise 9.9.1). Consequently,

Rrr = R u
urr +

3∑

i=2

R i
irr =

3∑

i=2


−∂Γ

i
ir

∂r
−

3∑

j=2

ΓjirΓ
i
rj




= − ∂

∂r




3∑

i,j=2

γijβij


−

3∑

i,j,k,l=2

γjkγilβkiβlj .

(cf. Chapter 4, Section 1). The quantity

θ :=
3∑

i,j=2

γijβij

appearing in this expression is called the expansion of the null geodesics,
and has an important geometric meaning:

θ =
1

2
tr

(
(γij)

−1 ∂

∂r
(γij)

)
=

1

2

∂

∂r
log γ =

∂

∂r
log γ

1
2 ,

where γ := det (γij). Therefore the expansion yields the variation of the
area element of the spacelike 2-dimensional surfaces exp(r, ψu(Σ)). More
importantly for our purposes, we see that a singularity of the expansion
indicates a zero of γ, i.e. a conjugate point to ψu(Σ).

Definition 9.2. A spacetime (M, g) is said to satisfy the null energy
condition if Ric(V, V ) ≥ 0 for any null vector field V ∈ X(M).

It is easily seen that this condition is implied by (but weaker than)
the strong energy condition. By the Einstein equation, it is equivalent to
requiring that the reduced energy-momentum tensor T satisfies T (V, V ) ≥ 0
for any null vector field V ∈ X(M). In the case of a pressureless fluid with
rest density function ρ ∈ C∞(M) and unit velocity vector field U ∈ X(M),
this requirement becomes

ρ 〈U, V 〉2 ≥ 0 ⇔ ρ ≥ 0.
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For more complicated matter models, the null energy condition produces
equally reasonable restrictions.

Proposition 9.3. Let (M, g) be a globally hyperbolic spacetime satis-
fying the null energy condition, S ⊂ M a Cauchy hypersurface, Σ ⊂ S a
compact 2-dimensional submanifold with unit normal vector field ν in S and
p ∈ Σ a point where θ = θ0 < 0. Then the null geodesic cp contains at least
a point conjugate to Σ, at an affine parameter distance of at most − 2

θ0
to

the future of Σ (assuming that it can be extended that far).

Proof. Since (M, g) satisfies the null energy condition, we have Rrr =
Ric

(
∂
∂r ,

∂
∂r

)
≥ 0. Consequently,

∂θ

∂r
+

3∑

i,j,k,l=2

γjkγilβkiβlj ≤ 0.

Choosing an orthonormal basis (where γij = δij), and using the inequality

(trA)2 ≤ n tr(AtA)

for square n× n matrices, it is easy to show that

3∑

i,j,k,l=2

γjkγilβkiβlj =
3∑

i,j=2

βjiβij = tr
(
(βij)(βij)

t
)
≥ 1

2
θ2.

Consequently θ must satisfy

∂θ

∂r
+

1

2
θ2 ≤ 0.

Integrating this inequality yields

1

θ
≥ 1

θ0
+
r

2
,

and hence θ must blow up at a value of r no greater than − 2
θ0
. �

We define the chronological future and the causal future of the
compact surface Σ as

I+(Σ) =
⋃

p∈Σ
I+(p) and J+(Σ) =

⋃

p∈Σ
J+(p)

(with similar definitions for the chronological past and the causal past
of Σ). It is clear that I+(Σ), being the union of open sets, is itself open, and

also that J+(Σ) ⊂ I+(Σ) and I+(Σ) = int J+(Σ). On the other hand, it is
easy to generalize Proposition 8.6 (and consequently Corollary 8.7) to the
corresponding statements with compact surfaces replacing points (cf. Exer-
cise 9.9.2). In particular, J+(Σ) is closed. Therefore

∂J+(Σ) = ∂I+(Σ) = J+(Σ) \ I+(Σ),
and so, by a straightforward generalization of Corollary 7.5, every point in
this boundary can be reached from a point in Σ by a future-directed null
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geodesic. Moreover, this geodesic must be orthogonal to Σ. Indeed, at Σ we
have

∂

∂u
= n and

∂

∂r
= n+ ν,

and so the metric takes the form

g = −du⊗ du− du⊗ dr − dr ⊗ du+
3∑

i,j=2

γijdx
i ⊗ dxj .

If c : I ⊂ R →M is a future-directed null geodesic with c(0) ∈ Σ, its initial
tangent vector

ċ(0) = u̇
∂

∂u
+ ṙ

∂

∂r
+

3∑

i=2

ẋi
∂

∂xi
= (u̇+ ṙ)n+ ṙν +

3∑

i=2

ẋi
∂

∂xi

must satisfy

u̇(u̇+ 2ṙ) =
3∑

i,j=2

γij ẋ
iẋj .

Since c is future-directed we must have u̇ + ṙ > 0. On the other hand, by
choosing the unit normal to Σ on S to be either ν or −ν, we can assume
ṙ ≥ 0. If c is not orthogonal to Σ we then have

3∑

i,j=2

γij ẋ
iẋj > 0 ⇒ u̇(u̇+ 2ṙ) > 0 ⇒ u̇ > 0.

Now the region where u > 0 and r ≥ 0 is clearly a subset of I+(Σ), since its
points can be reached from Σ by a sectionally smooth curve composed of an
arc of timelike geodesic and an arc of null geodesic. Therefore, we see that
if c is not orthogonal to Σ then c(t) ∈ I+(Σ) for all t > 0.

Even future-directed null geodesics orthogonal to Σ may eventually enter
I+(Σ). A sufficient condition for this to happen is given in the following
result.

Proposition 9.4. Let (M, g) be a globally hyperbolic spacetime, S a
Cauchy hypersurface with future-pointing unit normal vector field n, Σ ⊂ S
a compact 2-dimensional submanifold with unit normal vector field ν in S,
p ∈ Σ, cp the null geodesic through p with initial condition np + νp and
q = cp(r) for some r > 0. If cp has a conjugate point between p and q then
q ∈ I+(Σ).

Proof. We will offer only a sketch of the proof. Let s be the first
conjugate point along cp between p and q. Since q is conjugate to p, there
exists another null geodesic γ starting at Σ which (approximately) intersects
cp at s. The piecewise smooth null curve obtained by following γ between
Σ and s, and cp between s and q is a causal curve but not a null geodesic.
This curve can be easily smoothed while remaining causal and nongeodesic,
and so by the generalization of Corollary 7.5 we have q ∈ I+(Σ). �
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p

q

s

S

Σ

γ

cp

Figure 13. Proof of Proposition 9.4.

Definition 9.5. Let (M, g) be a globally hyperbolic spacetime and S
a Cauchy hypersurface with future-pointing unit normal vector field n. A
compact 2-dimensional submanifold Σ ⊂ S with unit normal vector field ν
in S is said to be trapped if the expansions θ+ and θ− of the null geodesics
with initial conditions n+ ν and n− ν are both negative everywhere on Σ.

We have now all the necessary ingredients to prove the Penrose singu-
larity theorem.

Theorem 9.6. (Penrose) Let (M, g) be a connected globally hyperbolic
spacetime with a noncompact Cauchy hypersurface S, satisfying the null
energy condition. If S contains a trapped surface Σ then (M, g) is singular.

Proof. Let t :M → R be a global time function such that S = t−1(0).
The integral curves of grad t, being timelike, intersect S exactly once, and
∂I+(Σ) at most once. This defines a continuous injective map π : ∂I+(Σ) →
S, whose image is open. Indeed, if q = π(p), then all points is some neigh-
borhood of q are images of points in ∂I+(Σ), as otherwise there would be a
sequence qn ∈ S with qn → q such that the integral curves of grad t through
qn would not intersect ∂I+(Σ). Letting rn be the intersections of these curves
with the Cauchy hypersurface t−1(t(r)), for some point r to the future of p
along the integral line of grad t, we would have rn → r, and so rn ∈ I+(Σ)
for sufficiently large n (as I+(Σ) is open), leading to a contradiction.
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Since Σ is trapped (and compact), there exists θ0 < 0 such that the
expansions θ+ and θ− of the null geodesics orthogonal to Σ both satisfy
θ+, θ− ≤ θ0. We will show that there exists a future-directed null geodesic
orthogonal to Σ which cannot be extended to an affine parameter greater
than r0 = − 2

θ0
to the future of Σ. Suppose that this was not so. Then,

according to Proposition 9.3, any null geodesic orthogonal to Σ would have
a conjugate point at an affine parameter distance of at most r0 to the future
of Σ, after which it would be in I+(Σ), by Proposition 9.4. Consequently,
∂I+(Σ) would be a (closed) subset of the compact set

exp+([0, r0]× Σ) ∪ exp−([0, r0]× Σ)

(where exp+ and exp− refer to the exponential map constructed using the
unit normals ν and −ν), hence compact. Therefore the image of π would
also be compact, hence closed as well as open. SinceM , and therefore S, are
connected, the image of π would be S, which would then be homeomorphic to
∂I+(Σ). But S is noncompact by hypothesis, and we reach a contradiction.

�

Remark 9.7. It should be clear that (M, g) is singular if the condition
of existence of a trapped surface is replaced by the condition of existence of
an anti-trapped surface, that is, a compact surface Σ ⊂ S such that the
expansions of null geodesics orthogonal to Σ are both positive. In this case,
there exists a past-directed null geodesic orthogonal to Σ which cannot be
extended to an affine parameter time greater than r0 =

2
θ0

to the past of Σ.

Example 9.8.

(1) The region {r < 2m} of the Schwarzschild solution is globally hy-
perbolic (cf. Exercise 7.10.9), and satisfies the null energy condition
(as Ric = 0). Since r (or −r) is clearly a time function (depending
on the choice of time orientation), it must increase (or decrease)
along any future-pointing null geodesic, and therefore any sphere
Σ of constant (t, r) is anti-trapped (or trapped). Since any Cauchy
hypersurface is diffeomorphic to R × S2, hence noncompact, we
conclude from Theorem 9.6 that the Schwarzschild solution is sin-
gular to past (or future) of Σ. Moreover, Theorem 8.9 implies that
this singularity is generic: any sufficiently small perturbation of the
Schwarzschild solution satisfying the null energy condition will also
be singular. Loosely speaking, once the collapse has advanced long
enough, nothing can prevent the formation of a singularity.

(2) The FLRW models are globally hyperbolic (cf. Exercise 7.10.9),
and satisfy the null energy condition (as ρ > 0). Moreover, radial
null geodesics satisfy

dr

dt
= ±1

a

√
1− kr2.

Therefore, if we start with a sphere Σ of constant (t, r) and follow
the orthogonal null geodesics along the direction of increasing or
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decreasing r, we obtain spheres whose radii ar satisfy

d

dt
(ar) = ȧr + aṙ = ȧr ±

√
1− kr2.

Assume that the model is expanding, with the big bang at t = 0,
and spatially noncompact (in particular k 6= 1). Then, for suffi-
ciently small t > 0, the sphere Σ is anti-trapped, and hence The-
orem 9.6 guarantees that this model is singular to the past of Σ
(i.e. there exists a big bang). Moreover, Theorem 9.6 implies that
this singularity is generic: any sufficiently small perturbation of
an expanding, spatially noncompact FLRW model satisfying the
null energy condition will also be singular. Loosely speaking, any
expanding universe must have begun at a big bang.

Exercises 9.9.

(1) Show that the Christoffel symbols for the metric

g = αdu⊗ du− du⊗ dr − dr ⊗ du+
3∑

i=2

βi
(
du⊗ dxi + dxi ⊗ du

)

+
3∑

i,j=2

γijdx
i ⊗ dxj

satisfy

Γuur = Γurr = Γuri = Γrrr = Γiur = Γirr = 0 and Γirj =
3∑

k=2

γikβkj ,

where (γij) = (γij)
−1 and βij =

1
2
∂γij
∂r .

(2) Let (M, g) be a globally hyperbolic spacetime with Cauchy hyper-
surfaces S0 and S1 satisfying S1 ⊂ D+(S0), and Σ ⊂ S1 a compact
surface. Show that:
(a) D+(S0) ∩ J−(Σ) is compact;
(b) J−(Σ) is closed.

(3) Explain why the Penrose singularity theorem does not apply to
each of the following spacetimes:
(a) Minkowski spacetime;
(b) Einstein universe (cf. Exercise 6.1.8);
(c) de Sitter universe (cf. Exercise 6.1.8);
(d) 2-dimensional Anti-de Sitter universe (cf. Exercise 8.12.2).

10. Notes on Chapter 6

10.1. Bibliographical notes. There are many excellent texts on gen-
eral relativity, usually containing also the relevant differential and Lorentzian
geometry. These range from introductory [Sch02] to more advanced [Wal84]
to encyclopedic [MTW73]. A more mathematically oriented treatment can
be found in [BEE96, O’N83] ([GHL04] also contains a brief glance at
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pseudo-Riemannian geometry). For more information on special relativity
and the Lorentz group see [Nab92, Oli02]. Causality and the singularity
theorems are treated in greater detail in [Pen87, HE95, Nab88], and in
the original papers [Pen65, Haw67, HP70].





Solutions to Exercises

Chapter 1

Section 1.

(1) In all these examples conditions (i) and (iii) in the definition of
topological manifold are inherited from the ambient space, and so
we just have to worry about (ii).
(a) D2 is an open subset of R2 so it is trivially a topological 2-

manifold.
(b) M = S2 \ {p} is a topological manifold of dimension 2. Treat-

ing R2 as the complex plane, and assuming without loss of
generality that p is the north pole of the sphere, we obtain a
simple homeomorphism ϕ : R2 ∼= C →M by taking

ϕ(z) =

(
2x

1 + |z|2 ,
2y

1 + |z|2 ,
|z|2 − 1

1 + |z|2
)

where z = x+ i y. The inverse of this map is called the stere-
ographic projection (cf. Exercise 2.5.7).

(c) N = S2 \ {p, q} is also a topological 2-manifold. We can as-
sume, without loss of generality, that p and q are the north
and south poles of the sphere and then ϕ defined in (b) is a
homeomorphism between the open set R2 \ {0} ∼= C \ {0} and
N .

(d) The cylinder V = {(x, y) ∈ R3 | x2 + y2 = 1} is a topological
2-manifold. For each point p := (x, y, z) ∈ V we take the
normal vector n := (x, y, 0) and consider a plane generated by
two coordinate axis that are not parallel to n. Then there is
a neighborhood of p in V homeomorphic to its projection on
this plane.

(e) The cone S := {(x, y) | x2 + y2 = z2} is not a topological
manifold. If that were the case, there would exist a connected
open set W in S, containing the origin, homeomorphic to an
open subset U ⊂ R2. Then W \ {0} would be homeomorphic
to U \{q} (where q is the preimage of the origin). But W \{0}
is disconnected, while U \ {q} is connected, and hence they
cannot be homeomorphic.

(2) D2 and S2 \ {p} are both homeomorphic to R2; S2 \ {p, q} and the
cylinder in (d) are homeomorphic to S1 × R.

301
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(3) It is easy to show that the Klein bottle with a Möbius band deleted
is again homeomorphic to a Möbius band (see Figure 1).

b
b

b

a1 a1

a1a1

a2

a2a2

a2

∼=

Figure 1. Klein bottle with a Möbius band deleted.

(4) (a) S2 with a disk deleted is homeomorphic to a disk.
(b) RP 2 with a disk deleted is homeomorphic to the Möbius band.

Therefore RP 2#RP 2 is obtained by gluing two Möbius bands
along the boundary. This is the same as a Klein bottle.

(c) Performing the connected sum with a torus is equivalent to
deleting two disks and identifying their boundaries with oppo-
site orientations. Performing the connected sum with a Klein
bottle is equivalent to deleting two disks and identifying their
boundaries with the same orientation. In the case of the pro-
jective plane, the orientation of the boundary of a disk can be
reversed by moving it along a Möbius band contained in the
projective plane.

(5) (a) If the new vertex is on a face, then it must be connected to
the three vertices of that face. In doing this, the number of
vertices has increased by 1, the number of edges has increased
by 3 and the number of faces has increased by 2 (as one face
has been divided into three faces). Therefore V − E + F has
changed by 1−3+2 = 0. If the new vertex is on an edge, then
it must be connected to the two vertices opposite to that edge.
In doing this, the number of vertices has increased by 1, the
number of edges has increased by 3 (as two new edges have
been created and one edge has been divided into two) and the
number of faces has increased by 2 (as two faces have been
divided into four faces). Again, V − E + F does not change.

(b) For the triangulation of S2 determined by the tetrahedron, one
has V = 4, E = 6 and F = 4, and so χ(S2) = 4− 6 + 4 = 2.

(c) A decomposition of T 2 into triangles can be obtained by adding
a diagonal to the square whose sides are identified. This is not



CHAPTER 1 303

exactly a triangulation (because the intersection of the two
triangles consists of all three edges), but it can be turned into
one by adding vertices, and so, by (a), it can be used to com-
pute the Euler characteristic. Allowing for the identifications,
we have V = 1, E = 3, F = 2, and so χ(T 2) = 1− 3 + 2 = 0.

(d) Same as for T 2.
(e) Same as for T 2, except that now the identifications yield V =

2, and so χ(RP 2) = 2− 3 + 2 = 1.
(f) Consider triangulations of M and N . Deleting a triangle on

each surface and identifying their edges yields M#N with a
triangulation. Since 3 vertices get identified, the total number
of vertices goes down by 3, and the same is true for the total
number of edges. The total number of faces goes down by two,
corresponding to the two faces which were deleted. Therefore
χ(M#N) = χ(M) + χ(N)− 2.

Section 2.

(1) Assuming A1 equivalent to A2, we have that the two atlases define
the same differentiable structure A and that A1 ∪ A2 ⊂ A. Hence
every overlap map in A1 ∪ A2 is C∞. Since, in addition, the co-
ordinate neighborhoods of A1 ∪ A2 cover M , A1 ∪ A2 is also an
atlas.

If A1 ∪ A2 is an atlas then A2 ⊂ Ã1 and A1 ⊂ Ã2, where

Ã1 and Ã2 are the differentiable structures defined by A1 and A2

respectively. Hence Ã1 ⊂ Ã2 and Ã2 ⊂ Ã1, implying that Ã1 = Ã2.
(2) First we see that if V is open then, since ϕα is continuous, ϕ−1

α (V )
is open.

Conversely, if the sets ϕ−1
α (V ) are open for every α, then, since

ϕα is a homeomorphism onto ϕα(Uα), so are the sets V ∩ ϕα(Uα)
and ∪α (V ∩ ϕα(Uα)) = V ∩ (∪α ϕα(Uα)) = V .

(3) By Exercise 2.5.1, we just have to show that {(Rn, ϕ), (Rn, id)} is an
atlas. This is obvious since the overlap maps are the C∞ maps given
by (ϕ−1 ◦ id)(x) = ϕ−1(x) = A−1x and (id ◦ϕ)(x) = ϕ(x) = Ax (A
is non-singular).

(4) (ϕ−1
2 ◦ϕ1)(x) = x

1
3 , which is not differentiable at the origin. By Ex-

ercise 2.5.1, the two atlases are not equivalent, as {(R, ϕ1), (R, ϕ2)}
is not an atlas.

(5) Consider the maps ϕp : Up → S defined by ϕp(x, y) = (x, y, fp(x, y)),
ϕp(y, z) = (fp(y, z), y, z), or ϕp(x, z) = (x, fp(x, z), z), respectively
when S ∩ Vp is the graph of z = f(x, y), x = f(y, z) or y =
f(x, z). The family A := {(Up, ϕp)p∈M} is an atlas for S. Clearly
∪p∈M ϕp(Up) = M . Moreover, for W := ϕp(Up) ∩ ϕp′(Up′) 6= ∅,

the overlap maps ϕ−1
p′ ◦ ϕp : ϕ−1

p (W ) → ϕ−1
p′ (W ) and ϕ−1

p ◦ ϕp′ :
ϕ−1
p′ (W ) → ϕ−1

p (W ) are C∞. Here we have to consider several
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cases. Let us see for example what happens when ϕp(x, y) =
(x, y, fp(x, y)) and ϕp′(y, z) = (fp′(y, z), y, z). In this case,

(ϕ−1
p′ ◦ ϕp)(x, y) = (y, fp(x, y))

(ϕ−1
p ◦ ϕp′)(y, z) = (fp′(y, z), y).

which are both C∞.
(6) Clearly ∪α,β ϕα(Uα)×ψβ(Vβ) =M ×N . Moreover, for each (α, β)

and (α′, β′) for which

W := (ϕα × ψβ)(Uα × Vβ) ∩ (ϕα′ × ψβ′)(Uα′ × Vβ′) 6= ∅,

the overlap maps (ϕα′×ψβ′)−1◦(ϕα×ψβ) = (ϕ−1
α′ ◦ϕα)×(ψ−1

β′ ◦ψβ)
and (ϕα × ψβ)

−1 ◦ (ϕα′ × ψβ′) = (ϕ−1
α ◦ ϕα′)× (ψ−1

β ◦ ψβ′) are C∞.

(7) Let us write the point p ∈ Sn ⊂ Rn+1 as p = (x, xn+1), with x ∈ Rn

and xn+1 ∈ R. The line through N and p is given parametrically
by

c(t) = (tx, 1 + t(xn+1 − 1)),

and intersects the hyperplane xn+1 = 0 at t = 1
1−xn+1 . Therefore,

y = πN (p) =
x

1− xn+1
.

The squared norm of this equation yields

‖y‖2 = ‖x‖2
(1− xn+1)2

=
1− (xn+1)2

(1− xn+1)2
=

1 + xn+1

1− xn+1

(where we have used ‖p‖2 = ‖x‖2 + (xn+1)2 = 1); equivalently,

xn+1 =
‖y‖2 − 1

‖y‖2 + 1
.

Therefore the relation between x and y can be written as

x =
2y

1 + ‖y‖2 ,

and consequently

p = πN
−1(y) =

(
2y

1 + ‖y‖2 ,
‖y‖2 − 1

‖y‖2 + 1

)
.

Analogously, we have

y = πS(p) =
x

1 + xn+1

and

p = πS
−1(y) =

(
2y

1 + ‖y‖2 ,
1− ‖y‖2
1 + ‖y‖2

)
.

Thus the map πS ◦ πN−1, which maps πN (S
n \ {N,S}) = Rn \ {0}

to πS(S
n \ {N,S}) = Rn \ {0}, is given by

πS ◦ πN−1(y) =
y

‖y‖2 ,
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and hence is differentiable on its domain. The same is true for

πN ◦ πS−1(y) =
y

‖y‖2 .

Therefore {(Rn, π−1
N ), (Rn, π−1

S )} is an atlas for Sn.
To see that this atlas is equivalent to the atlas on Example 2.3.5

we have to compute πN ◦ ϕ+
i , πN ◦ ϕ−

i , πS ◦ ϕ+
i , πS ◦ ϕ−

i and their
inverses for i = 1, . . . , n + 1. There are essentially two different
cases, corresponding to i = n + 1 and i 6= n + 1. As an example,
we have

πN ◦ ϕ+
n+1(x) = πN (x, g(x)) =

x

1− g(x)
=

x

1− (1− ‖x‖2) 1
2

,

which is differentiable on its domain U \ {0}. The other case is
done similarly.

(8) (a) The quotient map π : Sn → RPn is open: if U ⊂ Sn is open
then π(U) ⊂ RPn is open, as π−1(π(U)) = U∪(−U) is an open
subset of Sn. Moreover, the set R = {(p, q) ∈ Sn×Sn | p ∼ q}
is closed, because R = f−1(0), where f : Sn × Sn → R is
the continuous map given by f(p, q) = ‖p − q‖ · ‖p + q‖. By
Proposition 10.2, RPn is Hausdorff. On the other hand, it is
easily seen that if {Uk}k∈N is a countable basis for the topology
of Sn then {π(Uk)}k∈N is a countable basis for the topology of
RPn.

(b) A = {(U, π ◦ϕ+
i )}n+1

i=1 is a differentiable atlas for RPn. Indeed,
since π ◦ ϕ+

i (U) = π ◦ ϕ−
i (U), the open sets π ◦ ϕ+

i (U) cover

RPn. Moreover, the maps (π ◦ ϕ+
i )

−1 ◦ (π ◦ ϕ+
j ) are locally

given by either (ϕ+
i )

−1 ◦ ϕ+
j or (ϕ+

i )
−1 ◦ ϕ−

j ◦ (− id), both of
which are differentiable.

(9) (a) It is clear that RPn =
⋃n+1

1=1 Vi. Moreover, if ϕi(x
1, . . . , xn) ∈

Vj then

ϕi(x
1, . . . , xn) = [x1, . . . , xj , . . . , xi−1, 1, xi, . . . , xn]

=

[
x1

xj
, . . . , 1, . . . ,

xi−1

xj
,
1

xj
,
xi

xj
, . . . ,

xn

xj

]
,

and hence

ϕ−1
j ◦ ϕi(x1, . . . , xn) =

(
x1

xj
, . . . ,

xi−1

xj
,
1

xj
,
xi

xj
, . . . ,

xn

xj

)

is differentiable on its domain.
(b) The quotients

(
Rn+1 \ {0}

)
/ ∼ and Sn/ ∼ are in bijection

because any line through the origin in Rn+1 intersects Sn in
two antipodal points. The two topologies are also the same,
because an open set of Rn+1 \ {0} formed by lines through
the origin intersects Sn on an open set. To check that the
two atlases are equivalent we need to check that the maps
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ϕj
−1 ◦ (π ◦ ϕ+

i ) and their inverses are differentiable for i, j =
1, . . . , n+ 1. As an example, we have

ϕn+1
−1 ◦ (π ◦ ϕ+

n+1)(x) = ϕn+1
−1(π(x, g(x)))

= ϕn+1
−1([x, g(x)]) = ϕn+1

−1

([
x

g(x)
, 1

])
=

x

g(x)
,

which is differentiable on its domain U . The other cases are
done similarly.

(10) (a) Let W := f1(R) ∩ f2(R) = M \ {0, p}. Notice that f−1
1 (W ) =

f−1
2 (W ) = R\{0}. Then the overlap maps f−1

1 ◦f2 : R\{0} →
R \ {0} and f−1

2 ◦ f1 : R \ {0} → R \ {0} are both the identity
map and so they are differentiable.

(b) Let us assume that the corresponding space is Hausdorff. Then
there exist neighborhoods V0 and Vp respectively of 0 and p

with V0 ∩ Vp = ∅. Moreover, f−1
1 (V0 ∩ f2(R)) and f−1

2 (Vp ∩
f1(R)) are open subsets of R containing 0. Take an open in-
terval I containing 0 that is contained in these two sets. Then
f2(I \ {0}) = I \ {0} ⊂ Vp and f1(I \ {0}) = I \ {0} ⊂ V0,
implying that V0 ∩ Vp 6= ∅.

Section 3.

(1) Let f :M → N be a map between manifolds and assume there are
parameterizations (U,ϕ) and (V, ψ) at p and f(p) with f(ϕ(U)) ⊂
ψ(V ) and such that f̂ = ψ−1 ◦ f ◦ ϕ is differentiable at ϕ−1(p). If

(Ũ , ϕ̃) and (Ṽ , ψ̃) are other parameterizations respectively at p and

at f(p) then, on a neighborhood of ϕ̃−1(p), the map ψ̃−1 ◦ f ◦ ϕ̃ =

(ψ̃−1 ◦ψ) ◦ (ψ−1 ◦ f ◦ϕ) ◦ (ϕ−1 ◦ ϕ̃) is also differentiable at ϕ̃−1(p),

since the overlap maps ψ̃−1 ◦ ψ and ϕ−1 ◦ ϕ̃ are C∞.
(2) Given an open set W in N we want to show that f−1(W ) ⊂ M

is open. By Exercise 2.5.2, we just need to show that, for every

parameterization (U,ϕ) of M , the set Ũ := ϕ−1
(
f−1(W )

)
⊂ Rm

is open (with m = dimM). Considering an atlas {(Vβ , ψβ)} for N ,
we have

Ũ = ϕ−1
(
f−1(W )

)
= ϕ−1


⋃

β

f−1(W ∩ ψβ(Vβ))




=
⋃

β

ϕ−1
(
f−1

(
ψβ

(
ψ−1
β (W )

)))

=
⋃

β

(ψ−1
β ◦ f ◦ ϕ)−1

(
ψ−1
β (W )

)
.

Since W is open we know that ψ−1
β (W ) is an open set in Rn

(n = dimN). Then, since the map ψ−1
β ◦ f ◦ ϕ is C∞ and hence
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continuous, the set (ψ−1
β ◦f ◦ϕ)−1

(
ψ−1
β (W )

)
is also open, implying

that Ũ is open.
(3) Let p ∈ M1. Since f and g are differentiable maps, there exist

parameterizations (U,ϕ) ofM1 at p, (V, ψ) ofM2 at f(p) and (W,φ)
ofM3 at g(f(p)), with f(ϕ(U)) ⊂ ψ(V ) and g(ψ(V )) ⊂ φ(W ), such

that f̂ := ψ−1 ◦ f ◦ ϕ and ĝ := φ−1 ◦ g ◦ ψ are C∞. Consequently,
for the parameterizations (U,ϕ) of M1 at p and (W,φ) of M3 at
(g ◦ f)(p) we have (g ◦ f)(ϕ(U)) ⊂ φ(W ) and the map

ĝ ◦ f := φ−1 ◦ (g ◦ f) ◦ ϕ = (φ−1 ◦ g ◦ ψ) ◦ (ψ−1 ◦ f ◦ ϕ) = ĝ ◦ f̂
is C∞.

(4) We use the atlas {(Rn, π−1
N ), (Rn, π−1

S )} for Sn (cf. Exercise 2.5.7).
To check that f is differentiable we must show that the four maps
πN ◦ f ◦ πN−1, πS ◦ f ◦ πN−1, πN ◦ f ◦ πS−1 and πS ◦ f ◦ πS−1

are differentiable (in fact it is enough to check the differentiability
of the first three maps). Since f(S) = N , we see that the first
map is defined on πN (f

−1(πN
−1(Rn))) = πN (f

−1(Sn \ {N})) =
πN (S

n\{S}) = Rn\{0} (where we have slightly abused the notation
in the interest of clarity). We have

πN ◦ f ◦ πN−1(y) = πN ◦ f
(

2y

1 + ‖y‖2 ,
‖y‖2 − 1

‖y‖2 + 1

)

= πN

(
− 2y

1 + ‖y‖2 ,
1− ‖y‖2
‖y‖2 + 1

)
= − y

‖y‖2 ,

which is differentiable on Rn \ {0}. The other three maps are sim-
ilarly shown to be differentiable on their domains.

(5) Let

f(z) =
az + b

cz + d

be a Möbius transformation. If c 6= 0 then

f(z) =
a
c (cz + d)− ad

c + b

cz + d
=
a

c
+
b− ad

c

cz + d

and hence f = h2 ◦ g ◦ h1, where

h1(z) = cz + d, g(z) =
1

z
, h2(z) =

(
b− ad

c

)
z +

a

c
.

Therefore any Möbius transformation is a composition of Möbius
transformations of the form g(z) = 1

z and h(z) = az + b. By Exer-
cise 3.2.3, to show that any Möbius transformation is differentiable
it suffices to check that g and h are differentiable.

To show that g is differentiable we use the parameterizations
(C, πN

−1) and (C, πS
−1) of S2. From the definition, it is clear that
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πN ◦ g ◦ πN−1 : C \ {0} → C \ {0} is given by

πN ◦ g ◦ πN−1(z) =
1

z
,

which is a differentiable map. On the other hand, we know from
Exercise 2.5.7 that

πS ◦ πN−1(z) =
z

|z|2 =
1

z
,

on C \ {0}, and hence

πS ◦ g ◦ πN−1(z) = (πS ◦ πN−1) ◦ (πN ◦ g ◦ πN−1)(z) = z

on C \ {0}. Since g(0) = ∞, i.e. g(S) = N , this formula extends to
z = 0. Therefore πS ◦g◦πN−1 is smooth on C. One can analogously
show that the maps πN ◦g◦πS−1 and πS ◦g◦πS−1 are differentiable
on their domains. The map h can be shown to be smooth in the
same way.

(6) (a) The identity map is not a diffeomorphism because îd(x) :=

ϕ−1
2 ◦ id ◦ ϕ1(x) = x

1
3 is not differentiable at the origin.

(b) The map f is a diffeomorphism since f̂ := ϕ−1
2 ◦ f ◦ ϕ1 = id

and f̂−1 := ϕ−1
1 ◦ f−1 ◦ ϕ2 = id are C∞.

Section 4.

(1) Consider a parameterization ϕ : U ⊂ Rn → M around p and take
the operators

(
∂
∂xi

)
p
defined in the text. If

∑n
i=1 α

i
(
∂
∂xi

)
p
= 0 for

some α1, . . . , αn ∈ R then

(
n∑

i=1

αi
(
∂

∂xi

)

p

)
(f) = 0

for every function f : M → R differentiable at p. If, in particular,
we take the coordinate functions of ϕ−1, i.e. the functions fj :=

(ϕ−1)j : ϕ(U) → R, then f̂j(x
1, . . . , xn) = xj and so

0 =

(
n∑

i=1

αi
(
∂

∂xi

)

p

)
(fj) =

n∑

i=1

αi
(
∂xj

∂xi

)
(ϕ−1(p)) = αj ,

implying that the αj are all equal to 0.
(2) Let ϕ : U ⊂ Rn → M and ψ : V ⊂ Rn → M be two parameter-

izations around p for which v =
∑
ai
(
∂
∂xi

)
p
and v =

∑
bi
(

∂
∂yi

)
p
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respectively. Then,

bj =
n∑

i=1

bi
(
∂yj

∂yi

)
(ψ−1(p)) = v · (ψ−1)j

=

(
n∑

i=1

ai
(
∂

∂xi

)

p

)
((ψ−1)j)

=
n∑

i=1

ai
∂(ψ−1 ◦ ϕ)j

∂xi
(ϕ−1(p)) =

n∑

i=1

ai
∂yj

∂xi
.

(3) (a) Consider the map Φ : Cp/ ∼→ TpM given by

Φ([c]) = ċ(0) =
n∑

i=1

d

dt
(xi ◦ c)(0)

(
∂

∂xi

)

p

,

where ϕ−1 = (x1, . . . , xn). This map is clearly well defined
and surjective. To show that Φ is injective, we notice that if
Φ([c1]) = Φ([c2]) then

n∑

i=1

d

dt
(xi ◦ c1)(0)

(
∂

∂xi

)

p

=

n∑

i=1

d

dt
(xi ◦ c2)(0)

(
∂

∂xi

)

p

and hence c1 ∼ c2.
(b) Consider the map Ψ that to each equivalence class [(α, vα)]

associates the tangent vector

Ψ([(α, vα)]) =
n∑

i=1

viα

(
∂

∂xiα

)

p

where ϕα
−1 = (x1α, . . . , x

n
α). By Exercise 2, Ψ is well defined.

Moreover, it is clearly surjective. To show that it is injective,
we notice that if Ψ([(α, vα)]) = Ψ([(β, vβ)]) then

n∑

i=1

viα

(
∂

∂xiα

)

p

=
n∑

i=1

viβ

(
∂

∂xiβ

)

p

⇔
n∑

i,j=1

viα

(
∂xjβ
∂xiα

)(
∂

∂xjβ

)

p

=
n∑

i=1

viβ

(
∂

∂xiβ

)

p

⇔
n∑

j=1

(
∂xiβ

∂xjα

)
vjα = viβ ⇔ (α, vα) ∼ (β, vβ).
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(4) Let v ∈ TpM be given by v = ċ(0) for some curve c : (−ε, ε) →M .
Then

(d(g ◦ f))p(v) =
d

dt

∣∣∣∣
t=0

(g ◦ f)(c(t))

=
d

dt

∣∣∣∣
t=0

g((f ◦ c)(t)) = (dg)f(p)(w),

where w ∈ Tf(p)N is the tangent vector to the differentiable curve
(f ◦ c) : (−ε, ε) → N at t = 0, i.e.

w =
d

dt

∣∣∣∣
t=0

f(c(t)) = (df)p(v).

Therefore

(d(g ◦ f))p(v) = (dg)f(p)((df)p(v))

for all v ∈ TpM .

(5) The vector ∂
∂r is simply the tangent vector to the curve obtained

by fixing θ, ϕ. Therefore
(
∂

∂r

)

φ(r,θ,ϕ)

=
∂φ

∂r
(r, θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ)

is the radial unit vector field. Similarly,
(
∂

∂θ

)

φ(r,θ,ϕ)

=
∂φ

∂θ
(r, θ, ϕ) = (r cos θ cosϕ, r cos θ sinϕ,−r sin θ)

and(
∂

∂ϕ

)

φ(r,θ,ϕ)

=
∂φ

∂ϕ
(r, θ, ϕ) = (−r sin θ sinϕ, r sin θ cosϕ, 0).

(6) Identifying TNS
n and TSS

n with the subspace of Rn+1 given by
xn+1 = 0, we have

(df)N (v) =
d

dt

∣∣∣∣
t=0

f(c(t)) =
d

dt

∣∣∣∣
t=0

(−c(t)) = −ċ(0) = −v

(where c : (−ε, ε) → Sn satisfies ċ(0) = v), i.e. (df)N is simply
multiplication by −1. Alternatively, using the parameterizations
(Rn, πS

−1) and (Rn, πN
−1) at N and S, we have

f̂(y) = πN ◦ f ◦ πS−1(y) = πN ◦ f
(

2y

1 + ‖y‖2 ,
1− ‖y‖2
1 + ‖y‖2

)

= πN

(
− 2y

1 + ‖y‖2 ,
‖y‖2 − 1

1 + ‖y‖2
)

= −y.

The Jacobian matrix of this map at πS(N) = 0 is (df̂)0 = − id.
Therefore if y are the local coordinates corresponding to the first
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parameterization and z are the local coordinates corresponding to
the second parameterization, we have

(df)N

(
v1

∂

∂y1
+ . . .+ vn

∂

∂yn

)
= −v1 ∂

∂z1
− . . .− vn

∂

∂zn
.

(7) Let c : (−ε, ε) → W be a curve in W ⊂ M such that c(0) = p and
let v := ċ(0). Then on the coordinate chart x :W → Rn,

(df)pv =
d(f ◦ c)
dt

(0) =
n∑

i=1

ẋi(0)
∂f̂

∂xi
(x(p)),

where in local coordinates we write ĉ(t) = (x1(t), . . . , xn(t)). On
the other hand,

(dxj)pv =
d(xj ◦ c)

dt
(0) =

n∑

i=1

ẋi(0)
∂xj

∂xi
(x(p)) = ẋj(0)

and the result follows.
(8) Clearly

⋃

α

Φα(Uα × Rn) =
⋃

p∈
⋃
αϕα(Uα)

TpM = TM.

Moreover, the topology defined on TM by these parameterizations
is easily seen to be Hausdorff and second countable. Finally, for
W = Φα(Uα) ∩ Φβ(Uβ) 6= ∅, the overlap maps

Φ−1
β ◦ Φα : Φ−1

α (W ) → Φ−1
β (W )

and

Φ−1
α ◦ Φβ : Φ−1

β (W ) → Φ−1
α (W )

are given by

(Φ−1
β ◦ Φα)(x, v) =

(
(ϕ−1

β ◦ ϕα)(x), (d(ϕ−1
β ◦ ϕα))x(v)

)

and

(Φ−1
α ◦ Φβ)(x, v) =

(
(ϕ−1

α ◦ ϕβ)(x), (d(ϕ−1
α ◦ ϕβ))x(v)

)

and so they are differentiable. (In the formulae above we use the
standard identification TxR

n ∼= Rn).
(9) (a) Consider parameterizations (Uα ×Rm,Φα) and (Vβ ×Rn,Ψβ)

on TM and TN as defined in Exercise 8, such that

df(Φα(Uα × Rm)) ⊂ Ψβ(Vβ × Rn),

where m = dim(M) and n = dim(N). Then, for (x, v) ∈
Uα × Rm and (y, w) ∈ Vβ × Rn, Φα(x, v) = (dϕα)x(v) and
Ψβ(y, w) = (dψβ)y(w) for some parameterizations (Uα, ϕα)
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and (Vβ , ψβ) on M and N respectively. On these local co-
ordinates,

d̂f(x, v) = (Ψ−1
β ◦ df ◦ Φα)(x, v) = Ψ−1

β

(
(df)ϕα(x)((dϕα)x(v))

)

= Ψ−1
β ((d(f ◦ ϕα))x(v))

=

(
(ψ−1

β ◦ f ◦ ϕα)(x),
(
(dψβ)(ψ−1

β
◦f◦ϕα)(x)

)−1
((d(f ◦ ϕα))x(v))

)

=
(
(ψ−1

β ◦ f ◦ ϕα)(x),
(
d(ψ−1

β ◦ f ◦ ϕα)
)
x
(v)
)
=
(
f̂(x), (df̂)x(v)

)
,

where we used the inverse function theorem (cf. Section 10.4).

Since we are assuming that f is smooth we conclude that d̂f
is a C∞ map on Uα × Rm and so df is differentiable on TM .

(b) If f :M →M is the identity map then, for every parameteri-

zation (Uα, ϕα) on M we have f̂ = id and so for every x ∈ Uα,

the map (df̂)x is also the identity. Hence, taking the corre-
sponding parameterization (Uα × Rm,Φα) on TM , we have
that

d̂f(x, v) =
(
f̂(x), (df̂)x(v)

)
= (x, v)

is the identity map and the result follows.
(c) If f :M → N is a diffeomorphism then f is bijective and f−1

is smooth. Then on local coordinates, the inverse of the map

d̂f exists and is given by

(d̂f)−1(y, w) =

(
f̂−1(y),

(
(df̂)f̂−1(y)

)−1
(w)

)

= (f̂−1(y), (df̂−1)y(w)) =
(
f̂−1(y), (df̂−1)y(w)

)
= d̂f−1(y, w),

which is a C∞ map (again we used here the inverse function
theorem). We conclude that df is also a diffeomorphism and
that (df)−1 = df−1.

(10) (a) Take any parameterization
(
(Uα × Vβ)× Rn+m, Φ̃α,β

)
on T (M1×

M2) and ((Uα × Rm)× (Vβ × Rn),Φα ×Ψβ) on TM1 × TM2,
where

Φ̃α,β ((x, y), (v, w)) = (d(ϕα × ψβ))(x,y) (v, w),

for parameterizations (Uα, ϕα) onM1 and (Vβ , ψβ) onM2, and
where Φα and Ψβ are defined as in Exercise 4.9.8. On these
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local coordinates,

̂(dπ1 × dπ2) ((x, y), (v, w))

=
(
(Φ−1

α ×Ψ−1
β ) ◦ (dπ1 × dπ2) ◦ Φ̃α,β

)
((x, y), (v, w))

= (Φ−1
α ×Ψ−1

β )
(
(dπ1 × dπ2)

(
(d (ϕα × ψβ))(x,y) (v, w)

))

=
(
(x, d(ϕ−1

α ◦ ϕα)x(v)), (y, d(ψ−1
β ◦ ψβ)y(w))

)

= ((x, v), (y, w)) .

Since this map is C∞, invertible and
(

̂dπ1 × dπ2

)−1
is differ-

entiable, we conclude that dπ1 × dπ2 is a diffeomorphism.
(b) In local coordinates

̂d(f1 × f2)(x, v) =
(
(f̂1 × f2)(x),

(
d ̂(f1 × f2)

)
x
(v)
)

=
(
(f̂1 × f̂2)(x), (df̂1 × df̂2)x(v)

)
.

Then, using the diffeomorphism in (a), we have

̂d(f1 × f2)(x, v) =
((
f̂1(x), (df̂1)x(v)

)
,
(
f̂2(x), (df̂2)x(v)

))

=
(
d̂f1 × d̂f2

)
(x, v)

and the result follows.

Section 5.

(1) A parameterization ϕ : U ⊂ Rm → M is clearly an immersion as
(dϕ)x : TxU → Tϕ(x)M is always injective (cf. Example 4.8). Since,
by definition, it is a homeomorphism onto its image, we conclude
that it is an embedding.

(2) Let p ∈M . By the local immersion theorem there exist parameter-
izations (U,ϕ) at p and (V, ψ) at f(p) for which f is the canonical
immersion. Then, taking W := ϕ(U), the map f |W : W → N
is a homeomorphism onto its image. Indeed, f |W is continuous

and, if A is an open set in W , f |W (A) = (ψ ◦ f̂ ◦ ϕ−1)(A) =
ψ
(
V ∩ (ϕ−1(A)× {0})

)
= ψ

(
V ∩ (ϕ−1(A)× Rn−m)

)
∩ f(W ).

(3) If M is a submanifold of N of dimension m then the inclusion
map i : M →֒ N is an embedding. In particular, the map i is
an immersion and then, by the local immersion theorem, for every
point p ∈ W there are parameterizations (U,ϕ) and (V, ψ) around
p on M and f(p) on N for which

î(x1, . . . , xm):= (ψ−1◦ i ◦ ϕ)(x1, . . . , xm)= (x1, . . . , xm, 0, . . . , 0)∈ Rn.
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Taking an open set W ⊂ N contained in ψ((U × Rn−m) ∩ V ) and
the coordinate system x :W → Rn given by x = ψ−1, we have

M ∩W = {q ∈W | xm+1(q) = · · · = xn(q) = 0}.

Conversely, if for every p ∈ M there is a coordinate system xp :
Wp → Rn around p on N such that

M ∩Wp = {q ∈Wp | xm+1
p (q) = · · · = xnp (q) = 0},

then, taking the standard projection π onto the first m factors, the
map

x̃p :M ∩Wp → Rm := π ◦ xp
is a coordinate system around p on M for the subspace topology
on M . Indeed, x̃p is a homeomorphism onto its image:
(i) if A is an open subset of x̃p(M∩Wp) then (A×Rn−m)∩xp(Wp)

is an open subset of xp(Wp) and so x̃−1
p (A) = x−1

p ((A×Rn−m)∩
xp(Wp)) ∩M is an open set of M for the subspace topology;

(ii) if B is an open subset of M ∩Wp then there is an open set of
N , B′ ⊂Wp such that B = B′ ∩M and so

x̃p(B) = π
(
xp(B

′) ∩ {x ∈ Rn | xm+1 = · · · = xn = 0}
)

is an open subset of Rm.
Moreover, {(x̃p(Wp), x̃

−1
p )}p∈M forms an atlas for M : if, for in-

stance, L :=Wp∩Wq∩M 6= ∅ and fp,q := xq◦x−1
p : xp(Wp∩Wq) →

xq(Wp∩Wq) is the corresponding overlap map on N , then the over-
lap map on M

x̃q ◦ x̃−1
p : x̃p(L) → x̃q(L)

is given by

(x̃q ◦ x̃−1
p )(x1, . . . , xm) = π(fp,q(x

1, . . . , xm, 0, . . . , 0)).

It is clear from the choice of coordinates that the inclusion map is
an embedding.

(4) Consider the map f : Rn+1 → R given by

f(x1, . . . , xn) = (x1)2 + · · ·+ (xn+1)2.

Its derivative

(df)x = 2x1dx1 + · · ·+ 2xn+1dxn+1

is clearly injective for x 6= 0, as it is represented by the nonvanishing
matrix

(
2x1 | · · · | 2xn+1

)
.
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Therefore, 1 is a regular value of f , and so Sn = f−1(1) is an
n-dimensional manifold (cf. Theorem 5.6). Moreover, we have

TxS
n = ker(df)x = {v ∈ TxR

n+1 | (df)x(v) = 0}
= {v ∈ Rn+1 | x1v1 + · · ·+ xn+1vn+1 = 0}
= {v ∈ Rn+1 | 〈x, v〉 = 0},

where we have used the identification TxR
n+1 ∼= Rn+1.

(5) Let i : V → M be the inclusion map. Then f ◦ i : V → N is
differentiable. For each point p ∈W let xp : Up → Rn (n = dimN)
be a local chart on N such that

W ∩ Up = {q ∈ Up | xk+1
p (q) = · · · = xnp (q) = 0},

where k = dimW (cf. Exercise 3). The maps x̃p : W ∩ Up → Rk

defined by x̃p(q) := (x1p(q), . . . , x
k
p(q)) are local charts defining an

atlas for W . Hence, for every p ∈W the maps

x̃p ◦ f ◦ i : (f ◦ i)−1 (W ∩ Up) → Rk

are differentiable, implying that f : V →W is differentiable.
(6) We just have to show that f is a homeomorphism onto its image.

Since it is injective and continuous, we just have to show that its
inverse is continuous, which is equivalent to showing that f maps
open sets to open sets, or, equivalently, closed sets to closed sets.
Let F ⊂ M be a closed subset. Since M is compact, F is also
compact. Because f is continuous, f(F ) is compact. Finally, as N
is Hausdorff, f(F ) ⊂ N is closed.

Section 6.

(1) (a) Let p ∈M . In local coordinates around p we have

X =
n∑

i=1

Xi ∂

∂xi

and so

(X · f)(p) =
n∑

i=1

Xi(x(p))
∂f̂

∂xi
(x(p)).

On the other hand, in these local coordinates,

(df)pXp =

(
n∑

i=1

∂f̂

∂xi
(x(p))(dxi)p

)(
n∑

i=1

Xi(x(p))
∂

∂xi

)

=
n∑

i=1

Xi(x(p))
∂f̂

∂xi
(x(p))

(cf. Exercise 4.9.7), and the result follows.
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(b) Let p ∈M and consider again a coordinate chart x :W → Rn

around p. By Proposition 6.1 we know that X is differentiable
at p if and only if the maps Xi : W → R are differentiable at
p. By the formula above we see that if X is differentiable at p
then so is X · f for every differentiable function f : M → R.
On the other hand, if X · f is differentiable at p for every
differentiable function f : M → R then taking f = xi we see
that Xi is differentiable at p, and therefore so is X.

(c) (i) Using (a),

(X · (f + g)) (p) = (d(f + g))pXp = ((df)p + (dg)p)Xp

= (df)pXp + (dg)pXp = (X · f) (p) + (X · g) (p).

(ii) Again using (a),

(X · (αf)) (p) = (d(αf))pXp = α(df)pXp = α (X · f) (p).

(iii) Finally,

(X · (fg)) (p) = (d(fg))pXp = (g(p)(df)p + f(p)(dg)p)Xp

= (g(X · f)) (p) + (f(X · g)) (p).

(2) Let X,Y, Z ∈ X(M).
(a) Let α, β ∈ R. Then

[αX + βY, Z] = (αX + βY ) ◦ Z − Z ◦ (αX + βY )

= α(X ◦ Z − Z ◦X) + β(Y ◦ Z − Z ◦ Y )

= α[X,Z] + β[Y, Z].

Similarly, [X,αY + βZ] = α[X,Y ] + β[X,Z].
(b) We have

[X,Y ] = X ◦ Y − Y ◦X = −(Y ◦X −X ◦ Y ) = −[Y,X].

(c) The Jacobi identity can be proved as follows:

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ]

= (X ◦ Y − Y ◦X) ◦ Z − Z ◦ (X ◦ Y − Y ◦X)

+ (Y ◦ Z − Z ◦ Y ) ◦X −X ◦ (Y ◦ Z − Z ◦ Y )

+ (Z ◦X −X ◦ Z) ◦ Y − Y ◦ (Z ◦X −X ◦ Z) = 0.

(d) Let f, g ∈ C∞(M). Then,

[fX, gY ] = (fX) ◦ (gY )− (gY ) ◦ (fX)

= fgX ◦ Y + f(X · g)Y − gfY ◦X − g(Y · f)X
= fg[X,Y ] + f(X · g)Y − g(Y · f)X,

where we used Exercise 6.11.1.
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(3) The cross product × : R3 × R3 → R3 is an antisymmetric bilinear
form so we just have to show that it satisfies the Jacobi-identity,
that is,

w := (v1 × v2)× v3 + (v2 × v3)× v1 + (v3 × v1)× v2 = 0,

for vectors v1, v2, v3 ∈ R3. We will show that the first coordinate
of this vector is zero (the others are similar):

(
(v31v

1
2 − v11v

3
2)v

3
3 − (v11v

2
2 − v21v

1
2)v

2
3

)

+
(
(v32v

1
3 − v12v

3
3)v

3
1 − (v12v

2
3 − v22v

1
3)v

2
1

)

+
(
(v33v

1
1 − v13v

3
1)v

3
2 − (v13v

2
1 − v23v

1
1)v

2
2

)
= 0.

(4) To find the flow of X we must solve the system of linear ODEs
{
ẋ(t) = 1

ẏ(t) = 0
⇔
{
x(t) = x(0) + t

y(t) = y(0)
.

Therefore the flow of X is given by

F (x, y, t) = (x+ t, y).

To find the flow of Y we must solve the system of linear ODEs
{
ẋ(t) = x(t)

ẏ(t) = y(t)
⇔
{
x(t) = x(0)et

y(t) = y(0)et
.

Therefore the flow of Y is given by

G(x, y, t) = (xet, yet).

To find the flow of Z we must solve the system of linear ODEs
{
ẋ(t) = −y(t)
ẏ(t) = x(t)

⇔
(
x(t)
y(t)

)
= exp

(
0 −t
t 0

)(
x(0)
y(0)

)

=

(
cos t − sin t
sin t cos t

)(
x(0)
y(0)

)
.

Therefore the flow of Z is given by

H(x, y, t) = (x cos t− y sin t, x sin t+ y cos t).

(5) (a) Let f : R3 → R be a smooth function.

[X1, X2] · f = (X1 ◦X2 −X2 ◦X1) · f

= X1 ·
(
z
∂f

∂x
− x

∂f

∂z

)
−X2 ·

(
y
∂f

∂z
− z

∂f

∂y

)

= y
∂f

∂x
− x

∂f

∂y
= −X3 · f

and so [X1, X2] = −X3. Similarly, we conclude that [X1, X3] =
X2 and [X2, X3] = −X1.
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(b) Let V := span{X1, X2, X3}. From (a) we know that the Lie
bracket determines a bilinear map [·, ·] : V × V → V so we
conclude that V = span{X1, X2, X3} is a Lie subalgebra of
X(R3). To show that it is isomorphic to (R3,×) we will use
that map F : V → R3 given by

F (a1X1 + a2X2 + a3X3) = (a1,−a2, a3).
This map is clearly bijective so we just have to show that it is
also a Lie algebra homomorphism. For that we see that

F ([X1, X2]) = F (−X3) = (0, 0,−1) = (1, 0, 0)× (0,−1, 0) = F (X1)× F (X2);

F ([X1, X3]) = F (X2) = (0,−1, 0) = (1, 0, 0)× (0, 0, 1) = F (X1)× F (X3);

F ([X2, X3]) = F (−X1) = (−1, 0, 0) = (0,−1, 0)× (0, 0, 1) = F (X2)× F (X3).

(c) Let q ∈ R3. We know that ψ1,t(q) is an integral curve of X1

at q. Hence,

dψ1,t(q)

dt
= (X1)ψ1,t(q) and ψ1,0(q) = q.

Consequently,

ψ̇1
1,t(q) = X1

1 (ψ1,t(q)) = 0;

ψ̇2
1,t(q) = X2

1 (ψ1,t(q)) = −ψ3
1,t(q);

ψ̇3
1,t(q) = X3

1 (ψ1,t(q)) = ψ2
1,t(q).

Hence, ψ1
1,t = C, ψ̈2

1,t = −ψ̇3
1,t = −ψ2

1,t, and so

ψ2
1,t = A cos t+B sin t and ψ3

1,t = A sin t−B cos t,

whereA, B and C are functions of q = (x, y, z). Since ψ1,0(x, y, z) =
(x, y, z) we have C = x, A = y and B = −z and we conclude
that

ψ1,t(x, y, z) = (x, y cos t− z sin t, y sin t+ z cos t) .

Similarly, we see that

ψ2,t(x, y, z) = (x cos t+ z sin t, y,−x sin t+ z cos t)

and

ψ3,t(x, y, z) = (x cos t− y sin t, x sin t+ y cos t, z) .

(d) We will show that ψ1,π
2
◦ ψ2,π

2
6= ψ2,π

2
◦ ψ1,π

2
. The other com-

binations are similar.(
ψ1,π

2
◦ ψ2,π

2

)
(x, y, z) = ψ1,π

2
(z, y,−x) = (z, x, y)

while(
ψ2,π

2
◦ ψ1,π

2

)
(x, y, z) = ψ2,π

2
(x,−z, y) = (y,−z,−x).
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(6) Let X ∈ X(R) be given by X = x2 d
dx . The equation defining its

integral curves is

ẋ = x2

and so the integral curve at x0 ∈ R is cx0(t) = − 1
t+C , where C is

a function of x0. Since cx0(0) = − 1
C , we conclude that C = − 1

x0
,

implying that the local flow of X at y is the map

F :W × (−ε, ε) → R

(x, t) 7→ x

1− tx
,

where W = (a, b) is an open interval containing y. For instance if
a > 0, the local flow can only be extended to W × (−∞, 1b ). We
conclude that X is not a complete vector field since we can never
extend the local flow to R× R.

(7) Let p ∈ M ⊂ N and let X,Y be vector fields on N tangent to
M . From Exercise 5.9.3 we know that there is a coordinate system
x :W → Rn around p on N (where n = dimN), for whichM∩W is
defined by the equations xm+1 = · · · = xn = 0 (wherem = dimM).
On these coordinates we have

X =
m∑

i=1

Xi ∂

∂xi
and Y =

m∑

i=1

Y i ∂

∂xi

on M ∩W , that is, Xi = Y i ≡ 0 are constant for i = m+ 1, . . . , n
and the differential operators X,Y involve only derivatives with
respect to x1, . . . , xm. Consequently

[X,Y ] =
n∑

i=1

(X · Y i − Y ·Xi)
∂

∂xi
=

m∑

i=1

(X · Y i − Y ·Xi)
∂

∂xi

is tangent to M at p, and coincides with the Lie bracket of the
restrictions of X and Y to M at p.

(8) (a) Consider the map f : R → R given by f(x) = x2, and the
vector field X = ∂

∂x . Taking for instance q = 1 we have

f−1(q) = {−1, 1}. Since
(df)1X1 = 2X1 and (df)−1X−1 = −2X1,

we see that no vector field Y can be f -related to X.
(b) If X and Y are f -related then

(X · (g ◦ f))(p) = Xp · (g ◦ f) = (d(g ◦ f))pXp

= (dg)f(p)(df)pXp = (dg)f(p)Yf(p)

= (Y · g)(f(p)) = ((Y · g) ◦ f)(p),
and hence X · (g ◦ f) = (Y · g) ◦ f . On the other hand, if
this relation holds then a similar calculation shows that, given
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p ∈M ,

((df)pXp) · g = Yf(p) · g
for any differentiable function g defined on a neighborhood W
of f(p). Thus, for any p ∈ M , we have (df)pXp = Yf(p), that
is, X and Y are f -related.

(c) If X is f -related to Y and Y is g-related to Z then for each
p ∈M we have

(d(g ◦ f))pX = (dg)f(p)(df)pXp = (dg)f(p)Yf(p) = Zg(f(p)).

Thus X is (g ◦ f)-related to Z.
(9) By the previous exercise, given any differentiable function g ∈

C∞(N) we have

(f∗[X,Y ] · g) ◦ f = [X,Y ] · (g ◦ f)
= X · (Y · (g ◦ f))− Y · (X · (g ◦ f))
= X · ((f∗Y · g) ◦ f)− Y · ((f∗X · g) ◦ f)
= (f∗X · (f∗Y · g)) ◦ f − (f∗Y · (f∗X · g)) ◦ f
= ([f∗X, f∗Y ] · g) ◦ f.

(10) (a) If c : I → M is an integral curve of X then ċ(t) = Xc(t)

for all t ∈ I. Therefore, the curve γ : I → N defined by
γ(t) := f(c(t)) satisfies

γ̇(t) = (df)c(t)ċ(t) = (df)c(t)Xc(t) = Yf(c(t)) = Yγ(t),

i.e. γ is an integral curve of Y .
(b) We just showed that ifX and Y are f -related then f(FX(p, t)) =

FY (f(p), t) for all (p, t) ∈ M × R for which both sides are de-
fined. On the other hand, if this relation holds then differen-
tiating at t = 0 yields (df)pXp = Yf(p) for each p ∈M .

(11) Since cp(t) = ψt(p) is the integral curve of X at p, we have

LXf(p) =
d

dt
((f ◦ ψt)(p))|t=0

=
d

dt
(f(cp(t)))|t=0

= Xp ·f = (X ·f)(p).

(12) (a) We have

(LXY )p =
d

dt

(
(dψ−t)ψt(p)Yψt(p)

)
|t=0

,

and hence

(LXY )p · f =
d

dt

(
Yψt(p) · (f ◦ ψ−t)

)
|t=0

for any differentiable function f ∈ C∞(M). Let us define

H(u, v) := Yψu(p) · (f ◦ ψ−v).
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We have

∂H

∂u
(0, 0) =

d

du
(Yψu(p) · f)|u=0

=
d

du
(Y · f)(ψu(p))

|u=0

= (X · (Y · f))(p)

and

∂H

∂v
(0, 0) =

d

dv
(Yp · (f ◦ ψ−v))

|v=0

= Yp ·
(
d

dv
(f ◦ ψ−v)

|v=0

)

= Yp · (−X · f) = −(Y · (X · f))(p).

Consequently,

(LXY )p · f =
d

dt
(H(t, t))

|t=0

=
∂H

∂u
(0, 0) +

∂H

∂v
(0, 0)

= (X · (Y · f)− Y · (X · f))(p) = [X,Y ]p · f

for any differentiable function f ∈ C∞(M), implying that
LXY = [X,Y ].

(b) We have

LX [Y, Z] =
d

dt
((ψ−t)∗[Y, Z])

|t=0

=
d

dt
[(ψ−t)∗Y, (ψ−t)∗Z]

|t=0

=

[
d

dt
((ψ−t)∗Y )

|t=0

, Z

]
+

[
Y,

d

dt
((ψ−t)∗Z)

|t=0

]

= [LXY, Z] + [Y, LXZ].

Notice that using (a) this formula can be written as

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]]

(i.e. it is just the Jacobi identity).
(c) We have

LX(LY Z) = [X, [Y, Z]] and LY (LXZ) = [Y, [X,Z]].

Therefore,

(LX ◦ LY − LY ◦ LX)Z = [X, [Y, Z]]− [Y, [X,Z]]

= [X, [Y, Z]] + [Y, [Z,X]]

= −[Z, [X,Y ]] = [[X,Y ], Z] = L[X,Y ]Z,

where we have used the Jacobi identity.
(13) (a) This is an immediate consequence of Exercise 10.

(b) If ψt ◦ φs = φs ◦ ψt for all s, t ∈ R then, by (a), (ψt)∗Y = Y
for all t ∈ R. Therefore,

[X,Y ] = LXY =
d

dt
((ψ−t)∗Y )

|t=0

=
d

dt
(Y )

|t=0

= 0.
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If, on the other hand, [X,Y ] = 0 then

d

dt
((ψt)∗Y ) =

d

dε
((ψt+ε)∗Y )

|ε=0

=
d

dε
((ψt)∗(ψε)∗Y )

|ε=0

= (ψt)∗
d

dε
((ψε)∗Y )

|ε=0

= −(ψt)∗LXY = 0.

Since (ψ0)∗Y = Y , we conclude that (ψt)∗Y = Y for all t ∈ R.
Therefore ψt ◦ φs = φs ◦ ψt for all s, t ∈ R.

Section 7.

(1) (a) If G1 and G2 are Lie groups then G1 ×G2 is a smooth mani-
fold with the standard differentiable structure on the product.
Moreover, since the maps

G1 ×G1 → G1, G2 ×G2 → G2

(g1, h1) 7→ g1h1 (g2, h2) 7→ g2h2

and

G1 → G1 G2 → G2

g1 7→ g−1
1 g2 7→ g−1

2

are differentiable, so are the group operations

(G1 ×G2)× (G1 ×G2) → (G1 ×G2)

((g1, g2), (h1, h2)) 7→ (g1h1, g2h2)

and

(G1 ×G2) → (G1 ×G2)

(g1, g2) 7→ (g−1
1 , g−1

2 ).

(b) Take S1 := {z ∈ C | |z| = 1} and consider the map f : C ∼=
R2 → R defined by f(z) = f(x, y) = x2 + y2 = |z|2. This
map is differentiable and its derivative at a point z0 6= 0 is a
surjective map. In particular, 1 is a regular value of f and so
S1 is a submanifold of C ∼= R2 of dimension 1. Moreover, it is
also a Lie group since the group multiplication and inversion
are restrictions of the same (differentiable) maps on C to S1

(a submanifold) and have values on S1 (cf. Exercise 5.9.5).
From (a) we conclude that the n-torus Tn ∼= S1 × · · · × S1 is
also a Lie group.

(2) (a) We already know that Rn is a smooth manifold. Moreover,
since the group operations

Rn × Rn → Rn and Rn → Rn

(x, y) 7→ x+ y x 7→ −x
are differentiable maps, we conclude that (Rn,+) is a Lie
group. Its Lie algebra is given by Lie(Rn) = T0R

n ∼= Rn.
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The left-invariant vector field corresponding to v ∈ Lie(Rn) is
given by

Xv
x = (dLx)0v = id v = v.

Consequently, [v, w] = 0 for all v, w ∈ Lie(Rn). The flow of
Xv is obtained from the equation

dψt
dt

(y) = Xv
ψt(y)

= v,

implying that ψt(y) = y + vt. Consequently, the exponential
map exp : Lie(Rn) ∼= Rn → Rn, given by

exp(v) = ψ1(0) = v,

is the identity map.
(b) The Lie bracket [·, ·] is determined by the isomorphism between

the space XL(G) of left invariant vector fields and g, the Lie
algebra of G. In particular, [V,W ] := [XV , XW ]e where XV

and XW are the left invariant vector fields defined respectively
by V and W (i.e. XV

g := (dLg)eV and XW
g := (dLg)eW ). Let

ψVt and ψWt be the (globally defined) flows of XV and XW .
Then, since ψVt = RψVt (e) and ψ

W
t = RψWt (e), we have

(ψVt ◦ ψWs )(g) = RψVt (e)

(
RψWs (e)(g)

)
.

Hence, if G is abelian, we get

(ψVt ◦ ψWs )(g) = (ψWs ◦ ψVt )(g)

and so, by Theorem 6.10, we conclude that [XV , XW ] = 0,
implying that [V,W ] = 0.

(3) (a) Given two affine maps g(t) = yt + x and h(t) = wt + z, we
have

(g ◦ h)(t) = g(h(t)) = g(wt+ z) = ywt+ yz + x.

Therefore the group operation is given by

(x, y) · (z, w) = (yz + x, yw).

The identity element is clearly e = (0, 1) (corresponding to the
identity map), and hence

(z, w) = (x, y)−1 ⇔ (yz + x, yw) = (0, 1)

⇔ (z, w) =

(
−x
y
,
1

y

)
.

Therefore the maps H ×H ∋ (g, h) 7→ g · h ∈ H and H ∋ g 7→
g−1 ∈ H are smooth, and hence H is a Lie group.



324 SOLUTIONS TO EXERCISES

(b) Because

L(x,y)(z, w) = (yz + x, yw),

the matrix representation of (dL(x,y))(z,w) is

(dL(x,y))(z,w) =

(
y 0
0 y

)
.

Therefore XV
(x,y) has components
(
y 0
0 y

)(
ξ
η

)
=

(
yξ
yη

)
.

(c) If

V = ξ
∂

∂x
+ η

∂

∂y
and W = ζ

∂

∂x
+ ω

∂

∂y

then
[
XV , XW

]
=

[
ξy

∂

∂x
+ ηy

∂

∂y
, ζy

∂

∂x
+ ωy

∂

∂y

]

= (ηζ − ωξ)y
∂

∂x
.

Therefore

[V,W ] =
[
XV , XW

]
(0,1)

= (ηζ − ωξ)
∂

∂x
.

(d) The flow of XV is given by the solution of the system of ODEs
{
ẋ = ξy

ẏ = ηy

which is {
x = x0 +

y0ξ(eηt−1)
η

y = y0e
ηt

for η 6= 0 and
{
x = x0 + y0ξt

y = y0

for η = 0. The exponential map is obtained by setting (x0, y0) =
e = (0, 1) and t = 1:

exp(V ) =

(
ξ(eη − 1)

η
, eη
)

for η 6= 0 and

exp(V ) = (ξ, 1)

for η = 0.
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(e) The multiplication of two such matrices is
(
y x
0 1

)(
w z
0 1

)
=

(
yw yz + x
0 1

)
,

which reproduces the group operation on H. Therefore H can
be identified with the corresponding subgroup of GL(2). A
curve c : (−ε, ε) → H with c(0) = I is then given by

c(t) =

(
y(t) x(t)
0 1

)

with x(0) = 0 and y(0) = 1, and its derivative at t = 0 is

ċ(0) =

(
ẏ(0) ẋ(0)
0 0

)
.

We conclude that h can be identified with the vector space of
matrices of the form(

η ξ
0 0

)
.

The Lie bracket must then be given by
[(
η ξ
0 0

)
,

(
ω ζ
0 0

)]
=

(
η ξ
0 0

)(
ω ζ
0 0

)
−
(
ω ζ
0 0

)(
η ξ
0 0

)

=

(
0 ηζ − ωξ
0 0

)
,

which agrees with (c). Moreover, the exponential map must
be given by

exp

(
η ξ
0 0

)
=

+∞∑

k=0

1

k!

(
η ξ
0 0

)k

=

(
1 0
0 1

)
+

(
η ξ
0 0

)
+

1

2

(
η2 ηξ
0 0

)
+ · · · ,

yielding

exp

(
η ξ
0 0

)
=

(
eη ξ(eη−1)

η

0 1

)

for η 6= 0 and

exp

(
η ξ
0 0

)
=

(
1 ξ
0 1

)
,

for η = 0, which agrees with (d).
(4) Clearly (p, q, r, s) are global coordinates on M2×2

∼= R4, as they
are obtained from (a, b, c, d) by an invertible linear change of coor-
dinates. We have

ad− cd = 1 ⇔ p2 − q2 − r2 + s2 = 1,
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which is the equation of a hyperboloid, diffeomorphic to S1 × R2.

Indeed, if for (u, v) ∈ R2 we define l :=
(
u2 + v2 + 1

) 1
2 , then the

map f : S1 × R2 → SL(2) given in the coordinates (p, q, r, s) by

(eiθ, (u, v)) 7→ (l cos θ, u, v, l sin θ)

is the desired diffeomorphism.
(5) For instance

A =

(
0 1
0 0

)
and B =

(
0 0
1 0

)
.

Since A2 = B2 = 0, we have eA = I+A and eB = I+B. However,
since (A+B)2 = I, we have eA+B = cosh(1)I + sinh(1)(A+B).

(6) (a) Clearly h(R) = R \ {0} and

h(x+ y) = det eA(x+y) = det (eAxeAy)

= (det eAx)(det eAy) = h(x) · h(y).

(b) Note that h(t) = f(eAt) where f : GL(n) → R is given by
f(B) = det(B). Hence, since (eAt)′ = AeAt, we have, by
Example 7.1.4, that

h′(0) = (df)I(A) = tr(A).

(c) Again using Example 7.1.4 we have

h′(t) = (df)eAt(Ae
At) = det (eAt) tr (e−AtAeAt) = h(t) tr(A).

Hence, h(t) = ketr(A) t for a constant k ∈ R. Since we know

that h(0) = det I = 1 we conclude that h(t) = etr(A) t and so

det(eA) = h(1) = etr(A).
(7) (a) Since SL(2) = {A ∈ GL(2) | detA = 1}, we see that SL(2) is

the level set f−1(1), where f : GL(2) → R is the differentiable
map given by f(A) = detA. Hence,

sl(2) = ker (df)I = {A ∈ TIGL(2) ∼= M2×2 | tr(A) = 0}.

Then, if A ∈ sl(2) we have

A =

(
a b
c −a

)

for some a, b, c ∈ R and so

A2 = (a2 + bc)I.
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Hence,

eA =
∞∑

k=0

Ak

k!

= (1 +
a2 + bc

2
+

(a2 + bc)2

4!
+ · · ·+ (a2 + bc)k

(2k)!
+ · · · )I

+ (1 +
a2 + bc

3!
+

(a2 + bc)2

5!
+ · · ·+ (a2 + bc)k

(2k + 1)!
+ · · · )A.

Making λ equal to one of the square roots of a2+bc (note that
λ ∈ R ∪ iR), we get

eA = (1 +
λ2

2
+
λ4

4!
+ · · ·+ λ2k

(2k)!
+ · · · )I

+
1

λ
(λ+

λ3

3!
+
λ5

5!
+ · · ·+ λ2k+1

(2k + 1)!
+ · · · )A

= coshλ I +
sinhλ

λ
A.

(b) Let B ∈ SL(2). If B = eA for some A ∈ sl(2) then we have
from (a) that trB = 2 coshλ for some λ ∈ R ∪ iR. If λ ∈ R
then trB = 2 coshλ ≥ 2. If, on the other hand, λ ∈ iR, then
|trB| = 2| cos |λ|| ≤ 2. In either case we have trB ≥ −2. We
conclude that the map exp : sl(2) → SL(2) is not surjective:
for example there is no A ∈ sl(2) such that

eA =

(
−2 1
1 −1

)
.

(8) (a) The flow of X can be obtained by solving
{
ẋ =

√
x2 + y2

ẏ = 0
.

The solution is
{
x = |y0| sinh

(
t+ sinh−1

(
x0
|y0|

))

y = y0

if y0 6= 0, {
x = x0e

t

y = 0

if y0 = 0 and x0 > 0, and
{
x = x0e

−t

y = 0
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if y0 = 0 and x0 < 0. Thus X is complete, and hence its flow
determines an action of R on R2 \ {0}. Since x(t) is increasing
along the flow, we see that this action cannot have fixed points
for t 6= 0.

(b) For each value of y ∈ R there exists exactly one orbit of the
action, except for y = 0, which contains two orbits. Thus
the orbit space M/G can be identified with the disjoint union
of R with an extra point p. Since the equivalence relation
arising from a Lie group action is open, the open sets of the
orbit space M/G are the sets of orbits through open sets of
R2 \{0}. The topology ofM/G ∼= R∪{p} is thus the topology
of the line with two origins, i.e. both R and (R\{0})∪{p} are
homeomorphic to the real line with the usual topology. Since
this topology is not Hausdorff (0 and p cannot be separated
by open sets), the action cannot be proper.

(9) (a) If (u, v) ∈ S2 × S2 is a fixed point then

eiθ · (u, v) = (u, v)

for every eiθ ∈ S1. Hence, eiθ · u = u and e2iθv = v for every
eiθ ∈ S1 and so u and v have to be the poles of the spheres.
Denoting by N and S respectively the north and south poles
of S2, we have that the fixed point set of this action is

MS1
= {(N,N), (N,S), (S,N), (S, S)}.

(b) Let p = (N, v) or p = (S, v). Then eiθ · p = p implies that
e2iθ · v = v. If v 6= N,S then θ = kπ for k ∈ Z, and so the
stabilizer of p is

GP = {eikπ | k ∈ Z} = {1,−1} = Z2.

If, on the other hand, v = N or v = S then p is a fixed
point and its stabilizer is the whole group, Gp = S1. All other
stabilizers are trivial.

(10) Let g ∈ G. If h · g = g for some h ∈ H then h = e and so the
stabilizer of g is trivial. We conclude that the action is free. Let
us now see that it is also proper. Let {gn} and {hn · gn} be two
convergent sequences in G with hn ∈ H for every n ∈ N and let
g := lim gn and u := limhn · gn. Then, taking un := hn · gn, we
have

limung
−1
n = ug−1 ∈ G

and so hn = ung
−1
n is a convergent sequence in G. SinceH is closed,

h := limhn is in H.
(11) (a) The set H ⊂ GL(n) is clearly a submanifold of GL(n): in the

usual (global) coordinates (xij)ni,j=1 it is given by the k(n −
k) equations xij = 0 for i = 1, . . . , k and j = k + 1, . . . , n
(cf. Exercise 5.9.3). Notice that the dimension of H is then
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n2 − k(n− k). On the other hand, H is a subgroup of GL(n):
the product of two elements in H is still in H,
(
A 0
C B

)(
E 0
G F

)
=

(
AE 0

CE +BG BF

)
,

and the inverse of every element in H is also in H,
(
A 0
C B

)−1

=

(
A−1 0

−B−1CA−1 B−1

)
.

Therefore H is a Lie subgroup of GL(n) (recall that by Exer-
cise 5.9.5 the group multiplication and inversion are automat-
ically differentiable when restricted to H).

(b) We can identify each element S of GL(n) with the basis of Rn

whose vectors are defined by the lines of S. If

R =

(
A 0
C B

)
∈ H

then RS is the matrix whose first k lines are the linear com-
binations of the first k lines of S determined by the invertible
matrix A, and whose last n−k lines are arbitrary linear combi-
nations of the lines of S. Therefore two matrices S, T ∈ GL(n)
are in the same orbit if and only if their first k lines generate
the same vector subspace of Rn, and hence we can identify the
orbit space Gr(n, k) with the set of k-dimensional subspaces
of Rn.

(c) The dimension of Gr(n, k) is then

dimGr(n, k) = dimGL(n)− dimH

= n2 − (n2 − k(n− k)) = k(n− k).

(12) (a) Let V ∈ g. We begin by showing that XV is F -related to

X(dF )eV (cf. Exercise 6.11.8). Indeed,

(dF )gX
V
g = (dF )g(dLg)eV = d(F ◦ Lg)eV

= d(LF (g) ◦ F )eV = (dLF (g))e(dF )eV

= X
(dF )eV
F (g) ,

where F ◦Lg = LF (g) ◦F follows from the fact that F is a Lie
group homomorphism.
Let V,W ∈ g. Then

(dF )e[V,W ] = (dF )e[X
V , XW ]e = (F∗[X

V , XW ])e

= [F∗X
V , F∗X

W ]e = [X(dF )eV , X(dF )eW ]e

= [(dF )eV, (dF )eW ].

Here we have used the result of Exercise 6.11.9, which is easily
extended to arbitrary differentiable maps.
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(b) Given g ∈ G we have F = LF (g) ◦ F ◦ Lg−1 . Consequently,

(dF )g = (dLF (g))e ◦ (dF )e ◦ (dLg−1)g.

Since the left multiplication map is a diffeomorphism, we con-
clude that if (dF )e is an isomorphism then (dF )g is an iso-
morphism for any g ∈ G. The inverse function theorem then
guarantees that F is a local diffeomorphism.

(c) Let U ∋ e be an open set such that the restriction of F
to U is a diffeomorphism onto F (U). Then for any g ∈ G
the restriction of F = LF (g) ◦ F ◦ Lg−1 to Lg(U) is a dif-
feomorphism onto its image. Moreover, it is easily seen that
F−1(F (Lg(U))) = Lg(F

−1(F (U))). Therefore we just have to
check that F−1(F (U)) is a disjoint union of open sets diffeo-
morphic to F (U). Now F (h) ∈ F (U) if and only if F (h) =
F (h0) for some h0 ∈ U , i.e. if and only if hh0

−1 = g ∈ ker(F ).
We conclude that

F−1(F (U)) =
⋃

g∈ker(F )

Lg(U).

On the other hand, the open sets Lg(U) are clearly disjoint,
because if g ∈ ker(F ) and h0 ∈ U then F (gh0) = F (h0), and
hence gh0 can only be on U (where F is injective) if g = e.

(13) (a) A matrix
(
a b
c d

)
∈ Mn×n(C) is in SU(2) if and only if

(
a b
c d

)(
ā c̄
b̄ d̄

)
=

(
1 0
0 1

)
and det

(
a b
c d

)
= 1

i.e. if and only if



|a|2 + |b|2 = |c|2 + |d|2 = 1

āc+ b̄d = 0

ad− bc = 1

.

The two last equations can be written as(
ā b̄
−b a

)(
c
d

)
=

(
0
1

)
⇔
(
c
d

)
=

(
a −b̄
b ā

)(
0
1

)
=

(
−b̄
ā

)
.

We conclude that SU(2) is the set of matrices of the form
(
a b
−b̄ ā

)

with a, b ∈ C satisfying |a|2 + |b|2 = 1. Writing a = x+ iy and
b = z + iw, this is the same as the set of matrices of the form(

x+ iy z + iw
−z + iw x− iy

)

= x

(
1 0
0 1

)
+ y

(
i 0
0 −i

)
+ z

(
0 1
−1 0

)
+ w

(
0 i
i 0

)
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with x, y, z, w ∈ R satisfying x2 + y2 + z2 + w2 = 1.
(b) Let us write n = yi+ zj + wk with y2 + z2 + w2 = 1. Then

n2 = −(y2 + z2 + w2)1 = −1

and hence

exp

(
nθ

2

)
=

+∞∑

m=1

1

m!

(
θ

2

)m
nm

= 1
+∞∑

l=1

(−1)l

(2l)!

(
θ

2

)2l

+ n
+∞∑

l=1

(−1)l

(2l + 1)!

(
θ

2

)2l+1

= 1 cos

(
θ

2

)
+ n sin

(
θ

2

)
.

This is a unit quaternion, as its squared norm is

cos2
(
θ

2

)
+ (y2 + z2 + w2) sin2

(
θ

2

)
= 1.

(c) Since any matrix commutes with its exponential, we see that
this map leaves n invariant:

exp

(
nθ

2

)
n exp

(
−nθ

2

)
= exp

(
nθ

2

)
exp

(
−nθ

2

)
n = n.

If {n, p, q} is a right-handed orthonormal basis of R3 then it
is easy to check that it satisfies n2 = p2 = q2 = npq = −1.
Therefore

exp

(
nθ

2

)
p exp

(
−nθ

2

)

=

(
1 cos

(
θ

2

)
+ n sin

(
θ

2

))
p

(
1 cos

(
θ

2

)
− n sin

(
θ

2

))

= p

(
cos2

(
θ

2

)
− sin2

(
θ

2

))
+ 2q sin

(
θ

2

)
cos

(
θ

2

)

= p cos θ + q sin θ.

and analogously

exp

(
nθ

2

)
q exp

(
−nθ

2

)
= −p sin θ + q cos θ.

Thus this map represents a rotation by an angle θ about the
axis defined by n.

(d) We can construct F by associating to each unit quaternion
u ∈ SU(2) the rotation F (u) : R3 → R3 given by

(F (u))(v) = uvu−1.
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That this map is indeed a rotation is a consequence of the fact
that any unit quaternion can be written as

u = exp

(
nθ

2

)

for some unit vector n ∈ R3 and some angle θ ∈ R. Also, any
rotation is about some axis by some angle, and hence can be
written in this way. Finally, F is a homomorphism as

(F (u1u2))(v) = (u1u2)v(u1u2)
−1 = u1u2vu2

−1u1
−1

= (F (u1))((F (u2))(v)) = (F (u1) ◦ F (u2))(v).
Notice that su(2) can be identified with R3, and that a curve
tangent to w ∈ su(2) is simply the curve exp(tw). Therefore
the map (dF )e : su(2) → so(3) is given by

((dF )e(w))(v) =
d

dt
(exp(tw)v exp(−tw))|t=0

= wv − vw.

The kernel of this map is then the set of quaternions in R3

which commute with all quaternions in R3, i.e. is trivial. We
conclude that (dF )e is an isomorphism. By the previous ex-
ercise, F : SU(2) → SO(3) is a covering map. Since SU(2) is
simply connected, this map is in fact the universal covering of
SO(3).

(e) The kernel of F is the set of unit quaternions of the form

exp

(
2kπn

2

)
= 1 cos (kπ) + n sin (kπ) = ±1.

Therefore the fundamental group of SO(3) is {1,−1} = Z2.
Notice that SO(3) ∼= SU(2)/Z2 is diffeomorphic to RP 3.

Section 8.

(1) Let V be a finite dimensional vector space. The relation of “being
equivalent” between ordered bases of V is an equivalence relation
(cf. Section 10.1):
(a) reflexivity : clearly α ∼ α since the linear transformation S

that allows us to change from α to α is the identity and so
det I = 1 > 0;

(b) symmetry : if α ∼ β then the linear transformation S that
changes from α to β has positive determinant; since the linear
transformation that changes from β to α is S−1, and detS−1 =
(detS)−1, we conclude that β ∼ α;

(c) transitivity : if α ∼ β and β ∼ γ then the linear transforma-
tions S and S′ that allow us to change from α to β and from
β to γ have positive determinants; hence, the linear transfor-
mation S′ ◦ S that allows us to change directly from α to γ
has positive determinant det(S′ ◦ S) = detS′ · detS.



CHAPTER 1 333

(2) Let us assume that M is orientable and let us fix an orientation
on M . Then, for each p ∈ M , there exists a parameterization
(U,ϕ) around p such that (dϕ)x preserves the standard orientation
of Rn at each point x ∈ U . Taking the atlas A formed by these
parameterizations we have that the overlap maps are orientation
preserving and det d(ϕ−1

β ◦ ϕα) > 0 on W := ϕα(Uα) ∩ ϕβ(Uβ) for
every (Uα, ϕα), (Uβ , ϕβ) ∈ A. Conversely, if there exists an atlas
A for which the overlap maps are orientation preserving, then we
can choose an orientation on M in the following way. For each
p ∈ M we take a parameterization (U,ϕ) ∈ A around p and we
assign a positive sign to the ordered bases of TpM that are equiv-
alent to the ordered basis {(dϕ)xei}ni=1, where x := ϕ−1(p) and
{ei}ni=1 is the standard basis of Rn. This choice of orientation
does not depend on the parameterization ϕ as all overlap maps are
orientation-preserving.

(3) (a) Let (U1, ϕ1) and (U2, ϕ2) be parameterizations such that ϕi(Ui) =
Vi, (i = 1, 2) and let us choose on V1 the orientation induced
from the standard orientation of Rn on U1 by ϕ1. Thus the
map dϕ1 preserves the standard orientation of Rn. Note that
since W := V1 ∩ V2 is connected the sign of

det d(ϕ−1
2 ◦ ϕ1)

does not change on ϕ−1
1 (W ), which is also connected (ϕ1 is a

homeomorphism). If det d(ϕ−1
2 ◦ ϕ1) > 0 on ϕ−1

1 (W ) then we
choose an orientation on the tangent spaces of the points of V2
for which ϕ2 preserves the standard orientation on Rn. If, on
the other hand, det d(ϕ−1

2 ◦ ϕ1) < 0 on ϕ−1
1 (W ) then we take

a new parameterization (Ũ2, ϕ̃2), where

Ũ2 := {y ∈ Rn | (−y1, y2, . . . , yn) ∈ U2}
and where ϕ̃2 : Ũ2 → V2 is such that

ϕ̃2(y
1, . . . , yn) = ϕ2(−y1, y2, . . . , yn).

Then

(ϕ̃−1
2 ◦ ϕ1)(x) = (−y1(x), y2(x), . . . , yn(x)),

while

(ϕ−1
2 ◦ ϕ1)(x) = (y1(x), y2(x), . . . , yn(x)).

Hence, det d(ϕ̃−1
2 ◦ ϕ1) = − det d(ϕ−1

2 ◦ ϕ1) > 0. The result
then follows from Exercise 2 by taking the atlas formed by

(U1, ϕ1) and (Ũ2, ϕ̃2).
(b) Let us consider the two coordinate neighborhoods on Sn given

by stereographic projection. That is, we consider V1 := π−1
N (Rn) =

Sn \ {N} and V2 := π−1
S (Rn) = Sn \ {S}, where N and
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S are the north and south poles (cf. Exercise 2.5.7). Then
V1 ∩ V2 = Sn \ {N,S} is connected and so, from (a), we con-
clude that Sn is orientable.

(4) Let t0 ∈ I and let (U,ϕ) be a parameterization around c(t0) such
that (dϕ)x is orientation preserving for all x ∈ U . In the corre-
sponding local coordinates x := ϕ−1 we have

Vi(t) =
n∑

j=1

V j
i (t)

(
∂

∂xj

)

c(t)

,

where the functions V j
i : J → R, defined on a neighborhood J ⊂ I

of t0, are smooth. Therefore the map d : J → R defined by d(t) =

det(V j
i (t)) is also smooth. Moreover, since {V1(t0), . . . , Vn(t0)} is

a basis of Tc(t0)M , we either have d(t0) > 0 or d(t0) < 0. Conse-
quently, we will also have d(t) > 0 or d(t) < 0 for t in a neighbor-
hood of t0 in J . We conclude that the set of points t ∈ I where
{V1(t), . . . , Vn(t)} has positive orientation is an open subset of I,
and so is the set of points where {V1(t), . . . , Vn(t)} has negative
orientation. Since I is connected (it is an interval), we conclude
that {V1(t), . . . , Vn(t)} has either positive orientation for all t ∈ I
or negative orientation for all t ∈ I.

(5) Let c : [0, 2π] →M be the curve defined on the Möbius band M by

c(ϕ) := g(0, ϕ) = (cosϕ, sinϕ, 0),

and consider the smooth vector fields along c defined by

V1(ϕ) =
∂g

∂t
(0, ϕ) =

(
cos
(ϕ
2

)
cosϕ, cos

(ϕ
2

)
sinϕ, sin

(ϕ
2

))
;

V2(ϕ) =
∂g

∂ϕ
(0, ϕ) = (− sinϕ, cosϕ, 0).

Since

‖V1(ϕ)‖ = ‖V2(ϕ)‖ = 1 and 〈V1(ϕ), V2(ϕ)〉 = 0

for all ϕ ∈ [0, 2π], these vector fields form a basis of Tc(ϕ)M for all
ϕ ∈ [0, 2π]. Moreover, since c(0) = c(2π) = (1, 0, 0), we know that

{V1(0), V2(0)} = {(1, 0, 0); (0, 1, 0)}
and

{V1(2π), V2(2π)} = {(−1, 0, 0); (0, 1, 0)}
are two bases for T(1,0,0)M . However, the change-of-basis matrix
from the first basis to the second basis,

S =

(
−1 0
0 1

)
,

has negative determinant. Therefore M cannot be orientable.
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(6) Suppose thatM is orientable, and choose an orientation onM . For
each point q ∈ N let {v1, . . . , vn} be a positively oriented basis of
TpM , where p = f−1(q). Define an orientation of TqN by assigning
a positive sign to the equivalence class of {(df)pv1, . . . , (df)pvn}.
Notice that because (df)p : TpM → TqN is an invertible linear
map this orientation is well defined, i.e. it does not depend on the
choice of the positively oriented basis {v1, . . . , vn}. To see that this
orientation is smooth, choose q ∈ N and let p = f−1(q). Since M
is orientable, there exists a parameterization (U,ϕ) of M centered
at p such that (dϕ)x is orientation preserving for all x ∈ U , and
so (U, f ◦ ϕ) is a parameterization of N centered at q such that
(d(f ◦ϕ))x = (df)ϕ(x) ◦(dϕ)x is orientation preserving for all x ∈ U .
We conclude that if M is orientable then so is N . The converse is
immediate from the observation that f−1 is also a diffeomorphism.
Finally, a similar argument shows that for arbitrary orientations
of M and N if f preserves orientations at a point p ∈ M then it
preserves orientations in a neighborhood V of p. Therefore the set
of points where f preserves orientations is both open and closed,
and so, if M is connected and this set is nonempty, then it must
coincide with M .

(7) Let α′ := {a′1, . . . , a′m} and β′ := {b′1, . . . , b′n} be other two or-
dered bases for TpM and TqN respectively. If sgn(α′) = sgn(α)
and sgn(β′) = sgn(β) then α is equivalent to α′ and β is equiva-
lent to β′. Hence, the linear transformations SA and SB that allow
us to change from α to α′ and from β to β′ have positive deter-
minant. Consequently, the linear transformation S that allows us
to change from (α, β) to (α′, β′) has positive determinant (since
detS = detSA · detSB), and we conclude that these two bases of
T(p,q)(M ×N) are equivalent. On the other hand,

sgn(α′, β′) := sgn(α′) · sgn(β′) = sgn(α) · sgn(β) = sgn(α, β).

If sgn(α′) = − sgn(α) and sgn(β′) = sgn(β) then α and α′ are in
opposite equivalence classes while β is equivalent to β′. Hence,
the linear transformation that allows us to change from (α, β) to
(α′, β′) has negative determinant, implying that these two bases are
in opposite equivalence classes. On the other hand,

sgn(α′, β′) := sgn(α′) · sgn(β′) = − sgn(α) · sgn(β) = − sgn(α, β).

The analysis of the remaining cases is analogous. In each case
we conclude that the orientations on T(p,q)(M ×N) obtained from
(α, β) and from (α′, β′) are the same.

(8) Let {(Uα, ϕα)} be an atlas forM . Then {(Uα×Rn, ϕ̃α)} is an atlas
for TM where n = dimM and

ϕ̃α(x, v) = (ϕα(x), (dϕα)xv).
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For W := ϕ̃α(Uα×Rn)∩ ϕ̃β(Uβ ×Rn) the overlap maps ϕ̃−1
β ◦ ϕ̃α :

ϕ̃−1
α (W ) → ϕ̃−1

β (W ) are given by

(ϕ̃−1
β ◦ ϕ̃α)(x, v) = ((ϕ−1

β ◦ ϕα)(x), (d(ϕ−1
β ◦ ϕα))xv).

Hence

(d(ϕ̃−1
β ◦ ϕ̃α))(x,v) =




(d(ϕ−1
β ◦ ϕα))x | 0

−− + −−
∗ | (d(ϕ−1

β ◦ ϕα))x




and so

det
(
d(ϕ̃−1

β ◦ ϕ̃α))(x,v)
)
=
(
det(d(ϕ−1

β ◦ ϕα))x
)2

> 0

for every (x, v) ∈ ϕ−1
α (W ). The result then follows from Exercise 2.

(9) (a) We begin with the observation that for each parameterization

(U,ϕ) of M there exists a parameterization (Ũ , ϕ̃) which in-
duces the opposite orientation on TpM for every p ∈ ϕ(U) (one
just has to reverse the order of two of the variables in Rn).
The maps ϕ : U → M define a topology on M , given by the
basis

{ϕ(U) | (U,ϕ) is a parametrization of M}.
That this is indeed a basis for a topology and that such topol-
ogy is Hausdorff and second countable follows from the fact
that

{ϕ(U) | (U,ϕ) is a parametrization of M}
is a basis for the topology of M with the same properties.
Given two parameterizations (U,ϕ) and (V, ψ) of M , the map

ψ
−1 ◦ϕ is defined on the image by ϕ−1 of the connected com-

ponents of ϕ(U) ∩ ψ(V ) where the orientations induced by

ϕ and ψ agree. Therefore ψ
−1 ◦ ϕ is not only differentiable

(ψ
−1 ◦ ϕ = ψ−1 ◦ ϕ on the points where it is defined) but also

orientation-preserving. We conclude that

{(U,ϕ) | (U,ϕ) is a parametrization of M}
is an atlas forM whose overlap maps are orientation-preserving.
ThereforeM is an orientable n-dimensional manifold (cf. Ex-
ercise 2).

(b) This is immediate from the fact that, for the parameterizations
above, ϕ−1 ◦ π ◦ ϕ is the identity map and from the above
observation that for each parameterization (U,ϕ) of M there

exists a parameterization (Ũ , ϕ̃) which induces the opposite
orientation on TpM for every p ∈ ϕ(U).



CHAPTER 1 337

(c) If W is a connected component of M then π :W →M is still
a covering map. Therefore the fibers π−1(p) ⊂ W can either
have one point or two points. In the former case π : W → M
is a diffeomorphism and M would be orientable (because W
is). Since this is not the case, we conclude that W = M , and
so M is connected.

(d) The identities π ◦ σ = π and σ ◦ σ = σ are immediate. That
σ is a diffeomorphism is clear from π ◦ σ = π and π being a
local diffeomorphism.

(e) This is immediate from the fact that the only covering map
admitted by a simply connected manifold is the trivial covering
map.

Section 9.

(1) For instance [0,+∞)×[0,+∞) is the product of two manifolds with
boundary which does not have a natural structure of a manifold
with boundary (the origin does not have a neighborhood diffeo-
morphic to an open set of H2).

(2) Let A = {(Uα, ϕα)} and B = {(Vβ , ψβ)} be atlases respectively for
M and N . Note that, sinceM is a manifold without boundary and
N is a manifold with boundary, the sets Uα are open subsets of Rm

while the sets Vβ are open subsets of Hn (where m = dimM and
n = dimN). We will show that {(Uα×Vβ , ϕα×ψβ)} is an atlas for
the product manifold M ×N and that this set is a manifold with
boundary. Indeed,
(a) the sets Uα × Vβ are open subsets of Rm ×Hn ∼= Hm+n;
(b) the sets ϕα(Uα)× ψβ(Vβ) are open subsets of M ×N ;
(c) the maps θα,β := ϕα×ψβ : Uα× Vβ →M ×N are homeomor-

phisms;
(d) forW := θα1,β1(Uα1×Vβ1)

⋂
θα2,β2(Uα2×Vβ2) 6= ∅ the overlap

maps

θ−1
α1,β1

◦ θα2,β2 : θ−1
α2,β2

(W ) → θ−1
α1,β1

(W )

are differentiable since

(θ−1
α1,β1

◦ θα2,β2)(p, q) = θ−1
α1,β1

(ϕα2(p), ψβ2(q))

=
(
(ϕ−1

α1
◦ ϕα2)(p), (ψ

−1
β1

◦ ψβ2)(q)
)

and ϕ−1
α1

◦ ϕα2 and ψ−1
β1

◦ ψβ2 are differentiable;

(e) we have

⋃

α,β

θα,β(Uα × Vβ) =
⋃

α,β

ϕα(Uα)× ψβ(Vβ) =M ×N.
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We will now show that ∂(M ×N) =M ×∂N . For that we see that
(p, q) ∈ ∂(M ×N) if and only if there is a pair (α, β) for which

(p, q) ∈ θα,β
(
∂Hm+n ∩ (Uα × Vβ)

)

= θα,β ({(x, y) ∈ (Uα × Vβ) | yn = 0})
= θα,β (Uα × (Vβ ∩ ∂Hn)) = ϕα(Uα)× ψβ(Vβ ∩ ∂Hn).

Hence, (p, q) ∈ ∂(M × N) if and only if (p, q) ∈ M × ∂N and we
conclude that ∂(M ×N) =M × ∂N .

(3) Let f : M → N be a diffeomorphism between two n-dimensional
manifolds with boundary. Clearly f|∂M is a diffeomorphism onto
its image, and so we just have to check that f(∂M) = ∂N . Let
p ∈ ∂M and let us pick two coordinate charts (U,ϕ), (V, ψ) around
p and q := f(p). Then U and V are open subsets of Hn and
x := ϕ−1(p) ∈ ∂U . Let us consider the local expression of f in

these coordinates, that is, f̂ := ψ−1 ◦ f ◦ ϕ. If y := f̂(x) were in

the interior of V then there would exist an open subset Ṽ of Rn

contained in V such that y ∈ Ṽ . Then f̂−1(Ṽ ) would be an open

subset of Rn which is impossible since x ∈ f̂−1(Ṽ ) and x ∈ ∂Hn.
Hence y ∈ ∂V and so q = ψ(y) ∈ ∂N . Repeating this argument for
f−1 we conclude that f(∂M) = ∂N .

Chapter 2

Section 1.

(1) The tensor product satisfies the following properties.
(a) It is bilinear: for T1, T2 ∈ T k(V ∗), S ∈ T m(V ∗) and α, β ∈ R,

((αT1 + βT2)⊗ S)(v1, . . . , vk, vk+1, . . . , vk+m)

= (αT1 + βT2)(v1, . . . , vk)S(vk+1, . . . , vk+m)

= (αT1(v1, . . . , vk) + βT2(v1, . . . , vk)) S(vk+1, . . . , vk+m)

= αT1(v1, . . . , vk)S(vk+1, . . . , vk+m) + βT2(v1, . . . , vk)S(vk+1, . . . , vk+m)

= (α(T1 ⊗ S) + β(T2 ⊗ S)) (v1, . . . , vk, vk+1, . . . , vk+m).

Similarly, T ⊗ (αS1 + βS2) = α(T ⊗ S1) + β(T ⊗ S2).
(b) It is associative: for T ∈ T k(V ∗), S ∈ T m(V ∗) and R ∈

T l(V ∗), we have

((T ⊗ S)⊗R)(v1, . . . , vk+m+l) =

= (T ⊗ S)(v1, . . . , vk+m)R(vk+m+1, . . . , vk+m+l) =

= (T (v1, . . . , vk)S(vk+1, . . . , vk+m)) R(vk+m+1, . . . , vk+m+l)

= T (v1, . . . , vk) (S(vk+1, . . . , vk+m)R(vk+m+1, . . . , vk+m+l))

= T (v1, . . . , vk) (S ⊗R) (vk+1, . . . , vk+m+l)

= (T ⊗ (S ⊗R))(v1, . . . , vk+m, vk+m+1, . . . , vk+m+l).
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(c) However the tensor product is not commutative in general
since

(T ⊗ S)(v1, . . . , vk+m) = T (v1, . . . , vk)S(vk+1, . . . vk+m),

while

(S ⊗ T )(v1, . . . , vk+m) = S(v1, . . . , vm)T (vm+1, . . . vm+k).

(2) Let {v1, . . . , vn} and {T1, . . . , Tn} be bases respectively for V and
V ∗. Then

B = {Ti1⊗· · ·Tik⊗vj1⊗· · ·⊗vjm | 1 ≤ i1, . . . , ik, j1, . . . , jm ≤ n}
is a basis for T k,m(V ∗, V ) = T k(V ∗) ⊗ T m(V ). Indeed, take the
dual basis {T ′

1, . . . , T
′
n} of {v1, . . . , vn} and the dual basis {v′1, . . . , v′n}

of {T1, . . . , Tn}. Then we see that
(a) the elements of B are linearly independent: if

T =
∑

αi1...ikj1...jmTi1 ⊗ · · · ⊗ Tik ⊗ vj1 ⊗ · · · ⊗ vjm = 0

then,

0 = T (v′l1 , . . . , v
′
lk
, T ′

r1 , . . . , T
′
rm)

=
∑

αi1...ikj1...jmTi1(v
′
l1) · · ·Tik(v

′
lk
)vj1(T

′
r1) · · · vjm(T

′
rm)

=
∑

αi1...ikj1...jmδi1l1 · · · δiklkδj1r1 · · · δjmrm = αl1...lkr1...rm ;

(b) the elements of B generate the space T k,m(V ∗, V ): if T ∈
T k,m(V ∗, V ) then it is easily seen that T = S where S is the
tensor defined by

S =
∑

T (v′i1 , . . . , v
′
ik
, T ′

j1 , . . . , T
′
jm)Ti1 ⊗· · ·Tik⊗vj1 ⊗· · ·⊗vjm .

Note that the dimension of this space is nk+m.
(3) Let T ∈ T k(V ∗).

(a) Consider the tensor Alt(T ) := 1
k!

∑
σ∈Sk(sgnσ)(T ◦ σ). Then,

if σ0 is a permutation that interchanges two indices and keeps
the others fixed, we have

Alt(T ) ◦ σ0 =
1

k!

∑

σ∈Sk
(sgnσ)(T ◦ σ ◦ σ0)

=
1

k!
(sgnσ0)

∑

σ∈Sk
(sgn(σ ◦ σ0))(T ◦ (σ ◦ σ0))

=
1

k!
(sgnσ0)

∑

τ∈Sk
(sgn τ)(T ◦ τ)

= (sgnσ0)Alt(T ) = −Alt(T )

and we conclude that Alt(T ) is an alternating tensor.
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(b) If T is alternating then T ◦ σ = (sgnσ)T for any permutation
σ ∈ Sk. Hence,

Alt(T ) =
1

k!

∑

σ∈Sk
(sgnσ)(T ◦ σ) = 1

k!

∑

σ∈Sk
(sgnσ)2T = T,

where we used the fact that Sk has k! elements.
(c) Since we know from (a) that Alt(T ) is an alternating tensor

we conclude from (b) that Alt(Alt(T )) = Alt(T ).
(4) Let {T1, . . . , Tn} be a basis of V ∗. We have

T =
∑

i1<...<ik

ai1...ikTi1 ∧ . . . ∧ Tik

and

S =
∑

j1<...<jm

bj1...jmTj1 ∧ . . . ∧ Tjm .

Therefore

T ∧ S =
∑

i1<...<ik
j1<...<jm

ai1...ikbj1...jmTi1 ∧ . . . ∧ Tik ∧ Tj1 ∧ . . . ∧ Tjm

=
∑

i1<...<ik
j1<...<jm

ai1...ikbj1...jm(−1)kTj1 ∧ Ti1 ∧ . . . ∧ Tik ∧ Tj2 ∧ . . . ∧ Tjm

=
∑

i1<...<ik
j1<...<jm

ai1...ikbj1...jm(−1)kmTj1 ∧ . . . ∧ Tjm ∧ Ti1 ∧ . . . ∧ Tik

= (−1)kmS ∧ T.

(5) (1) If v1, . . . , vk+m ∈ V then

(F ∗(T ⊗ S)) (v1, . . . , vk+m) = (T ⊗ S)(F (v1), . . . , F (vk+m))

= T (F (v1), . . . , F (vk))S(F (vk+1), . . . , F (vk+m))

= (F ∗T (v1, . . . , vk))(F
∗S(vk+1, . . . , vk+m))

= ((F ∗T )⊗ (F ∗S))(v1, . . . , vk+m).

(2) Obvious.
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(3) If v1, . . . , vk+m ∈ V then

(F ∗(T ∧ S)) (v1, . . . , vk+m) = (T ∧ S)(F (v1), . . . , F (vk+m))

=
(k +m)!

k!m!
(Alt(T ⊗ S))(F (v1), . . . , F (vk+m))

=
1

k!m!

∑

σ∈Sk+m
(sgnσ)(T ⊗ S)(F (vσ(1)), . . . , F (vσ(k+m)))

=
1

k!m!

∑

σ∈Sk+m
(sgnσ)(F ∗(T ⊗ S))(vσ(1), . . . , vσ(k+m))

=
1

k!m!

∑

σ∈Sk+m
(sgnσ)((F ∗T )⊗ (F ∗S))(vσ(1), . . . , vσ(k+m))

=
(k +m)!

k!m!
(Alt((F ∗T )⊗ (F ∗S)))(v1, . . . , vk+m)

= ((F ∗T ) ∧ (F ∗S))(v1, . . . , vk+m).

(4) If v1, . . . , vk ∈ V then

((H ◦ F )∗(T )) (v1, . . . , vk) = T (H(F (v1)), . . . , H(F (vk)))

= (H∗T ) (F (v1), . . . , F (vk)) = (F ∗(H∗T )) (v1, . . . , vk).

(6) We have

(T1 ∧ . . . ∧ Tk)(v1, . . . , vk) = k! Alt(T1 ⊗ . . .⊗ Tk)(v1, . . . , vk)

=
∑

σ∈Sk
(sgnσ)(T1 ⊗ . . .⊗ Tk)(vσ(1), . . . , vσ(k))

=
∑

σ∈Sk
(sgnσ)T1(vσ(1)) . . . Tk(vσ(k)) = det[Ti(vj)].

(7) If T1, . . . , Tk are linearly dependent then, for some i ∈ {1, . . . , k},
we have Ti =

∑
j 6=i ajTj . Consequently,

T1 ∧ . . . ∧ Ti ∧ . . . ∧ Tk = T1 ∧ . . . ∧


∑

j 6=i
ajTj


 ∧ . . . ∧ Tk

=
∑

j 6=i
ajT1 ∧ . . . ∧ Tj ∧ . . . ∧ Tk = 0

(as each term of the sum repeats one of the factors). On the other
hand, if T1, . . . , Tk are linearly independent, then they can be ex-
tended to a basis {T1, . . . , Tn} of V ∗. Let {v1, . . . , vn} be the dual
basis. Then

(T1 ∧ . . . ∧ Tk)(v1, . . . , vk) = det[Ti(vj)] = det(δij) = 1,

showing that T1 ∧ . . . ∧ Tk 6= 0.



342 SOLUTIONS TO EXERCISES

(8) (a) We have

(ι(v1)(ι(v2)T ))(v3, . . . , vk) = (ι(v2)T )(v1, v3, . . . , vk)

= T (v2, v1, v3, . . . , vk) = −T (v1, v2, v3, . . . , vk)
= −(ι(v2)(ι(v1)T ))(v3, . . . , vk).

(b) Using the definitions,

(ι(v1)(T ∧ S))(v2, . . . , vk+m) =
(k +m)!

k!m!
Alt(T ⊗ S)(v1, . . . , vk+m)

=
1

k!m!

∑

σ∈Sk+m
(sgnσ)T (vσ(1), . . . , vσ(k))S(vσ(k+1), . . . , vσ(k+m))

=
1

(k − 1)!m!

∑

σ̃∈S̃k+m

(sgn σ̃)T (v1, vσ̃(2), . . . , vσ̃(k))S(vσ̃(k+1), . . . , vσ̃(k+m))

+ (−1)k
1

k!(m− 1)!

∑

σ̃∈S̃k+m

(sgn σ̃)T (vσ̃(2), . . . , vσ̃(k+1))S(v1, vσ̃(k+2), . . . , vσ̃(k+m))

=
(k +m− 1)!

(k − 1)!m!
Alt((ι(v1)T )⊗ S)(v2, . . . , vk+m)

+ (−1)k
(k +m− 1)!

k!(m− 1)!
Alt(T ⊗ (ι(v1)S))(v2, . . . , vk+m)

= ((ι(v1)T ) ∧ S) + (−1)k(T ∧ (ι(v1)S))(v2, . . . , vk+m),

where S̃k+m is the group of permutations of {2, . . . , k + m}.
Here we have used the fact that any permutation σ ∈ Sk+m
can be decomposed as σ = σ′ ◦ σ̃, where σ̃ is a permuta-
tion of {2, . . . , k +m} and σ′ interchanges 1 with σ(1). Then

sgnσ = (sgnσ′)(sgn σ̃) = (−1)σ
−1(1)−1 sgn σ̃. Note that for

each σ̃ ∈ S̃k+m there are k permutations σ = σ′ ◦ σ̃ in Sk+m
with σ(1) ∈ {1, . . . , k} and m permutations σ = σ′ ◦ σ̃ in
Sk+m with σ(1) ∈ {k + 1, . . . , k +m}. If σ−1(1) ∈ {1, . . . , k}
then we can use the fact that T is alternating to move v1 to

the first slot by introducing the same factor (−1)σ
−1(1)−1; if

σ−1(1) ∈ {k + 1, . . . , k + m}, however, then all we can do is
use the fact that S is alternating to move v1 to the first slot of

S by introducing a factor (−1)σ
−1(1)−k−1, and we are left with

a factor of (−1)−k = (−1)k.

Section 2.

(1) Let x : U → Rn and y : V → Rn be two coordinate systems on M
such that W := U ∩ V 6= ∅. Let T be a (k,m)-tensor field on M .
If T is written as

Tp =
∑

aj1···jmi1···ik (p)(dxi1)p ⊗ · · · (dxik)p ⊗
(

∂

∂xj1

)

p

⊗ · · · ⊗
(

∂

∂xjm

)

p



CHAPTER 2 343

and

Tp =
∑

bj1···jmi1···ik (p)(dyi1)p ⊗ · · · (dyik)p ⊗
(

∂

∂yj1

)

p

⊗ · · · ⊗
(

∂

∂yjm

)

p

,

respectively with respect to the coordinate systems x and y, we
have

Tp =
∑

bj1···jmi1···ik (p) (dyi1)p ⊗ · · · (dyik)p ⊗
(

∂

∂yj1

)

p

⊗ · · · ⊗
(

∂

∂yjm

)

p

=
∑

bj1···jmi1···ik (p)




n∑

ĩ1=1

∂yi1

∂xĩ1
dxĩ1


⊗ · · · ⊗




n∑

ĩk=1

∂yik

∂xĩk
dxĩk




⊗




n∑

j̃1=1

∂xj̃1

∂yj1
∂

∂xj̃1


⊗ · · · ⊗




n∑

j̃m=1

∂xj̃m

∂yjm
∂

∂xj̃m




=
∑

ĩ1, . . . , ĩk,

j̃1, . . . , j̃m




∑

i1, . . . , ik,

j1, . . . , jm

bj1···jmi1···ik (p)
∂yi1

∂xĩ1
(p) · · · ∂y

ik

∂xĩk
(p)

∂xj̃1

∂yj1
(p) · · · ∂x

j̃m

∂yjm
(p)




(dxĩ1)p ⊗ · · · (dxĩk)p ⊗
(

∂

∂xj̃1

)

p

⊗ · · · ⊗
(

∂

∂xj̃m

)

p

.

We conclude that

aj̃1,...̃jm
ĩ1,...,̃ik

(p) =
∑

i1, . . . , ik,

j1, . . . , jm

bj1···jmi1···ik (p)
∂yi1

∂xĩ1
(p) · · · ∂y

ik

∂xĩk
(p)

∂xj̃1

∂yj1
(p) · · · ∂x

j̃m

∂yjm
(p).

(2) If f : M → N is smooth and we consider coordinate systems x :
V → Rm and y : W → Rn respectively on M and N , we have
yi = f̂ i(x1, . . . , xm) for i = 1, . . . , n and f̂ = y ◦ f ◦ x−1 the local
representation of f . Let T be a differentiable k-covariant tensor
field on N given in local coordinates by

T =
∑

j1···jk
aj1···jkdy

j1 ⊗ · · · ⊗ dyjk ,
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where ai1···ik :W → R are smooth functions. Then,

(f∗T )p

((
∂

∂xi1

)

p

, . . . ,

(
∂

∂xik

)

p

)

= Tf(p)

(
(df)p

(
∂

∂xi1

)

p

, . . . , (df)p

(
∂

∂xik

)

p

)

=
∑

j1···jk
aj1···jk(f(p)) (dy

j1)f(p) ⊗ · · · ⊗ (dyjk)f(p)

(
(df)p

(
∂

∂xi1

)

p

, . . . , (df)p

(
∂

∂xik

)

p

)

=
∑

j1···jk
(aj1···jk ◦ f)(p)

(
∂f̂ j1

∂xi1
(x(p))

)
· · ·
(
∂f̂ jk

∂xik
(x(p))

)
.

Since the functions

(f∗T )

(
∂

∂xi1
, . . . ,

∂

∂xik

)
=
∑

j1···jk
(aj1···jk◦f)

(
∂f̂ j1

∂xi1
◦ x
)
· · ·
(
∂f̂ jk

∂xik
◦ x
)

are smooth and, in these local coordinates, the tensor f∗T can be
written as

f∗T =
∑

i1···ik
(f∗T )

(
∂

∂xi1
, . . . ,

∂

∂xik

)
dxi1 ⊗ · · · ⊗ dxik ,

we conclude that this tensor is also smooth.
(3) (a) We have

LX(T (Y1, . . . , Yk))(p) =
d

dt
(T (Y1, . . . , Yk)(ψt(p)))|t=0

=
d

dt

(
Tψt(p)

(
(Y1)ψt(p) , . . . , (Yk)ψt(p)

))
|t=0

=
d

dt

(
(ψt

∗T )p
(
(dψ−t)ψt(p) (Y1)ψt(p) , . . . , (dψ−t)ψt(p) (Yk)ψt(p)

))
|t=0

= (LXT )(Y1, . . . , Yk)(p) + T (LXY1, . . . , Yk)(p) + . . .+ T (Y1, . . . , LXYk)(p).

(b) A possible definition is to set

(LXT )(Y1, . . . , Yk, ω
1, . . . , ωm) = LX(T (Y1, . . . , Yk, ω

1, . . . , ωm))

− T (LXY1, . . . , Yk, ω
1, . . . , ωm)− . . .− T (Y1, . . . , LXYk, ω

1, . . . , ωm)

− T (Y1, . . . , Yk, LXω
1, . . . , ωm)− . . .− T (Y1, . . . , Yk, ω

1, . . . , LXω
m)

for all vector fields Y1, . . . , Yk and all 1-tensor fields ω1, . . . , ωm.

Section 3.

(1) Property (i) is trivially true, and property (iii) is an immediate
consequence of Proposition 1.12. To prove (ii), we notice that given
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p ∈M and v1, . . . , vk ∈ TpM we have

(f∗(gα))p(v1, . . . , vk) = (gα)f(p)((df)pv1, . . . , (df)pvk)

= g(f(p))αf(p)((df)pv1, . . . , (df)pvk)

= (g ◦ f)(p)(f∗α)p(v1, . . . , vk) = ((f∗g)(f∗α))p(v1, . . . , vk).

Finally, (iv) follows from

(g∗f∗α)p(v1, . . . , vk) = (f∗α)g(p)((dg)pv1, . . . , (dg)pvk)

= αf(g(p))((df)g(p)(dg)pv1, . . . , (df)g(p)(dg)pvk)

= α(f◦g)(p)((d(f ◦ g))pv1, . . . , (d(f ◦ g))pvk)
= ((f ◦ g)∗α)p(v1, . . . , vk).

(2)
(a) We start by showing that dω as defined is indeed a (k+1)-form.

(i) Obviously true.
(ii) We have

dω(X1, . . . , f Xj , . . . , Xk+1)

=
∑

l 6=j
(−1)l−1Xl · ω(X1, . . . , X̂l . . . , f Xj , . . . , Xk+1)

+ (−1)j−1f Xj · ω(X1, . . . , X̂j , . . . , Xk+1)

+
∑

l < m

l,m 6= j

(−1)l+mω([Xl, Xm], X1, . . . , X̂l, . . . , f Xj , . . . , X̂m, . . . , Xk+1)

+

j−1∑

l=1

(−1)l+jω([Xl, f Xj ], X1, . . . , X̂l, . . . , X̂j , . . . , Xk+1)

+
k+1∑

m=j+1

(−1)j+mω([f Xj , Xm], X1, . . . , X̂j , . . . , X̂m, . . . , Xk+1).

Since [Xl, f Xj ] = (Xl · f)Xj + f [Xl, Xj ] we have, by
linearity of ω, that

dω(X1, . . . , f Xj , . . . , Xk+1) = fdω(X1, . . . , Xj , . . . , Xk+1)

+
∑

l 6=j
(−1)l−1(Xl · f)ω(X1, . . . , X̂l . . . , Xj , . . . , Xk+1)

+

j−1∑

l=1

(−1)l+j(Xl · f)ω(Xj , X1, . . . , X̂l, . . . , X̂j , . . . , Xk+1)

+

k+1∑

m=j+1

(−1)j+m+1(Xm · f)ω(Xj , X1, . . . , X̂j , . . . , X̂m, . . . , Xk+1)

Since ω is alternating, the last three sums are easily seen
to cancel out, yielding the result.
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(iii) Assuming i < j, we have

dω(X1, . . . , Xi, . . . , Xj , . . . , Xk+1)

=
∑

l 6=i,j
(−1)l−1Xl · ω(X1, . . . , Xi, . . . , X̂l, . . . , Xj , . . . , Xk+1)

+ (−1)i−1Xi · ω(X1, . . . , X̂i, . . . , Xj , . . . , Xk+1)

+ (−1)j−1Xj · ω(X1, . . . , Xi, . . . , X̂j , . . . , Xk+1)

+
∑

l < m

l,m 6= i, j

(−1)l+mω([Xl, Xm], X1, . . . , Xi, . . . , X̂l, . . . , X̂m, . . . , Xj , . . . , Xk+1)

+
i−1∑

l=1

(−1)l+iω([Xl, Xi], X1, . . . , X̂l, . . . , X̂i, . . . , Xj , . . . , Xk+1)

+
∑

l < j

l 6= i

(−1)l+jω([Xl, Xj ], X1, . . . , X̂l, . . . , Xi, . . . , X̂j , . . . , Xk+1)

+
∑

m > i

m 6= j

(−1)i+mω([Xi, Xm], X1, . . . , X̂i, . . . , Xj , . . . , X̂m, . . . , Xk+1)

+
k+1∑

m=j+1

(−1)j+mω([Xj , Xm], X1, . . . , Xi, . . . , X̂j , . . . , X̂m, . . . , Xk+1)

+ (−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1).

Since [Xi, Xj ] = −[Xj , Xi] and ω is alternating, the first,
fourth and ninth terms above are easily seen to change
sign if Xi and Xj are interchanged. The same is true for
the combinations of the second plus the third, fifth plus
sixth and seventh plus eighth terms.

(iv) This is immediate from the fact that in local coordinates,
using (i) and (ii),

dω(X1, . . . , Xk+1) = dω




n∑

i1=1

Xi1
1

∂

∂xi1
, . . . ,

n∑

ik+1=1

X
ik+1

1

∂

∂xik+1




=
n∑

i1,...,ik+1=1

dω

(
∂

∂xi1
, . . . ,

∂

∂xik+1

)
Xi1

1 . . . X
ik+1

1 .
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(b) In the coordinate system x :W → Rn we have

dω

(
∂

∂xj1
, . . . ,

∂

∂xjk+1

)

=
k+1∑

l=1

(−1)l−1 ∂

∂xjl
· ω
(

∂

∂xj1
, . . . ,

∂̂

∂xjl
, . . . ,

∂

∂xjk+1

)
+

+
∑

l<m

(−1)l+mω

([
∂

∂xjl
,

∂

∂xjm

]
,
∂

∂xj1
, . . . ,

∂̂

∂xjl
, . . . ,

∂̂

∂xjm
, . . . ,

∂

∂xjk+1

)

=
k+1∑

l=1

(−1)l−1
∂aj1...ĵl...jk+1

∂xjl
.

On the other hand,(∑

I

daI ∧ dxi1 ∧ · · · ∧ dxik+1

)(
∂

∂xj1
, . . . ,

∂

∂xjk+1

)

=
∑

I

(
n∑

i=1

∂aI
∂xi

dxi ∧ dxI
)(

∂

∂xj1
, . . . ,

∂

∂xjk+1

)

=
k+1∑

l=1

(−1)l−1
∂aj1...ĵl...jk+1

∂xjl

and the result follows.
(3) Let M be a smooth manifold.

(i) d(ω1 + ω2) is the form locally represented by d(ω1 + ω2)α for
each parameterization ϕα : Uα →M . Moreover, since

(ω1 + ω2)α = ϕ∗
α(ω1 + ω2) = ϕ∗

αω1 + ϕ∗
αω2 = (ω1)α + (ω2)α

we have, by Proposition 3.7 (i) that

d(ω1 + ω2)α = d((ω1)α + (ω2)α) = d(ω1)α + d(ω2)α

= ϕ∗
αdω1 + ϕ∗

αdω2 = ϕ∗
α(dω1 + dω2)

and we conclude that d(ω1 + ω2) = dω1 + dω2.
(ii) Let ω be a k-form. Then, d(ω ∧ γ) is the form locally repre-

sented by d(ω ∧ γ)α for each parameterization ϕα : Uα →M .
Moreover, by Proposition 3.3 (iii)

(ω ∧ γ)α = ϕ∗
α(ω ∧ γ) = ϕ∗

αω ∧ ϕ∗
αγ = ωα ∧ γα.

Hence, by Proposition 3.7 (ii),

d(ω ∧ γ)α = d(ωα ∧ γα) = dωα ∧ γα + (−1)kωα ∧ dγα
= ϕ∗

α(dω) ∧ ϕ∗
αγ + (−1)kϕ∗

αω ∧ ϕ∗
α(dγ)

= ϕ∗
α(dω ∧ γ + (−1)kω ∧ dγ) = (dω ∧ γ + (−1)kω ∧ dγ)α

and the result follows.
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(iii) The form d(dω) is locally represented by d(dω)α = d(dωα) for
each parameterization ϕα : Uα → M . Since d(dωα) = 0 by
Proposition 3.7 (iii), we conclude that d(dω) = 0.

(iv) Let f : M → N be a smooth map between two manifolds.
Let ω be a form on N . Then d(f∗ω) is the form locally rep-
resented by d(f∗ω)α for each parameterization ϕα : Uα →M .
Moreover, by Proposition 3.3 (iv),

(f∗ω)α = ϕ∗
α(f

∗ω) = (f ◦ ϕα)∗ω,
and so

d(f∗ω)α = d((f ◦ ϕα)∗ω).
On the other hand, f∗(dω) is the form locally represented by

ϕ∗
α(f

∗(dω)) = (f ◦ ϕα)∗(dω)
for each parameterization ϕα : Uα →M . Now, if ψβ : V → N
is a parameterization of N then we have on ψβ(V )

dω = (ψ−1
β )∗dωβ = (ψ−1

β )∗d(ψ∗
βω),

and so by Proposition 3.7

ϕ∗
α(f

∗(dω)) = (f ◦ ϕα)∗(ψ−1
β )∗dωβ = (ψ−1

β ◦ f ◦ ϕα)∗dωβ
= d((ψ−1

β ◦ f ◦ ϕα)∗ωβ) = d((f ◦ ϕα)∗(ψ−1
β )∗ωβ)

= d((f ◦ ϕα)∗ω)
on ϕ−1

α (f−1(ψβ(V ))). Since ψβ : V → N is arbitrary, the
result follows.

(4) (a) If ω = f1dx+ f2dy + f3dz then

dω =
∂f1

∂y
dy ∧ dx+

∂f1

∂z
dz ∧ dx+

∂f2

∂x
dx ∧ dy+

+
∂f2

∂z
dz ∧ dy + ∂f3

∂x
dx ∧ dz + ∂f3

∂y
dy ∧ dz

=

(
∂f3

∂y
− ∂f2

∂z

)
dy ∧ dz +

(
∂f1

∂z
− ∂f3

∂x

)
dz ∧ dx

+

(
∂f2

∂x
− ∂f1

∂y

)
dx ∧ dy

= g1dy ∧ dz + g2dz ∧ dx+ g3dx ∧ dy,
where (g1, g2, g3) = curl(f1, f2, f3).

(b) If ω = f1dy ∧ dz + f2dz ∧ dx+ f3dx ∧ dy then

dω =
∂f1

∂x
dx ∧ dy ∧ dz + ∂f2

∂y
dy ∧ dz ∧ dx+

∂f3

∂z
dz ∧ dx ∧ dy

=

(
∂f1

∂x
+
∂f2

∂y
+
∂f3

∂z

)
dx ∧ dy ∧ dz = div(f1, f2, f3)dx ∧ dy ∧ dz.



CHAPTER 2 349

(5) (a) Given α ∈ Ωk(M) one has α − α = 0 = d0, and therefore
α ∼ α (i.e. the relation is reflexive). Moreover, if α, β ∈ Ωk(M)
satisfy α ∼ β then α − β = dθ for some θ ∈ Ωk−1(M), and
consequently β − α = d(−θ), implying that β ∼ α (i.e. the
relation is symmetric). Finally, if α, β, γ ∈ Ωk(M) satisfy α ∼
β and β ∼ γ then α − β = dθ and β − γ = dη for some
θ, η ∈ Ωk−1(M) , implying that α − γ = d(θ + η) and hence
α ∼ γ (i.e. the relation is transitive).

(b) Let us define λ[α] := [λα] and [α] + [β] := [α + β] for all
λ ∈ R and [α], [β] ∈ Hk(M). To see that these definitions do
not depend on the choice of the representatives α, β ∈ Zk we
notice that if [α] = [γ] then α−γ = dθ for some θ ∈ Ωk−1(M),
implying λα = λγ + λdθ = λγ + d(λθ) and hence [λα] = [λγ].
Analogously, if [β] = [δ] then β−δ = dη for some η ∈ Ωk−1(M),
and hence α + β = γ + δ + dθ + dη = γ + δ + d(θ + η),
i.e. [α+β] = [γ+ δ]. It is now easy to check that Hk(M) with
these operations is a vector space.

(c) (i) If α ∈ Ωk(N) is closed then d(f∗α) = f∗(dα) = f∗0 =
0, i.e. f∗α is also closed; if α ∈ Ωk(N) is exact then
α = dθ for some θ ∈ Ωk−1(N), and consequently f∗α =
f∗(dθ) = d(f∗θ), i.e. f∗α is also exact.

(ii) This is a consequence of (i).
(iii) This follows trivially from (ii).
(iv) This is immediate from (f ◦ g)∗ = g∗ ◦ f∗.

(d) A function f ∈ Ω0(M) is closed if and only if df = 0, i.e. if and
only if it is locally constant. Since there are no (−1)-forms, it
is conventional to consider that the only exact 0-form is the
zero function (so that the relation ∼ is still an equivalence
relation). Therefore H0(M) is the set of functions which are
locally constant. Giving a locally constant function on M is
the same thing as giving a real number for each connected
component of M . Hence the dimension of H0(M) is equal
to the number of connected components of M (which can be
infinite, albeit countable).

(e) This is immediate from Ωk(M) = {0} for k > dimM .
(6) (a) We have

f̃∗ω = dt ∧
∑

I

(aI ◦ f̃) df I +
∑

J

(bJ ◦ f̃) dfJ ,

and hence

Q(f̃∗ω) =
∑

I

(∫ t

t0

(aI ◦ f̃) ds
)
df I .

On the other hand, since f̃ is the identity on the first coordi-

nate, precomposition with f̃ commutes with integration with
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respect to t. Therefore

f̃∗(Q(ω)) =
∑

I

((∫ t

t0

aI ds

)
◦ f̃
)
df I

=
∑

I

(∫ t

t0

(aI ◦ f̃) ds
)
df I = Q(f̃∗ω).

(b) Each parameterization ϕ : U → M yields a parameteriza-
tion ϕ̃ : R × U → R × M through ϕ̃ = id×ϕ. Given a
k-form ω ∈ Ωk(R ×M) we then define Q(ω) ∈ Ωk−1(R ×M)
as the (k − 1)-form whose local representation associated to
the parameterization ϕ̃α is (Q(ω))α = Q(ωα). Therefore we

have Q(ω) =
(
ϕ̃−1
α

)∗
(Q(ωα)) on R × ϕα(Uα). To check that

this definition is consistent consider another parameterization
ϕβ : Uβ → M such that W := ϕα(Uα) ∩ ϕβ(Uβ) 6= ∅. Let

f : ϕ−1
α (W ) → ϕ−1

β (W ) be the diffeomorphism given by f =

ϕ−1
β ◦ ϕα. Then on R×W we have

(
ϕ̃−1
α

)∗
(Q(ωα)) =

(
ϕ̃−1
α

)∗ (Q
(
f̃∗ωβ

))
=
(
ϕ̃−1
α

)∗ (
f̃∗(Q(ωβ))

)

=
(
f̃ ◦ ϕ̃−1

α

)∗
(Q(ωβ)) =

(
ϕ̃−1
β

)∗
(Q(ωβ)) .

To see that f̃∗ ◦ Q = Q ◦ f̃∗ at a given point (t, p) ∈ R ×M
consider parameterizations ϕ : U →M and ψ : V → N around
p and f(p), and let f̂ = ψ−1 ◦ f ◦ϕ be the corresponding local
representation of f . Then at p we have

f̃∗(Q(ω)) = f̃∗
(
ψ̃−1

)∗ (
Q
(
ψ̃∗ω

))
=
(
ψ̃−1 ◦ f̃

)∗ (
Q
(
ψ̃∗ω

))

=

(
˜̂
f ◦ ϕ̃−1

)∗ (
Q
(
ψ̃∗ω

))
=
(
ϕ̃−1

)∗ ˜̂
f
∗ (

Q
(
ψ̃∗ω

))

=
(
ϕ̃−1

)∗
(
Q
(
˜̂
f
∗ (
ψ̃∗ω

)))
=
(
ϕ̃−1

)∗
(
Q
((

ψ̃ ◦ ˜̂f
)∗

ω

))

=
(
ϕ̃−1

)∗ (Q
((
f̃ ◦ ϕ̃

)∗
ω
))

=
(
ϕ̃−1

)∗ (Q
(
ϕ̃∗f̃∗ω

))

= Q
(
f̃∗ω

)
.

The linearity ofQ onM is similarly obtained from the linearity
of Q on Rn.

(c) Notice that in local coordinates the formula for Q reduces to
the formula in Rn. If

ω = dt ∧
∑

I

aI(t, x) dx
I +

∑

J

bJ(t, x) dx
J
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we have

i∗t0ω =
∑

J

bJ(t0, x) dx
J

(dt0 = 0 as t0 is constant), and π∗i∗t0ω is given by the same
expression. Consequently

ω − π∗i∗t0ω = dt ∧
∑

I

aI(t, x) dx
I +

∑

J

(bJ(t, x)− bJ(t0, x)) dx
J .

On the other hand,

d(Q(ω)) = dt∧
∑

I

aI(t, x) dx
I +

∑

I

∑

i

(∫ t

t0

∂aI
∂xi

ds

)
dxi ∧ dxI

and

dω = −dt ∧
∑

I

∑

i

∂aI
∂xi

dxi ∧ dxI

+ dt ∧
∑

J

∂bJ
∂t

dxJ +
∑

J

∑

i

∂bJ
∂xi

dxi ∧ dxJ ,

leading to

Q(dω) = −
∑

I

∑

i

(∫ t

t0

∂aI
∂xi

ds

)
dxi∧dxI+

∑

J

(∫ t

t0

∂bJ
∂s

ds

)
dxJ .

Consequently,

d(Q(ω)) +Q(dω) = dt ∧
∑

I

aI(t, x) dx
I +

∑

J

(b(t, x)− b(t0, x)) dx
J

= ω − π∗i∗t0ω.

(d) Since π◦it0 = idM , we have i∗t0 ◦π∗ = id and hence i♯t0 ◦π♯ = id.
On the other hand, if ω is closed then

ω − π∗i∗t0ω = d(Q(ω)),

meaning that ω and π∗i∗t0ω are in the same cohomology class.

Therefore π♯ ◦ i♯t0 = id.

(e) By (d), Hk(Rn) = Hk(Rn−1) = . . . = Hk(R). Now we know
that Hk(R) = 0 for all k > 1. On the other hand, any 1-form
on R is necessarily exact, since

a(t) dt = d

(∫ t

0
a(s) ds

)
.

We conclude that H1(R) = 0. Therefore Hk(Rn) = 0 for all
k > 0.

(f) We have f = H ◦it0 and g = H ◦it1 , and therefore f ♯ = i♯t0 ◦H♯

and g♯ = i♯t1 ◦H♯. Now i♯t0 = i♯t1 , as they are both the inverse

map to π♯. Consequently f ♯ = g♯.
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(g) The mapH : R×Rn → Rn given byH(t, x) = (1−t)x is clearly
a homotopy between the identity map f(x) = H(0, x) = x and
the constant map g(x) = H(1, x) = 0.

(h) Since M is contractible, the identity map id : M → M is
smoothly homotopic to a constant map g : M → M , and
hence id♯ = g♯. Using local coordinates, it is immediate to
check that if ω ∈ Ωk(M) is a k-form with k > 0 then g∗ω = 0,
implying that g♯ : Hk(M) → Hk(M) is the zero map. But

g♯ = id♯ is the identity map on Hk(M), and hence we must
have Hk(M) = 0.

(7) (a) We have

LX(ω1 ∧ ω2) =
d

dt
(ψt

∗(ω1 ∧ ω2))
|t=0

=
d

dt
((ψt

∗ω1) ∧ (ψt
∗ω2))

|t=0

=

(
d

dt
(ψt

∗ω1)
|t=0

)
∧ ω2 + ω1 ∧

(
d

dt
(ψt

∗ω2)
|t=0

)

= (LXω1) ∧ ω2 + ω1 ∧ (LXω2)

(where we have used the fact that the wedge product is bilin-
ear).

(b) Similarly,

LX(dω) =
d

dt
(ψt

∗(dω))
|t=0

=
d

dt
(d(ψt

∗ω))
|t=0

= d

(
d

dt
(ψt

∗ω)
|t=0

)
= d(LXω)

(where we have used the fact that the exterior derivative is
linear).

(c) We will prove this formula by induction. We start with the
case when ω = fdg for smooth functions f, g ∈ Ω0(M). In this
case we can use the properties proved above to obtain

LXω = (LXf)dg + fd(LXg) = (X · f)dg + fd(X · g).

On the other hand,

ι(X)dω + d(ι(X)ω) = ι(X)(df ∧ dg) + d(f(X · g))
= ι(X)(df ⊗ dg − dg ⊗ df) + (X · g)df + fd(X · g)
= (X · f)dg − (X · g)df + (X · g)df + fd(X · g)
= LXω.

Next we prove that if the Cartan formula holds for ω and η
then it holds for ω∧ η. Since locally any form can be obtained
by taking wedge products of 1-forms of the type fdg, this will
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complete the proof. If ω is a k-form, we have

ι(X)d(ω ∧ η) + d(ι(X)(ω ∧ η))
= ι(X)(dω ∧ η + (−1)kω ∧ dη) + d((ι(X)ω) ∧ η + (−1)kω ∧ (ι(X)η))

= (ι(X)dω) ∧ η + (−1)k+1dω ∧ (ι(X)η) + (−1)k(ι(X)ω) ∧ dη + ω ∧ (ι(X)dη)

+ d(ι(X)ω) ∧ η + (−1)k−1(ι(X)ω) ∧ dη + (−1)kdω ∧ (ι(X)η) + ω ∧ d(ι(X)η)

= (ι(X)dω) ∧ η + ω ∧ (ι(X)dη) + d(ι(X)ω) ∧ η + ω ∧ d(ι(X)η)

= (LXω) ∧ η + ω ∧ (LXη) = LX(ω ∧ η)

(where we have used Exercise 1.15.8).
(d) We begin by noticing that

(ψt
∗(ι(Y )ω))p (v1, . . . , vk) = (ι(Y )ω)ψt(p)((dψt)pv1, . . . , (dψt)pvk)

= ωψt(p)(Yψt(p), (dψt)pv1, . . . , (dψt)pvk)

= ωψt(p)((dψt)p(dψ−t)ψt(p)Yψt(p), (dψt)pv1, . . . , (dψt)pvk)

= (ψt
∗ω)p ((dψ−t)ψt(p)Yψt(p), v1, . . . , vk)

i.e.

ψt
∗(ι(Y )ω) = ι((ψ−t)∗Y )(ψt

∗ω).

Taking the derivative with respect to t at t = 0 and using
the fact that the contraction is a bilinear operation yields the
result.

Section 4.

(1) (a) SinceM satisfies the second countability axiom, any atlas con-
tains a countable subatlas (i.e. a countable subfamily of pa-
rameterizations which is still an atlas for M). Assume that
ϕ−1
n (N) has zero measure for all the parameterizations in an

arbitrary atlas A = {(Un, ϕn)} (which we assume to be count-

able without loss of generality). Let Ã = {(Uα, ϕα)} be the
maximal atlas. Then

ϕ−1
α (N) =

⋃

n

(ϕ−1
α ◦ ϕn)(ϕ−1

n (N))

has zero measure, since it is a countable union of zero measure
sets. Indeed, each set ϕ−1

n (N) has zero measure by hypothesis,
and diffeomorphisms (such as ϕ−1

α ◦ϕn) carry zero measure sets
to zero measure sets.

(b) Since suppω \ W is compact, we can cover it with a finite
number of parameterizations ϕi : Ui → M . The finite family
{W,ϕi(Ui),M \ suppω} is then an open cover of M . It is not
difficult to show that it is possible to construct a sequence of
partitions of unit {ρn, ρi,n, ρ̃n}n∈N subordinated to this cover
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such that limn→+∞ ρn = χW , where

χW (p) =

{
1 if p ∈W

0 if p 6∈W
.

Hence limn→+∞ ρi,n = 0 almost everywhere in W , and conse-
quently in M . Since
∫

M
ω =

∫

U
ϕ∗(ρn ω) +

∑

i

∫

Ui

ϕi
∗(ρi,n ω),

we obtain, taking the limit as n→ +∞,
∫

M
ω =

∫

U
ϕ∗ω.

Notice that in particular the integral on the right-hand side
must exist.

(2) (a) Let us consider the parameterization φ : U → S2 defined by

φ(ϕ, θ) = (sin θ cosϕ, cos θ, sin θ sinϕ)

on U = (−π, π)× (0, π). The image of this map is the set

W := φ(U) = S2 \ {(x, y, z) ∈ R3 | z = 0 and x ≤ 0}.
Moreover, φ(π2 ,

π
2 ) = (0, 0, 1) and

(dφ)(π
2
,π
2
) =




−1 0
0 −1
0 0


 ,

implying that φ is orientation preserving. Indeed, we have

(dφ)(π
2
,π
2
)
∂

∂ϕ
= (−1, 0, 0), (dφ)(π

2
,π
2
)
∂

∂θ
= (0,−1, 0)

and {(−1, 0, 0), (0,−1, 0)} is a basis for T(0,0,1)S2 with the same
orientation as {(1, 0, 0), (0, 1, 0)}. Since M \W has zero mea-
sure we conclude from Exercise 4.2.1 that∫

S2

ω =

∫

W
ω =

∫

U
φ∗ω.

Now

φ∗dx = − sinϕ sin θ dϕ+ cosϕ cos θ dθ

φ∗dy = − sin θ dθ

φ∗dz = cosϕ sin θ dϕ+ cos θ sinϕdθ

and so

φ∗ω = (cos2 ϕ sin3 θ + sin θ cos2 θ + sin2 ϕ sin3 θ) dϕ ∧ dθ
= sin θ dϕ ∧ dθ.
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Hence,
∫

S2

ω =

∫

U
φ∗ω =

∫ π

0

∫ π

−π
sin θ dϕ dθ = 4π.

(b) Let us consider the parameterization φ : U → S2 defined by

ϕ(u, v) =

(
2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
1− u2 − v2

1 + u2 + v2

)

on U = R2, corresponding to stereographic projection from the
south pole (0, 0,−1). The image of this map is W := ϕ(U) =
S2 \ {(0, 0,−1)}. Moreover, ϕ(0, 0) = (0, 0, 1) and

(dϕ)(0,0) =




2 0
0 2
0 0


 ,

implying that ϕ is orientation preserving. Indeed, (dϕ)(0,0)
∂
∂u =

(2, 0, 0), (dϕ)(0,0)
∂
∂v = (0, 2, 0) and {(2, 0, 0), (0, 2, 0)} is a basis

for T(0,0,1)S
2 with the same orientation as {(1, 0, 0), (0, 1, 0)}.

SinceM \W has zero measure we conclude from Exercise 4.2.1
that ∫

S2

ω =

∫

W
ω =

∫

U
ϕ∗ω.

Now

ϕ∗dx =
2(1− u2 + v2)

(1 + u2 + v2)2
du− 4uv

(1 + u2 + v2)2
dv

ϕ∗dy = − 4uv

(1 + u2 + v2)2
du+

2(1 + u2 − v2)

(1 + u2 + v2)2
dv

ϕ∗dz = − 4u

(1 + u2 + v2)2
du− 4v

(1 + u2 + v2)2
dv

and so

ϕ∗ω =
4

(1 + u2 + v2)2
du ∧ dv.

Hence,∫

S2

ω =

∫

U
ϕ∗ω =

∫

R2

4

(1 + u2 + v2)2
du dv

=

∫ 2π

0

∫ +∞

0

4r

(1 + r2)2
dr dθ = 4π.

(3) T 2 divides S3 into two connected components

M1 := {(x, y, z, w) ∈ S3 | x2 + y2 < 1}
and

M2 := {(x, y, z, w) ∈ S3 | x2 + y2 > 1}.
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Let us consider the parameterizations ϕi : Ui → Mi (i = 1, 2)
defined by

ϕi(r, u, v) = (r cosu, r sinu,
√
2− r2 cos v,

√
2− r2 sin v)

on U1 := (0, 1)×(0, 2π)×(0, 2π) and U2 := (1,
√
2)×(0, 2π)×(0, 2π).

Then,

ϕ∗
i dx = cosu dr − r sinu du

ϕ∗
i dy = sinu dr + r cosu du

ϕ∗
i dz = − r√

2− r2
cos v dr −

√
2− r2 sin v dv

ϕ∗
i dw = − r√

2− r2
sin v dr +

√
2− r2 cos v dv

and so ϕ∗
iω = (r(2−r2) cos2 v−r3 cos2 u) dr∧du∧dv. Hence, since

the sets M1 \ ϕ1(U1) and M2 \ ϕ2(U2) have measure zero we have
∫

M1

ω = ±
∫

U1

ϕ∗
1ω = ±

∫ 1

0

∫ 2π

0

∫ 2π

0
(r(2− r2) cos2 v − r3 cos2 u) dudvdr = ±π2

∫

M2

ω = ±
∫

U2

ϕ∗
2ω = ±

∫ √
2

1

∫ 2π

0

∫ 2π

0
(r(2− r2) cos2 v − r3 cos2 u) dudvdr = ∓π2,

where the ± signs depend on the choice of orientation.
(4) Let us consider an atlas {(Uα, ϕα)} of orientation preserving pa-

rameterizations on M . Then, since f is an orientation preserving
diffeomorphism {(Uα, f ◦ ϕα)} is an atlas of orientation preserving
parameterizations on N . Let {ρi}i∈I be a partition of unity subor-

dinate to the cover {W̃α} of N where W̃α := (f ◦ ϕα)(Uα). Since
ω is compactly supported we can assume that I is finite. Hence,
considering the forms ωi := ρiω, we have

∫

N
ω :=

∑

i∈I

∫

N
ωi =

∑

i∈I

∫

Uαi

(f ◦ ϕαi)∗ωi.

Now

(f ◦ ϕαi)∗ωi = (f ◦ ϕαi)∗(ρiω) = ((f ◦ ϕαi)∗ρi)((f ◦ ϕαi)∗ω)
= (ρi ◦ f ◦ ϕαi)(ϕ∗

αi(f
∗ω)) = ϕ∗

αi((ρi ◦ f)f
∗ω).

Moreover, {ρi ◦ f}i∈I is clearly a partition of unity subordinate to
the cover {Wα} of M where Wα := ϕα(Uα). Hence,
∫

N
ω =

∑

i∈I

∫

Uαi

(f ◦ ϕαi)∗ωi =
∑

i∈I

∫

Uαi

ϕ∗
αi((ρi ◦ f)f

∗ω)

=
∑

i∈I

∫

Uαi

ϕ∗
αi(f

∗ω)i =
∫

M
f∗ω.
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Section 5.

(1) First we note that the form ω is exact. Indeed, ω = dα with
α = xz dy ∧ dw. Then, denoting by M1 and M2 the two connected
components of S3 \ T 2, we have T 2 = ∂M1 = ∂M2 and so, by the
Stokes theorem,∫

M1

ω =

∫

M1

dα =

∫

T 2

i∗1α,

where i1 : ∂M1 →M1 is the inclusion map and T 2 is equipped with
the induced orientation. Similarly,∫

M2

ω =

∫

M2

dα =

∫

T 2

i∗2α,

where i2 : ∂M2 → M2 is the inclusion map and T 2 is equipped
with the induced orientation. Note that this orientation on T 2 is
the opposite of the one induced by the orientation of M1.

To compute these integrals we consider the parameterization
ϕ : U → T 2 defined by

ϕ(u, v) = (cosu, sinu, cos v, sin v)

on U := (0, 2π)× (0, 2π). Then,

ϕ∗(i∗jdx) = − sinu du, ϕ∗(i∗jdy) = cosu du,

ϕ∗(i∗jdz) = − sin v dv, ϕ∗(i∗jdw) = cos v dv,

(j = 1, 2), and so ϕ∗(i∗jα) = cos2 u cos2 v du ∧ dv. Hence, since the

set T 2 \ ϕ(U) has measure zero, we have
∫

T2

i∗1α = ±
∫

U
ϕ∗(i∗1α) = ±

∫ 2π

0

∫ 2π

0
cos2 u cos2 v dudv = ±π2

∫

T 2

i∗2α = ∓
∫

U
ϕ∗(i∗2α) = ∓

∫ 2π

0

∫ 2π

0
cos2 u cos2 v dudv = ∓π2,

where the ± signs depend on the choice of orientation on S3. Note
that the sum of the two integrals is zero. This is not surprising
since∫

M1

ω +

∫

M2

ω =

∫

S3

ω =

∫

S3

dα =

∫

∂S3

i∗α = 0

as ∂S3 = ∅ (here we used the fact that T 2 has measure zero in S3).

(2) Let us consider the manifold with boundary M̃ := [0, 1]×M . The
boundary has two components,M0 := {0}×M andM1 := {1}×M ,
which can both be identified with M through the inclusion maps

i0, i1 : M → M̃ , given by i0(p) = (0, p) and i1(p) = (1, p). Let
ϕ : U → M be a positive parameterization for M . Then ϕ0, ϕ1 :

U × [0, 1) → M̃ given by ϕ0(x, t) = (t, ϕ(x)) and ϕ1(t, x) = (1 −
t, ϕ(x)) are parameterizations for M̃ \M1 and M̃ \M0, respectively.
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It is therefore clear that M̃ is orientable, and that an orientation

on M̃ induces opposite orientations onM0 andM1 (when these are
identified with M). Assume, without loss of generality, that the
orientation induced on M1 is the orientation of M . Consider the
form ω̃ defined on M̃ by ω̃ = H∗ω. Since dω̃ = H∗dω = 0, we have
by the Stokes theorem

0 =

∫

M̃
dω̃ =

∫

M
i∗1ω̃ −

∫

M
i∗0ω̃.

As i∗1ω̃ = i∗1H
∗ω = (H ◦ i1)∗ω = f∗1ω, and similarly i∗0ω̃ = f∗0ω, the

result follows.
(3) (a) Under this identification, we have

〈p,Xp〉 = 0

for all p ∈ Sn, where 〈·, ·〉 is the Euclidean inner product in
Rn+1. Therefore,

‖H(t, p)‖2 = cos2(πt)‖p‖2 + sin2(πt) = 1,

and H indeed maps R × Sn to Sn. Moreover, H is clearly
smooth and H(0, p) = p and H(1, p) = −p for all p ∈ Sn.
Therefore H is a smooth homotopy between the identity map
and the antipodal map. Geometrically, for fixed p ∈ Sn the
curve H(t, p) traverses half of the great circle tangent to Xp

at p.
(b) We have

dω = (n+ 1)dx1 ∧ · · · ∧ dxn+1.

If Bn+1 := {x ∈ Rn+1 | ‖x‖ ≤ 1}, we have by the Stokes
theorem that∫

Sn
ω =

∫

Bn+1

dω = (n+ 1)

∫

Bn+1

dx1 ∧ · · · ∧ dxn+1

= (n+ 1)

∫

Bn+1

dx1 · · · dxn+1 > 0.

(c) Suppose that X exists. Then the antipodal map f : Sn → Sn

is homotopic to the identity map. Now it is very easy to check
that f∗ω = (−1)n+1ω. Since ω is closed in Sn (it is an n-form),
we have by Exercise 5.3.2 that

∫

Sn
ω =

∫

Sn
f∗ω = (−1)n+1

∫

Sn
ω.

As
∫
Sn ω > 0, we must have (−1)n+1 = 1, and so n must be

odd. For odd n there exist vector fields X ∈ X(Sn) with no
zeros. An example is the vector field given by

X(x1,...,xn+1) = (−x2, x1, . . . ,−xn+1, xn),
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which is indeed tangent to Sn (〈x,Xx〉 = 0) and does not
vanish on Sn (‖Xx‖ = ‖x‖ = 1).

(4) (a) Since f is continuous andM is compact, f(M) is closed and so
W := N \ f(M) is open. If (U,ϕ) is an orientation-preserving
parameterization for N such that ϕ(U) ⊂W , and ρ ∈ C∞(N)
is a nonvanishing bump function with supp ρ ⊂ ϕ(U) then

ω := ρ (ϕ−1)∗(dx1 ∧ · · · ∧ dxn)
satisfies suppω ⊂W and

∫

N
ω =

∫

U
(ρ ◦ ϕ) dx1 · · · dxn > 0.

Since, on the other hand,
∫

M
f∗ω =

∫

M
0 = 0,

we conclude that deg(f) = 0.
(b) This is an immediate consequence of Exercise 4.2.4.
(c) Since M is compact, if f−1(q) were infinite it would have an

accumulation point p ∈M , which, by continuity, would also be
in f−1(q). Since q is a regular value of f , p would be a regular
point, and hence there would exist a neighborhood U ∋ p such
that f|U would be a diffeomorphism. But then we would have

f−1(q)∩U = {p}, which conflicts with p being an accumulation
point of f−1(p). We conclude that f−1(q) must be finite. If
f−1(q) = {p1, . . . , pl} then there exist neighborhoods Ui ∋ pi
such that f|Ui is a diffeomorphism. Setting W := ∩li=1f(Ui)

and Vi := Ui ∩ f−1(W ) yields the result.
(d) Choosing W as in (d) and ω as in the solution of (b) we have

∫

M
f∗ω =

l∑

i=1

∫

Ui

f∗ω =

l∑

i=1

εi

∫

W
ω =

(
l∑

i=1

εi

)∫

N
ω,

where εi = ±1 according to whether f|Ui preserves orienta-

tions. We conclude that

k =

l∑

i=1

εi

is an integer.
(e) Using the identification

S1 = {z ∈ C | |z| = 1}
it is clear that the map f : S1 → S1 given by f(z) = zn is
a local diffeomorphism such that every point q ∈ S1 has n
preimages. Therefore deg(f) = n for appropriate choices of
orientations.
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(f) This is an immediate consequence of Exercise 2.
(g) If f has no fixed points then we can construct the homotopy

H : R× Sn → Sn given by

H(t, x) =
(1− t)f(x)− tx

‖(1− t)f(x)− tx‖ .

This map is well defined, since (1− t)f(x)− tx parameterizes
the line connecting f(x) and −x, which does not contain the
origin (as f(x) 6= x). Therefore f(x) is homotopic to the
antipodal map.
Now using the n-form

ω =
n+1∑

i=1

(−1)i+1xidx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1,

it is easily shown that the degree of the antipodal map is
(−1)n+1. We conclude from (b) that f cannot preserve ori-
entations if n is odd, and cannot reverse orientations if n is
even. In other words, if f preserves orientations and n is odd
or f reverses orientations and n is even then f must have fixed
points.

Section 6.

(1) If M an N are orientable we can take two volume forms ωM , ωN
respectively on M and N . Then it is easy to check that π∗MωM ∧
π∗NωN is a volume form on M × N (where πM : M × N → M
and πN : M ×N → N are the projection maps) and so M ×N is
orientable.

Conversely, assuming that M × N is orientable, let us fix a
point p ∈ M and a basis {v1, . . . , vm} of TpM . Then the n-form
on N (where n is the dimension of N) defined using the natural
identification T(p,q)(M ×N) ∼= TpM × TqN by

(ωN )q := ι((vm, 0)) · · · ι((v1, 0))ω(p,q)

for all q ∈ N is a volume form on N . Indeed, if there were a point
q ∈ N such that (ωN )q = 0 then we would have

ω(p,q)((v1, 0), . . . , (vm, 0), (0, w1), . . . , (0, wn)) = 0

for some basis {w1, . . . , wn} of TqN . However this cannot happen,
as {(v1, 0), . . . , (vm, 0), (0, w1), . . . , (0, wn))} is a basis of T(p,q)(M ×
N). We conclude that N must be orientable, and similarly for M .

(2) Let us consider positive atlas {(Uα, ϕα)} on M . Then

ωα := ϕ∗
αω = aα dx

1
α ∧ · · · ∧ dxnα

for positive functions aα : Uα → R. Let {ρi}i∈I be a partition of
unity subordinate to the cover {ϕα(Uα)} of M , where we can as-
sume I to be finite (M is compact). Then, for any positive smooth



CHAPTER 2 361

function f :M → R, we have
∫

M
fω =

∑

i∈I

∫

Ui

ϕ∗
i (ρifω)

=
∑

i∈I

∫

Ui

(ρi ◦ ϕi)(f ◦ ϕi) ai dx1i · · · dxni > 0.

(3) (a) By the Stokes theorem we have
∫

M
dω =

∫

∂M
ω = 0

since ∂M = ∅. This implies that there exists a point p ∈ M
for which (dω)p = 0. Indeed, if that were not the case, dω
would be a volume element of M and so, by Exercise 6.4.2, we
would have

∫
M dω > 0.

(b) Let f : S1 → R be a smooth map. Then f is a 0-form on the
compact 1-manifold S1 and so by (a) there exists a point p ∈M
where (df)p = 0, implying that f cannot be an immersion.

(4) (a) If ω ∈ Ωk(Sn) satisfies ω = π∗θ for some θ ∈ Ωk(RPn) then

f∗ω = f∗(π∗θ) = (π ◦ f)∗θ = π∗θ = ω.

Conversely, assume that ω ∈ Ωk(Sn) satisfies f∗ω = ω. Then
for each open set U ⊂ Sn such that π|U is a diffeomorphism

we define θU ∈ Ωk(π(U)) as θU := (π|U
−1)∗ω. We now show

that if p ∈ π(U)∩ π(V ), for some other open set V ⊂ Sn such
that π|V is a diffeomorphism, then (θU )p = (θV )p. Indeed, we

have π−1(p) = {p1, p2} for some p1, p2 ∈ S2 with p2 = f(p1).
Assume, without loss of generality, that p1 ∈ U . Then either
p1 ∈ V or p2 ∈ V . If p1 ∈ V then π|U and π|V agree on a
neighborhood of p1, and so do θU and θV on the image of this
neighborhood (which contains p). If p2 ∈ V , then π|U = π|V ◦f
on a neighborhood of p1, and hence

π|U
−1 = f−1 ◦ π|V −1 = f ◦ π|V −1

on this neighborhood. Therefore,

θU = (f ◦ π|V −1)∗ω = (π|V
−1)∗f∗ω = (π|V

−1)∗ω = θV

on the image of this neighborhood (and in particular at p).
We conclude that θU = θV on π(U) ∩ π(V ), which shows that
there exists θ ∈ Ωk(RPn) such that θU = θ|π(U)

for each U .

Finally, since ω|U = π|U
∗θU for each U , we have ω = π∗θ.

(b) It is easy to check that

ω =
n+1∑

i=1

(−1)i+1xidx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1
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is a volume form for Sn (cf. Exercise 5.3.3). Indeed, if v1, . . . , vn ∈
Rn+1 are n linearly independent vectors tangent to Sn at x
then

ω(v1, . . . , vn) =
n+1∑

i=1

(−1)i+1xi

∣∣∣∣∣∣

v11 . . . vi−1
1 vi+1

1 . . . vn+1
1

. . . . . . . . . . . . . . . . . .
v1n . . . vi−1

n vi+1
n . . . vn+1

n

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

x1 . . . xn+1

v11 . . . vn+1
1

. . . . . . . . .
v1n . . . vn+1

n

∣∣∣∣∣∣∣∣
6= 0,

as {x, v1, . . . , vn} is a basis of Rn+1. Since

f∗ω = (−1)n+1ω,

we see that for odd n we have ω = π∗θ for some θ ∈ Ωn(RPn),
which must be a volume form (as π is a local diffeomorphism).
Therefore RPn is orientable for odd n. Assume now that n
is even. If RPn was orientable, there would exist a volume
form θ ∈ Ωn(RPn). Then ω̃ := π∗θ would be a volume form
for Sn satisfying f∗ω̃ = ω̃. Since ω is also a volume form
for Sn, we would have ω̃ = gω for a nonvanishing function
g ∈ C∞(Sn). But, since f∗ω = −ω, this function would have
to satisfy g ◦ f = −g, i.e. it would have to assume opposite
signs at antipodal points, and hence would have to vanish at
some point. We conclude that RPn is not orientable for even
n. Finally, let n be odd and let U ⊂ Sn be an open hemisphere.
Then π|U is a diffeomorphism and RPn\π(U) has zero measure.
Therefore

∫

Sn
π∗θ =

∫

U
π∗θ +

∫

f(U)
π∗θ =

∫

U
π∗θ +

∫

U
f∗π∗θ

= 2

∫

U
π∗θ = 2

∫

RPn
θ.

(c) Consider the orientation on Sn defined by the volume form

ω of (b). If R̃Pn is the orientable double covering of RPn

(cf. Exercise 8.6.9 in Chapter 1), we define g : Sn → R̃Pn as

g(p) = (π(p), [(dπ)pv1, . . . , (dπ)pvn]),

where {v1, . . . , vn} is a positive basis of TpS
n. Using the fact

that for even n we have f∗ω = −ω, i.e. f reverses orientations,
it is now very easy to show that g is a diffeomorphism such that

π̃ ◦ g = π, where π̃ : R̃Pn → RPn is the natural projection.
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(5) We have
∫

M
div(X) =

∫

M
div(X)ω (by definition)

=

∫

M
LXω =

∫

M
ι(X)dω + d(ι(X)ω) (by the Cartan formula)

=

∫

M
d(ι(X)ω) (since dω = 0)

=

∫

∂M
ι(X)ω (by the Stokes theorem).

(6) (a) Let ω ∈ Ωn−1(∂M) be a volume form for ∂M compatible with
the induced orientation. Since ∂M is compact (because M is)
we have ∫

∂M
ω > 0.

If f existed it would satisfy f ◦ i = id, where i : ∂M → M is
the inclusion map. Then, using the Stokes theorem, we would
have

∫

∂M
ω =

∫

∂M
(f ◦ i)∗ω =

∫

∂M
i∗f∗ω =

∫

M
df∗ω

=

∫

M
f∗dω =

∫

M
f∗0 = 0

(dω = 0 as it is an n-form on the (n−1)-dimensional manifold
∂M). Therefore f cannot exist.

(b) Assume that there existed a differentiable map g : B → B
without fixed points. Then for each x ∈ B there would exist
a unique ray rx starting at g(x) and passing through x, and
clearly rx \ {g(x)} would intersect ∂B in a unique point f(x)
(cf. Figure 2). The map f : B → ∂B would be differentiable,
since

f(x) = g(x) + t(x)
x− g(x)

‖x− g(x)‖
where t(x) is the unique positive root of the equation

‖f(x)‖2 = 1 ⇔ t2 + 2t
〈x, g(x)〉 − ‖g(x)‖2

‖x− g(x)‖ + ‖g(x)‖2 = 1.

Moreover, we would have f|∂B = id. Since by (a) the map f
cannot exist, neither can g.

Chapter 3

Section 1.
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x

rx

g(x)

f(x)

B

∂B

Figure 2. Construction of the map f : B → ∂B.

(1) (a) If g is symmetric then

gij = g

(
∂

∂xi
,
∂

∂xj

)
= g

(
∂

∂xj
,
∂

∂xi

)
= gji.

Conversely, let v, w ∈ TpM . Then

v =
n∑

i=1

vi
∂

∂xi
and w =

n∑

i=1

wi
∂

∂xi
,

and consequently

g(v, w) =
n∑

i,j=1

gijv
iwj .

Therefore if gij = gji we have

g(v, w) =
n∑

i,j=1

gijv
iwj =

n∑

i,j=1

gjiv
iwj = g(w, v).

(b) If g is nondegenerate then

n∑

i,j=1

gijv
iwj = 0

for all (w1, . . . , wn) ∈ Rn implies (v1, . . . , vn) = 0. Selecting
wj = 1 and wk = 0 for k 6= j, it is easily seen that this is
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equivalent to saying that

n∑

i=1

gijv
i = 0

for j = 1, . . . , n implies (v1, . . . , vn) = 0. But this is just saying
that the transpose of the matrix (gij) is non-singular, which is
equivalent to saying that (gij) is nonsingular.

(c) We have

g(v, v) =

n∑

i,j=1

gijv
ivj .

Therefore, when written in coordinates, g(v, v) is just the qua-
dratic form corresponding to the matrix (gij). Hence, g(v, v) >
0 for v 6= 0 if and only if (gij) is positive definite.

(d) Assume that Φg(v) = 0. Then we have Φg(v)(w) = 0 for
all w ∈ TpM , i.e. g(v, w) = 0 for all w ∈ TpM . Since g is
nondegenerate we must have v = 0. In other words, the kernel
of Φg is trivial. Since dimTpM = dimT ∗

pM , we conclude that
Φg is an isomorphism.

(e) If g is positive definite and g(v, w) = 0 for all w ∈ Tp then, in
particular, g(v, v) = 0, and hence v = 0.

(2) LetM be a differentiable manifold and A = {(Uα, ϕα)} an atlas for
M . If δ is the standard Riemannian metric in Rn, then it follows
from Proposition 1.4 that gα := (ϕ−1

α )∗δ is a Riemannian metric on
Vα := ϕα(Uα). Let {ρi}i∈I be a partition of unity subordinated to
the cover {Vα} of M , such that supp ρi ⊂ Vαi , and define

g :=
∑

i∈I
ρigαi .

Then g is clearly a smooth symmetric 2-tensor field onM . To show
that it is positive definite let p ∈M and j ∈ I such that ρj(p) > 0.
Then for each v ∈ TpM \ {0} we have

g(v, v) =
∑

i∈I
ρi(p)gαi(v, v) ≥ ρj(p)gαj (v, v) > 0.

(3) (a) In this case the natural projection map π : M → M/G is a
covering map (hence a local diffeomorphism). For each point
r ∈M/G we can select a point p ∈ π−1(r) and a neighborhood
U ∋ p such that π|U is a diffeomorphism onto its image. We

then define a metric h on π(U) through h := ((π|U )
−1)∗g. To

show that this definition does not depend on the choice of p we
notice that any other point q ∈ π−1(r) is of the form q = f(p),
where f :M →M is an isometry corresponding to the action
by some element of G. Now V := f(U) is a neighborhood of q
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such that π|V is a diffeomorphism, and π|U = π|V ◦f . Therefore

((π|U )
−1)∗g = (f−1 ◦ (π|V )−1)∗g = ((π|V )

−1)∗(f−1)∗g

= ((π|V )
−1)∗g,

since f (and therefore f−1) is an isometry.
(b) We can define the flat square metric on Tn = Rn/Zn by ap-

plying the procedure above to the case when (M, g) is Rn with
the Euclidean metric and Zn acts on Rn by translations (which
are isometries of the Euclidean metric). In particular, the lo-
cal geometry of Tn is indistinguishable from the local geom-
etry of Rn. We have vol(Tn) = 1, since, if U := (0, 1)n then
π|U : U → Tn is a diffeomorphism which covers Tn except for
a zero measure set. Note that each choice of basis for Rn de-
termines an action of Zn by translations by integer multiples
of the basis vectors, whose quotient is diffeomorphic to Tn.
The metrics obtained on Tn from these actions are in general
different (in particular the corresponding volumes of Tn do not
have to be 1).

(c) We can define the standard metric on RPn = Sn/Z2 by ap-
plying the procedure above to the case when (M, g) is Sn with
the standard metric and Z2 acts on Sn by the antipodal map
(which is an isometry of the standard metric). In particular,
the local geometry of RPn is indistinguishable from the local
geometry of Sn. Notice also that vol(RPn) = 1

2 vol(S
n), since

if U is a hemisphere then π|U : U → RPn is a diffeomorphism
which covers RPn except for a zero measure set.

(4) (a) If g is left-invariant, then we must have

〈v, w〉x = 〈(dLx−1)x v, (dLx−1)xw〉e

for all x ∈ G and all v, w ∈ TxG. Thus we just have to show
that this formula indeed defines a left-invariant metric on G.
It is easy to check that the smoothness of the map

G×G ∋ (x, y) 7→ x−1y = Lx−1y ∈ G

implies the smoothness of the map

G× TG ∋ (x, v) 7→ (dLx−1)x v ∈ TG,

and that therefore the formula above defines a smooth tensor
field g on G. It should also be clear that g is symmetric and
positive definite. All that remains to be proved is that g is
left-invariant, that is,

〈(dLy)x v, (dLy)xw〉yx = 〈v, w〉x
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for all v, w ∈ TxG and all x, y ∈ G. Indeed we have
〈
(dLy)x v, (dLy)xw

〉
yx

=
〈(
dL(yx)−1

)
yx

(dLy)x v,
(
dL(yx)−1

)
yx

(dLy)xw
〉
e

=
〈(
d
(
Lx−1y−1 ◦ Ly

))
x
v,
(
d
(
Lx−1y−1 ◦ Ly

))
x
w
〉
e

= 〈(dLx−1)x v, (dLx−1)xw〉e = 〈v, w〉x.
Thus any inner product on the Lie algebra g = TeG determines
a left-invariant metric on G.

(b) Recall that every quaternion q ∈ RSU(2) can be written as

q = a1 + bi+ cj + dk

with a, b, c, d ∈ R, where 1, i, j, k ∈ SU(2) are given in Exer-
cise 7.17.13 of Chapter 1, and that SU(2) is the set of quater-
nions of Euclidean length 1. Given the identities i2 = j2 =
k2 = ijk = −1, is easy to check that

qq∗ = q∗q = (a2 + b2 + c2 + d2)1.

Furthermore, using this basis to identify RSU(2) with R4, we
can write the Euclidean inner product as

〈q1, q2〉 = Re(q1q
∗
2) = Re(q∗1q2),

where Re(q) = a. If u ∈ SU(2) is a unit quaternion, that is,
u∗u = 1, then

〈uq1, uq2〉 = Re(q∗1u
∗uq2) = Re(q∗1q2) = 〈q1, q2〉.

Therefore multiplication by unit quaternions preserves the Eu-
clidean inner product. Restricting to vectors tangent to SU(2)
we conclude that the standard metric on SU(2) is left-invariant.

(c) The Euclidean inner product on Mn×n ∼= Rn
2
is given by

〈A,B〉 = tr(ABt).

Therefore, if S ∈ O(n) then

〈SA, SB〉 = tr(SABtSt) = tr(StSABt) = tr(ABt) = 〈A,B〉.
Restricting to vectors tangent to O(n) we conclude that the
metric induced on O(n) by the Euclidean metric of Mn×n ∼=
Rn

2
is left-invariant.

(5) Using the change of variables theorem we have

l(γ) =

∫ β

α
‖γ̇(t)‖ dt =

∫ β

α
‖ċ(f(t))f ′(t)‖ dt

=

∫ β

α
‖ċ(f(t))‖|f ′(t)| dt =

∫ b

a
ċ(s) ds = l(c).
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(6) If v is tangent to f−1(a) then by Theorem 5.6 in Chapter 1 we have

df(v) = 0 ⇔ 〈grad f, v〉 = 0.

Section 2.

(1) (a) Let p ∈ W and ρ ∈ C∞(M) a bump function satisfying
supp ρ ⊂W and ρ(p) > 0. Thus we have

ρX = ρX̃ and ρY = ρỸ .

Using the properties of an affine connection we obtain

∇ρX(ρY ) = ρ(ρ∇XY + (X · ρ)Y )

and similarly

∇
ρX̃

(ρỸ ) = ρ(ρ∇
X̃
Ỹ + (X̃ · ρ)Ỹ ).

Equating the two expressions yields

ρ∇XY + (X · ρ)Y = ρ∇
X̃
Ỹ + (X̃ · ρ)Ỹ ,

which at p reads

ρ(p)(∇XY )p + (Xp · ρ)Yp = ρ(p)(∇
X̃
Ỹ )p + (X̃p · ρ)Ỹp.

Since p ∈W , we have Xp = X̃p and Yp = Ỹp. Therefore

ρ(p)(∇XY )p = ρ(p)(∇
X̃
Ỹ )p ⇔ (∇XY )p = (∇

X̃
Ỹ )p,

where we’ve used the fact that ρ(p) > 0. Since p ∈ W is

arbitrary, we conclude that ∇XY = ∇
X̃
Ỹ on W .

(b) We have

∇XY = ∇X

(
n∑

i=1

Y i ∂

∂xi

)
=

n∑

i=1

(X · Y i)
∂

∂xi
+

n∑

i=1

Y i∇X
∂

∂xi

=
n∑

i=1

(X · Y i)
∂

∂xi
+

n∑

k=1

Y k∇(∑n
j=1X

j ∂

∂xj

) ∂

∂xk

=
n∑

i=1

(X · Y i)
∂

∂xi
+

n∑

j,k=1

XjY k∇ ∂

∂xj

∂

∂xk

=
n∑

i=1

(X · Y i)
∂

∂xi
+

n∑

i,j,k=1

XjY kΓijk
∂

∂xi
.

(c) Using

ċ(t) =
n∑

i=1

ẋi(t)

(
∂

∂xi

)

c(t)

and V (t) =
n∑

i=1

V i(t)

(
∂

∂xi

)

c(t)
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we obtain

DV

dt
(t) = ∇ċ(t)V =

n∑

i=1


ċ(t) · V i(t) +

n∑

j,k=1

Γijk(c(t))ẋ
j(t)V k(t)



(
∂

∂xi

)

c(t)

=
n∑

i=1


V̇ i(t) +

n∑

j,k=1

Γijk(c(t))ẋ
j(t)V k(t)



(
∂

∂xi

)

c(t)

.

Therefore the coordinate equations for the parallel transport
law are

V̇ i(t) +

n∑

j,k=1

Γijk(c(t))ẋ
j(t)V k(t) = 0 (i = 1, . . . , n).

(d) Using (7) in the case when V = ċ, i.e. V i(t) = ẋi(t), yields

ẍi(t) +

n∑

j,k=1

Γijk(c(t))ẋ
j(t)ẋk(t) = 0 (i = 1, . . . , n).

(2) In Rn we have global Cartesian coordinates (x1, . . . , xn). Using
these coordinates, choosing an affine connection is equivalent to
choosing the n3 functions Γijk. Therefore, the space of affine con-

nections in Rn is just (C∞(Rn))n
3
.

The curves c(t) = at + b satisfy ċ(t) = a, c̈(t) = 0. Therefore,
they will be geodesics if and only if

n∑

j,k=1

Γijk(at+ b)ajak = 0 (i = 1, . . . , n)

for all t ∈ R and a, b ∈ Rn. We conclude that the affine connections
for which these curves are geodesics are those which satisfy

(29)
n∑

j,k=1

Γijk(x)a
jak = 0 (i = 1, . . . , n)

for all a, x ∈ Rn. These are exactly those which satisfy

(30) Γijk(x) = −Γikj(x) (i, j, k = 1, . . . , n).

Indeed, if an affine connection satisfies (30) then

n∑

j,k=1

Γijk(x)a
jak = −

n∑

j,k=1

Γikj(x)a
jak = −

n∑

j,k=1

Γijk(x)a
jak

and hence
n∑

j,k=1

Γijk(x)a
jak = 0.
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Conversely, if a connection satisfies (29) then selecting a = ej yields
Γijj = 0. Using this and and selecting a = ej + ek we finally obtain

Γijk = −Γikj .

(3) (a) Let X,Y, Z ∈ X(M) and f, g ∈ C∞(M). Then

(∇X ω)(f Y + g Z) = X · (ω(f Y + g Z))− ω(∇X(f Y + g Z))

= X · (f ω(Y ) + g ω(Z))− ω(f∇XY + (X · f)Y + g∇XZ + (X · g)Z)
= (X · f)ω(Y ) + (X · g)ω(Z) + f(X · (ω(Y ))− ω(∇XY ))

+ g(X · (ω(Z))− ω(∇XZ))− (X · f)ω(Y )− (X · g)ω(Z)
= (f∇Xω)(Y ) + g(∇Xω)(Z).

(b) (i) We have

(∇fX+gY ω)(Z) = (fX + gY ) · (ω(Z))− ω(∇fX+gY Z)

= fX · (ω(Z)) + gY · (ω(Z))− fω(∇XZ)− gω(∇Y Z)

= f(∇Xω + g∇Y ω)(Z);

(ii) Also,

(∇X(ω + η))(Y ) = X · ((ω + η)(Y ))− (ω + η)(∇XY )

= X · (ω(Y )) +X · (η(Y ))− ω(∇XY )− η(∇XY )

= (∇Xω +∇Xη)(Y );

(iii) Finally,

(∇X(fω))(Y ) = X · (fω(Y ))− fω(∇XY )

= (X · f)ω(Y ) + f(X · (ω(Y ))− ω(∇XY ))

= ((X · f)ω + f∇Xω)(Y ).

(c) In these coordinates we have

∇Xω(Y ) = X · (ω(Y ))− ω(∇XY )

= X ·
(

n∑

i=1

ωidx
i(Y )

)
− ω




n∑

i=1


X · Y i +

n∑

j,k=1

ΓijkX
jY k


 ∂

∂xi




= X ·
(

n∑

i=1

ωiY
i

)
−

n∑

i=1

ωi(X · Y i)−
n∑

i,j,k=1

ΓijkX
jY kωi

=
n∑

i=1

(X · ωi)Y i −
n∑

i=1




n∑

j,k=1

ΓkjiX
jωk


Y i

=




n∑

i=1


X · ωi −

n∑

j,k=1

ΓkjiX
jωk


 dxi


 (Y ).
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(d) Let X be a vector field and T a (k,m)-tensor field. Then we
define

∇XT (X1, . . . , Xk, θ
1, . . . , θm) := X · (T (X1, . . . , Xk, θ

1, . . . , θm))

− T (∇XX1, . . . , Xk, θ
1, . . . , θm)− · · · − T (X1, . . . ,∇XXk, θ

1, . . . , θm)

− T (X1, . . . , Xk,∇Xθ
1, . . . , θm)− · · · − T (X1, . . . , Xk, θ

1, . . . ,∇Xθ
m)

for all X1, . . . , Xk ∈ X(M) and θ1, . . . , θm ∈ Ω1(M). Notice
that this definition generalizes the definition for 1-forms, and
coincides with the usual definition in the case when T is a
vector field. A similar calculation to the one for 1-forms yields

∇XT =
n∑

i1,··· ,ik,j1,··· ,jm=1


X · T j1···jmi1···ik −

n∑

r,s=1

Γsri1X
rT j1···jmsi2···ik − · · ·

−
n∑

r,s=1

ΓsrikX
rT j1···jmi1···ik−1s

+
n∑

r,s=1

Γj1rsX
rT sj2···jmi1···ik + · · ·

+
n∑

r,s=1

Γjmrs X
rT

j1···jk−1s
i1···ik


 dxi1 ⊗ · · · ⊗ dxik ⊗ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjm
.

Section 3.

(1) LetX,X1, X2, Y, Y1, Y2, Z ∈ X(M) and f, g ∈ C∞(M). Then, using
the Koszul formula we have

2〈∇fX1+gX2Y, Z〉 = (fX1 + gX2) · 〈Y, Z〉+ Y · 〈fX1 + gX2, Z〉 − Z · 〈fX1 + gX2, Y 〉
− 〈[fX1 + gX2, Z], Y 〉 − 〈[Y, Z], fX1 + gX2〉+ 〈[fX1 + gX2, Y ], Z〉
= fX1 · 〈Y, Z〉+ gX2 · 〈Y, Z〉+ (Y · f)〈X1, Z〉+ fY · 〈X1, Z〉+ (Y · g)〈X2, Z〉
+ gY · 〈X2, Z〉 − (Z · f)〈X1, Y 〉 − fZ · 〈X1, Y 〉 − (Z · g)〈X2, Y 〉 − gZ · 〈X2, Y 〉
− f〈[X1, Z], Y 〉+ (Z · f)〈X1, Y 〉 − g〈[X2, Z], Y 〉+ (Z · g)〈X2, Y 〉
− f〈[Y, Z], X1〉 − g〈[Y, Z], X2〉+ f〈[X1, Y ], Z〉 − (Y · f)〈X1, Z〉
+ g〈[X2, Y ], Z〉 − (Y · g)〈X2, Z〉
= 2f〈∇X1Y, Z〉+ 2g〈∇X2Y, Z〉 = 2〈f∇X1Y + g∇X2Y, Z〉.

Also,

2〈∇X(Y1 + Y2), Z〉 = X · 〈Y1 + Y2, Z〉+ (Y1 + Y2) · 〈X,Z〉 − Z · 〈X,Y1 + Y2〉
− 〈[X,Z], Y1 + Y2〉 − 〈[Y1 + Y2, Z], X〉+ 〈[X,Y1 + Y2], Z〉
= X · 〈Y1, Z〉+X · 〈Y2, Z〉+ Y1 · 〈X,Z〉+ Y2 · 〈X,Z〉 − Z · 〈X,Y1〉
− Z · 〈X,Y2〉 − 〈[X,Z], Y1〉 − 〈[X,Z], Y2〉 − 〈[Y1, Z], X〉 − 〈[Y2, Z], X〉
+ 〈[X,Y1], Z〉+ 〈[X,Y2], Z〉 = 2〈∇XY1 +∇XY2, Z〉.
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Finally,

2〈∇X(fY ), Z〉 = X · 〈fY, Z〉+ fY · 〈X,Z〉 − Z · 〈X, fY 〉
− 〈[X,Z], fY 〉 − 〈[fY, Z], X〉+ 〈[X, fY ], Z〉
= (X · f)〈Y, Z〉+ fX · 〈Y, Z〉+ fY · 〈X,Z〉 − fZ · 〈X,Y 〉 − (Z · f)〈X,Y 〉−
− f〈[X,Z], Y 〉 − f〈[Y, Z], X〉+ (Z · f)〈Y,X〉+ f〈[X,Y ], Z〉+ (X · f)〈Y, Z〉
= f(X · 〈Y, Z〉+ Y · 〈X,Z〉 − Z · 〈X,Y 〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉
+ 〈[X,Y ], Z〉) + 2(X · f)〈Y, Z〉 = 2〈f∇XY + (X · f)Y, Z〉.

(2) (a) By linearity, it suffices to consider X = ∂
∂xi

. Since

〈∇XY, Z〉 =
〈
∇ ∂

∂xi

3∑

j=1

Y j ∂

∂xj
, Z

〉

=

〈
3∑

j=1

∂Y j

∂xi
∂

∂xj
+

3∑

j=1

Y j
3∑

k=1

Γkij
∂

∂xk
, Z

〉

=

3∑

k=1

Zk


∂Y

k

∂xi
+

3∑

j=1

Y jΓkij




and similarly

〈Y,∇XZ〉 =
3∑

k=1

Y k


∂Z

k

∂xi
+

3∑

j=1

ZjΓkij


 ,

we have

〈∇XY, Z〉+ 〈Y,∇XZ〉 =
3∑

k=1

Zk
∂Y k

∂xi
+ Y k ∂Z

k

∂xi
+

=0︷ ︸︸ ︷
3∑

j,k=1

(Y jZk + ZjY k)Γkij

=
3∑

k=1

Zk
∂Y k

∂xi
+ Y k ∂Z

k

∂xi
=

∂

∂xi
〈Y, Z〉.

(b) The equations for the geodesics are

ẍk+

=0︷ ︸︸ ︷
3∑

i,j=1

Γkij ẋ
iẋj= 0, for k = 1, 2, 3,

implying that ẍk = 0. Hence the geodesics are straight lines
(i.e. xk(t) = akt+ bk for some constants ak, bk ∈ R).
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(c) The torsion of ∇ is given by

T =
3∑

i,j,k=1

(
Γkij − Γkji

)
dxi ⊗ dxj ⊗ ∂

∂xk

=
3∑

i,j,k=1

ω(εkij − εkji)dx
i ⊗ dxj ⊗ ∂

∂xk

=
3∑

i,j,k=1

2ωεijkdx
i ⊗ dxj ⊗ ∂

∂xk
,

i.e. T has components T kij = 2ωεijk. Therefore T = 0 if and
only if ω = 0.

(d) The parallel transport equations are

V̇ i +
3∑

j,k=1

ωεijkẋ
jV k = 0, for i = 1, 2, 3.

Hence,




V̇ 1 + ω(ẋ2V 3 − ẋ3V 2) = 0

V̇ 2 + ω(ẋ3V 1 − ẋ1V 3) = 0

V̇ 3 + ω(ẋ1V 2 − ẋ2V 1) = 0

and so V̇ + ω(ẋ× V ) = 0.
(3) (a) Using the fact that f is an isometry and using the Koszul

formula we have

2〈f∗∇XY, f∗Z〉f(p) = 2〈∇XY, Z〉p = Xp · 〈Y, Z〉+ Yp · 〈Z,X〉
− Zp · 〈X,Y 〉 − 〈[Y, Z], X〉p − 〈[X,Z], Y 〉p − 〈[Y,X], Z〉p.

On the other hand,

2〈∇̃f∗X f∗Y, f∗Z〉f(p) = (f∗X)f(p) · 〈f∗Y, f∗Z〉+ (f∗Y )f(p) · 〈f∗Z, f∗X〉
− (f∗Z)f(p) · 〈f∗X, f∗Y 〉 − 〈[f∗Y, f∗Z], f∗X〉f(p)
− 〈[f∗X, f∗Z], f∗Y 〉f(p) − 〈[f∗Y, f∗X], f∗Z〉f(p)
= Xp · (〈f∗Y, f∗Z〉 ◦ f) + Yp · (〈f∗Z, f∗X〉 ◦ f)
− Zp · (〈f∗X, f∗Y 〉 ◦ f)− 〈f∗[Y, Z], f∗X〉f(p)
− 〈f∗[X,Z], f∗Y 〉f(p) − 〈f∗[Y,X], f∗Z〉f(p)
= Xp · 〈Y, Z〉+ Yp · 〈Z,X〉 − Zp · 〈X,Y 〉 − 〈[Y, Z], X〉p
− 〈[X,Z], Y 〉p − 〈[Y,X], Z〉p = 2〈f∗∇XY, f∗Z〉f(p).
(b) Let c : I →M be a geodesic and consider the map c̃ := f ◦ c :

I → N . Then, since

˙̃c(t) =
d(f ◦ c)
dt

= (df)c(t)ċ,
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we have

∇̃ ˙̃c
˙̃c = ∇̃(df)c(t)ċ

(
(df)c(t)ċ

) (a)
= (df)c(t) (∇ċċ) = 0,

and we conclude that c̃ is a geodesic in N .
(4) (a) Since ∂

∂θ is the tangent vector to the curve in S2 obtained by
varying θ while holding ϕ constant, we have

∂

∂θ
=
∂φ

∂θ
= (cos θ cosϕ, cos θ sinϕ,− sin θ)

and therefore

gθθ =

〈
∂

∂θ
,
∂

∂θ

〉
= 1.

Similarly,

∂

∂ϕ
=
∂φ

∂ϕ
= (− sin θ sinϕ, sin θ cosϕ, 0)

and hence

gϕϕ =

〈
∂

∂ϕ
,
∂

∂ϕ

〉
= sin2 θ;

gθϕ = gϕθ =

〈
∂

∂θ
,
∂

∂ϕ

〉
= 0.

We conclude that the metric induced on S2 by the Euclidean
metric of R3 is given by

g = dθ ⊗ dθ + sin2 θdϕ⊗ dϕ.

(b) We have

(gij) =

(
gθθ gθϕ
gϕθ gϕϕ

)
=

(
1 0
0 sin2 θ

)

and hence

(gij) = (gij)
−1 =

(
1 0
0 1

sin2 θ

)
.

The Christoffel symbols can be easily computed from these
matrices. For instance

Γθϕϕ =
1

2

2∑

i=1

gθi
(
∂gϕi
∂ϕ

+
∂gϕi
∂ϕ

− ∂gϕϕ
∂xi

)

=
1

2
gθθ

(
0 + 0− ∂

(
sin2 θ

)

∂θ

)
= − sin θ cos θ.

Only three of the eight Christoffel symbols are nonzero: the
one computed above and

Γϕθϕ = Γϕϕθ = cot θ.
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(c) The geodesic equations are

θ̈ +
2∑

i,j=1

Γθij ẋ
iẋj = 0 ⇔ θ̈ − sin θ cos θ ϕ̇2 = 0;

ϕ̈+
2∑

i,j=1

Γϕij ẋ
iẋj = 0 ⇔ ϕ̈+ 2 cot θ θ̇ϕ̇ = 0.

The curve c given in coordinates by ĉ(t) = (θ(t), ϕ(t)) =
(
π
2 , t
)

is clearly a solution of these equations. Therefore the equator
θ = π

2 is the image of a geodesic.

(d) Any rotation about an axis through the origin in R3 is an
isometry of R3 which preserves S2. Since we are considering
the metric in S2 induced by the Euclidean metric on R3, it is
clear that such a rotation will determine an isometry of S2.

(e) Given a point p ∈ S2 and a vector v ∈ TpS
2, there exists a

rotation R : R3 → R3 such that R(p) = (1, 0, 0) and R(v) =
(0, 1, 0). The geodesic with these initial conditions is clearly
the curve c given in coordinates by ĉ(t) = (θ(t), ϕ(t)) =

(
π
2 , t
)
,

whose image is the equator. By Exercise 3, the geodesic with
initial condition v ∈ TpS

2 must be R−1 ◦ c. Since the image of
c is the intersection of S2 with the plane z = 0, the image of
R−1 ◦ c is the intersection of S2 with some plane through the
origin, i.e. a great circle.

(f) For example the triangle with vertices (1, 0, 0), (0, 1, 0) and
(0, 0, 1) (cf. Figure 3).

Figure 3. Geodesic triangle on S2 with three right angles.



376 SOLUTIONS TO EXERCISES

(g) The equations for parallel transport are

V̇ θ +
2∑

i,j=1

Γθij ẋ
iV j = 0 ⇔ V̇ θ + ΓθϕϕV

ϕ = 0

⇔ V̇ θ − sin θ0 cos θ0V
ϕ = 0

(since ϕ̇ = 1 along c) and

V̇ ϕ +

2∑

i,j=1

Γϕij ẋ
iV j = 0 ⇔ V̇ ϕ + ΓϕϕθV

θ = 0

⇔ V̇ ϕ + cot θ0V
θ = 0

(since ϕ̇ = 1 along c). These equations imply

V̈ θ + cos2 θ0V
θ = 0 ⇔ V θ = A cos((cos θ0)t) +B sin((cos θ0)t)

where A,B ∈ R are constants, and hence

V ϕ =
1

sin θ0 cos θ0
V̇ θ = − A

sin θ0
sin((cos θ0)t)+

B

sin θ0
cos((cos θ0)t).

The initial condition is V θ(0) = 1, V ϕ(0) = 0, implying A =
1, B = 0, and thus

V θ = cos((cos θ0)t);

V ϕ = − 1

sin θ0
sin((cos θ0)t).

Note that in particular

〈V (t), V (t)〉 = (V θ)2 + sin2 θ0(V
ϕ)2 = 1.

Thus the angle α between V (0) and V (2π) is given by

cosα = 〈V (0), V (2π)〉 = V θ(2π) = cos(2π cos θ0),

that is

α = 2π cos θ0 or α = 2π(1− cos θ0)

(depending on which angle one chooses to measure).
(h) Using the fact that any point on S2 can be carried to (0, 0, 1)

by an appropriate isometry, we just have to show that no open
neighborhood U ⊂ S2 of (0, 0, 1) is isometric to an open set
V ⊂ R2 with the Euclidean metric. Now any such neigh-
borhood contains the image of a curve c(t) as given in (g)
(for θ0 > 0 sufficiently small). If U were isometric to W , the
Levi-Civita connection on U would be the trivial connection,
and hence the parallel vector field V (t) in (g) would satisfy
V (0) = V (2π). Since this is not true for any θ0 ∈ (0, π2 ), U
cannot be isometric to W .
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(i) The parallel postulate does not hold in S2 because the images
of any two geodesics either coincide or intersect in exactly two
points.

(5) (a) As we saw in Exercise 1.10.4, we must have

〈v, w〉(x,y) =
〈(
dL(x,y)−1

)
(x,y)

v,
(
dL(x,y)−1

)
(x,y)

w
〉
e

for all (x, y) ∈ H and v, w ∈ T(x,y)H. From Exercise 7.17.3 in
Chapter 1 we know that

(
dL(x,y)

)
(z,w)

=

(
y 0
0 y

)

and

(x, y)−1 =

(
−x
y
,
1

y

)
.

Therefore we have〈
vx

∂

∂x
+ vy

∂

∂y
, wx

∂

∂x
+ wy

∂

∂y

〉

(x,y)

=

〈
1

y
vx

∂

∂x
+

1

y
vy

∂

∂y
,
1

y
wx

∂

∂x
+

1

y
wy

∂

∂y

〉

(0,1)

=
1

y2

〈
vx

∂

∂x
+ vy

∂

∂y
, wx

∂

∂x
+ wy

∂

∂y

〉

(0,1)

=
1

y2
(vxwx + vywy) ,

that is

g =
1

y2
(dx⊗ dx+ dy ⊗ dy).

(b) We have

(gij) =

(
gxx gxy
gyx gyy

)
=

(
1
y2

0

0 1
y2

)

and hence

(gij) = (gij)
−1 =

(
y2 0
0 y2

)
.

The Christoffel symbols can be easily computed from these
matrices. For instance

Γxxy =
1

2

2∑

i=1

gxi
(
∂gyi
∂x

+
∂gxi
∂y

− ∂gxy
∂xi

)

=
1

2
gxx

(
0 +

∂

∂y

(
1

y2

)
− 0

)
= −1

y
.
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Only four of the eight Christoffel symbols are nonvanishing:
the one calculated above and

Γxyx = −Γyxx = Γyyy = −1

y
.

(c) The geodesic equations are

ẍ+
2∑

i,j=1

Γxij ẋ
iẋj = 0 ⇔ ẍ− 2

y
ẋẏ = 0;

ÿ +
2∑

i,j=1

Γyij ẋ
iẋj = 0 ⇔ ÿ +

1

y
ẋ2 − 1

y
ẏ2 = 0.

One can check that the curves α and β satisfy these equations
by direct substitution. Also, it is clear that α(R) is the positive
y-axis. Since

tanh2 t+
1

cosh2 t
= 1,

we see that β(R) is the intersection of the unit circle with H.
(d) By Exercise 3, isometries carry images of geodesics to images

of geodesics. Since the metric on H is left-invariant, any left
translation is an isometry. In particular,

L(a,1)(x, y) = (x+ a, y)

and

L(0,b)(x, y) = (bx, by)

are isometries for all a ∈ R and b > 0. We conclude that
all vertical half-lines and all semicircles centered on the x-axis
are images of geodesics of H (cf. Figure 4). On the other
hand, given p ∈ H and v ∈ TpH, v is always tangent to one of
these. Indeed, if v is vertical then it is tangent to the vertical
half-line through p. If v is not vertical, it is tangent to the
semicircle centered at the intersection of the x-axis with the
line orthogonal to v at p (cf. Figure 4). Therefore the image of
the geodesic with initial condition v ∈ TpM is either a vertical
half-line or a semicircle centered on the x-axis.

(e) If p and q are on the same vertical half-line then there is no
semicircle centered on the x-axis containing p and q. If p and
q are not on the same vertical half-line then there exists a
unique semicircle centered on the x-axis containing p and q,
whose center is the intersection of the x-axis with the perpen-
dicular bisector of the line segment with endpoints p and q (cf.
Figure 4).
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(f) On the sphere S2 there are infinite geodesics which are not
reparametrizations of each other going through any two an-
tipodal points. On R2 \ {0} with the usual Euclidean metric
there is no geodesic connecting the points (1, 0) and (−1, 0).

(g) Since the metric for the hyperbolic plane is a function times
the Euclidean metric, the angles measured using both metrics
are equal. Consider the geodesic quadrilateral formed by two
vertical half-lines and two distinct semicircles centered at the
intersection of one of the half-lines with the x-axis (cf. Fig-
ure 4). It is easy to check that the internal angles of this
quadrilateral add up to less than 2π. Now every open set
U ⊂ H contains one such quadrilateral. If U were isometric
to V ⊂ R2 then the internal angles of the quadrilateral would
have to add up to exactly 2π. We conclude that U cannot be
isometric to V .

(h) The parallel postulate does not hold in the hyperbolic plane.
Instead, it is easy to see that given a geodesic c : R → H and
a point p 6∈ c(R) there exists an infinite number of geodesics
(up to reparametrization) c̃ : R → H such that p ∈ c̃(R) and
c(R) ∩ c̃(R) = ∅ (cf. Figure 4).

(6) (a) We start by noticing that if p ∈ N then (∇̃
X̃
Ỹ )p depends only

on X̃p = Xp and on the values of Ỹ along a curve tangent to
Xp, which may therefore be chosen to be a curve on N . Since

Ỹ = Y on N , we conclude that ∇̃
X̃
Ỹ |N depends only on X

and Y . Let us define ∇ : X(N)× X(N) → X(N) by

∇XY =
(
∇̃
X̃
Ỹ
)⊤

.

We shall prove that ∇ is the Levi-Civita connection on N . The
fact that ∇ defines an affine connection on N follows from the
fact that ∇̃ is an affine connection onM and from the linearity
of the orthogonal projection ⊤ : TM |N → TN . On the other
hand, given X,Y, Z ∈ X(N) we have

X · 〈〈Y, Z〉〉 = X̃ · 〈Ỹ , Z̃〉 = 〈∇̃
X̃
Ỹ , Z̃〉+ 〈Ỹ , ∇̃

X̃
Z̃〉

= 〈(∇̃
X̃
Ỹ )⊤, Z̃〉+ 〈Ỹ , (∇̃

X̃
Z̃)⊤〉

= 〈〈∇XY, Z〉〉+ 〈〈Y,∇XZ〉〉,
where we used the fact that if v ∈ TpN then 〈v, w〉 = 〈v, w⊤〉
for all w ∈ TpM . Therefore ∇ is compatible with the induced
metric. Finally,

∇XY −∇YX =
(
∇̃
X̃
Ỹ
)⊤

−
(
∇̃
Ỹ
X̃
)⊤

=
(
∇̃
X̃
Ỹ − ∇̃

Ỹ
X̃
)⊤

= [X̃, Ỹ ]⊤ = [X,Y ],
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(a) (b)

(c) (d)

pp

p

q

v

Figure 4. (a) Geodesics of the hyperbolic plane and vio-
lation of the parallel postulate, (b) Geodesic tangent to a
vector, (c) Geodesic through two points, (d) Internal angles
of a geodesic quadrilateral.

where we used the fact that [X̃, Ỹ ] = [X,Y ] on N (cf. Ex-
ercise 6.11.7 in Chapter 1). Therefore ∇ is symmetric, and
hence it is the Levi-Civita connection on 〈〈·, ·〉〉.

(b) If (M, 〈·, ·〉) is R3 with the Euclidean metric, N ⊂ R3 is a
surface and c : I → N is a curve we have

∇ċ ċ =
(
∇̃ċ ċ

)⊤
= c̈⊤.

Therefore c is a geodesic of N if and only if its acceleration
is orthogonal to N . Assume that c is also a curve on a plane
L which is orthogonal to N (i.e. TpL is orthogonal to TpN
for each p ∈ L ∩ N). Then both ċ(t) and c̈(t) are contained
in Tc(t)L. Since Tc(t)L ∩ Tc(t)N = Rċ(t), we see that in this

case c̈⊤ is a multiple of ċ. Finally, if we parameterize c by the
arclength, we have

〈ċ, ċ〉 = 1 ⇒ 〈c̈, ċ〉 = 0 ⇒ c̈⊤ = 0.
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We conclude that any curve c, parameterized by the arclength,
with image on L ∩ N is a geodesic of N . Similarly, it is not
difficult to show that if L is not orthogonal to N and c̈ does
not vanish then c is not a geodesic of N . These considerations
make the following results obvious.

(i) On the sphere S2, any great circle (i.e. any intersection
of S2 with a plane containing the origin) is the image of
a geodesic. Any circle which is not a great circle (i.e. any
intersection of S2 with a plane which does not contain
the origin) is not the image of a geodesic.

(ii) Any intersection of the torus of revolution with a plane of
symmetry (i.e. a plane such that reflection with respect
to that plane leaves the torus invariant) is the image of
a geodesic (see also Exercise 4.8.5). Any intersection of
the torus of revolution with a plane which is not a plane
of symmetry is not the image of a geodesic.

(iii) The generators of the cone are images of geodesics (this
could also be seen from the fact that they are already
geodesics of R3). The circles obtained by intersecting
the cone with planes perpendicular to its axis are not
images of geodesics.

(iv) The intersection of any surface of revolution with any
plane containing the axis of revolution are images of
geodesics. Notice that this includes all cases above.

(c) This is immediate from the fact that

∇ċ V =
(
∇̃ċ V

)⊤
= V̇ ⊤

depends only on the operator ⊤, which will be the same for
both surfaces if they are tangent along the curve c.

(d) A parameterization of the cone is ϕ : (0,+∞) × (0, 2π) → R3

given by

ϕ(r, θ) = (r cos θ, r sin θ, r cotα)

where α is the angle between the generators and the axis. The
induced metric can then be found to be

g =
1

sin2 α
dr ⊗ dr + r2dθ ⊗ dθ.

Defining new coordinates
{
r′ := r

sinα

θ′ := θ sinα

we have

g = dr′ ⊗ dr′ + r′2dθ′ ⊗ dθ′,



382 SOLUTIONS TO EXERCISES

implying that the cone minus a generator is isometric to the
open set of R2 given by θ′ ∈ (0, 2π sinα). In particular, as
suggested in the figure, parallel transport once around the cone
will lead to an angle 2π(1− sinα) between the initial and the
final vectors. Now if the circle on the sphere is parameterized
by

c(t) = (sin θ0 cos t, sin θ0 sin t, cos θ0)

then by elementary geometry the cone tangent to the sphere
along c satisfies α = π

2 − θ0 (cf. Figure 5). Therefore the
angle between the initial and the final vectors is 2π(1− cos θ0)
(cf. Exercise 4).

α

θ0

Figure 5. Relation between α and θ0.

(7) Since the Levi-Civita connection is compatible with the metric g
we have

(∇X g)(Y, Z) := X · 〈Y, Z〉 − 〈∇XY, Z〉 − 〈Y,∇XZ〉 = 0.

(8) (a) Note that ψt is the local flow of X. Hence, since the maps ψt
are isometries, we conclude that

LX g =
d

dt
(ψ∗

t g)|t=0 =
dg

dt
= 0.
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(b) Using (a) we have

0 = (LXg)(Y, Z) = X · 〈Y, Z〉 − 〈[X,Y ], Z〉 − 〈Y, [X,Z]〉
= X · 〈Y, Z〉 − 〈∇XY, Z〉+ 〈∇YX,Z〉 − 〈∇XZ, Y 〉+ 〈∇ZX,Y 〉
= 〈∇YX,Z〉+ 〈∇ZX,Y 〉,

where we used the symmetry and the compatibility with the
metric of the Levi-Civita connection.

(c) From (b) we know that 〈∇YX,Y 〉 = 0 for every Y ∈ X(M).
Hence, since ∇ is compatible with the metric, we have

d

dt
〈ċ(t), Xc(t)〉 = 〈∇ċ(t)ċ(t), Xc(t)〉+ 〈ċ(t),∇ċ(t)X〉 = 0.

(9) By Exercise 2.8.2 in Chapter 2 we have

(LX ω)(Y1, . . . , Yn) = X · (ω(Y1, . . . , Yn))

−
n∑

i=1

ω(Y1, . . . , Yi−1, [X,Yi], Yi+1, . . . , Yn)

= −
n∑

i=1

ω(Y1, . . . , Yi−1,∇XYi −∇YiX,Yi+1, . . . , Yn).

Moreover,

0 = X · 〈Yi, Yi〉 = 2〈∇XYi, Yi〉

and so

(LXω)(Y1, . . . , Yn) =
n∑

i=1

ω(Y1, . . . , Yi−1,∇YiX,Yi+1, . . . , Yn)

=
n∑

i=1

ω


Y1, . . . , Yi−1,

n∑

j=1

〈∇YiX,Yj〉Yj , Yi+1, . . . , Yn




=
n∑

i=1

〈∇YiX,Yi〉.

We conclude that

LXω =
n∑

i=1

〈∇YiX,Yi〉ω

and so div(X) =
∑n

i=1〈∇YiX,Yi〉.

Section 4.
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(1) (a) Using the Koszul formula we have, for Y ∈ X(M),

2〈∇grad f grad f, Y 〉 = 2grad f · 〈grad f, Y 〉 − Y · ‖ grad f‖2

− 2〈[grad f, Y ], grad f〉+ 〈[grad f, grad f ], Y 〉
= 2(grad f · (df(Y ))− df([grad f, Y ]))

= 2(grad f · (Y · f)− [grad f, Y ] · f)
= 2(grad f · (Y · f)− grad f · (Y · f) + Y · (grad f · f))
= 2Y · (df(grad f)) = 2Y · 〈grad f, grad f〉 = 0,

and so the integral curves of grad f are geodesics.
(b) Let c : [a, b] → M be a curve parameterized by the arclength.

We have the orthogonal decomposition

ċ(t) =
〈
ċ(t), (grad f)c(t)

〉
(grad f)c(t) + Y (t)

= (df)c(t)(ċ(t))(grad f)c(t) + Y (t)

=
d(f ◦ c)
dt

(t)(grad f)c(t) + Y (t),

where

〈Y (t), (grad f)c(t)〉 = 0.

Therefore

l(c) =

∫ b

a

∥∥∥∥
d(f ◦ c)
dt

(t)(grad f)c(t) + Y (t)

∥∥∥∥ dt ≥
∫ b

a

∣∣∣∣
d(f ◦ c)
dt

(t)

∣∣∣∣ dt

≥
∫ b

a

d(f ◦ c)
dt

(t)dt = f(c(b))− f(c(a)),

with equality holding exactly when c is an integral curve of
grad f . We conclude that the integral curves of grad f are
minimizing curves, and hence, by Theorem 4.6, geodesics.

(2) (a) First let us see the local expression for the geodesics in these
coordinates. Let w ∈ TpM and consider the geodesics cw :
I →M such that cw(0) = p. Then

cw(t) = ctw(1) = expp(tw) = ϕ(tw1, . . . , twn),

where w =
∑n

i=1w
ivi, and so, in local coordinates, the geodesics

are given by ĉw : I → Rn such that

ĉw(t) = t(w1, . . . , twn).

Since the local geodesic equations are

ẍi +
n∑

j,k=1

Γijk(cw(t))ẋ
j ẋk = 0,

we have ∑

j,k=1

wjwkΓijk(p) = 0
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for every w ∈ TpM with ‖w‖ sufficiently small, and so Γijk(p) =
0 for every i, j, k.

(b) If {v1, . . . , vn} is an orthonormal basis of TpM then

gij(p) =

〈(
∂

∂xi

)

p

,

(
∂

∂xj

)

p

〉
=

〈
(dϕ)0

∂

∂xi
, (dϕ)0

∂

∂xj

〉

= 〈(d expp)0vi, (d expp)0vj〉 = 〈vi, vj〉 = δij ,

where we used the fact that (d expp)0 is the identity map.
(3) (a) Let v ∈ g = TeG. Then,

(di)ev =
d

dt
i(exp(tv))|t=0

=
d

dt
(exp(tv))−1

|t=0

=
d

dt
(exp(−tv))|t=0

= −v

(where exp is the Lie group exponential map), and so (di)e =
− id. Moreover, for g ∈ G,

i(g) = g−1 = (h−1g)−1h−1 = (Rh−1 ◦ i ◦ Lh−1)(g),

implying that

(di)g = (dRh−1)(h−1g)−1(di)h−1g(dLh−1)g

for every h ∈ G. Taking h = g we obtain

(di)g = (dRg−1)e(di)e(dLg−1)g.

Hence, for v, w ∈ TgG,

〈(di)gv, (di)gw〉 = 〈(dRg−1)e(di)e(dLg−1)gv, (dRg−1)e(di)e(dLg−1)gw〉
= 〈(di)e(dLg−1)gv, (di)e(dLg−1)gw〉
= 〈−(dLg−1)gv,−(dLg−1)gw〉 = 〈v, w〉

where we used the fact that Rg−1 and Lg−1 are isometries.

(b) Let c̃ := (cv)
−1 = i ◦ cv. Then, from (a), we have c̃(0) = e

and ˙̃c(0) = −v, implying that (cv)
−1(t) = c−v(t) is the geo-

desic through e with initial velocity −v. On the other hand,
if γ(t) := cv(−t), we have γ(0) = cv(0) = e and γ̇(0) = −v,
and so γ(t) = c−v(t). We conclude that (cv)

−1(t) = cv(−t).
Now let I := (a, b) be the maximal open interval (such that
0 ∈ I) where cv is defined, and consider a fixed t0 ∈ I such
that 0 < t0 < ε, where ε > 0 is such that expe(Bε(0)) is a
normal ball. Then γ(t) := cv(t0)cv(t) is also a geodesic (since
Lcv(t0) is an isometry) defined in I, satisfying

γ(−t0) = cv(t0)cv(−t0) = cv(t0)(cv(t0))
−1 = e

and γ(0) = cv(t0). Since e and cv(t0) are joined by two
geodesics of length t0‖v‖ < ε, these two geodesics must co-
incide, and so γ(t) = cv(t0 + t) for all t ∈ I where both sides
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are defined. If b < +∞ then γ would extend cv outside I,
which is impossible. Moreover, since cv(−t) = (cv(t))

−1, we
conclude that a = −∞, and so cv is defined for all t ∈ R. As

cv(t0 + t) = γ(t) = cv(t0)cv(t)

for every t, t0 ∈ R such that |t0| < ε, given s ∈ R and choosing
m > 0 such that | sm | < ε, we have

cv(s+ t) = cv

(m
m
s+ t

)
= cv

( s
m

)
cv

(
m− 1

m
s+ t

)

= · · · = cv

( s
m

)
· · · cv

( s
m

)
cv(t) = cv(s)cv(t).

(c) Let v ∈ g and consider the geodesics cv : I → G such that
cv(0) = e. Let X be a left-invariant vector field such that
Xe = v. Then, since cv(s+ t) = cv(s)cv(t), we have

ċv(s) =
d

dt
cv(s+ t)|t=0

=
d

dt
(cv(s)cv(t))|t=0

= (dLcv(s))cv(0)ċv(0) = (dLcv(s))ev = Xcv(s).

We conclude that cv is an integral curve of X with cv(0) = e.
On the other hand, since Lg is an isometry, all geodesics of
G are the images by left translations of geodesics through e.
Moreover, since

(Lg ◦ cv)(0) = gcv(0) = g

and

d

dt
(Lg ◦ cv)(t)|t=0

= (dLg)eċv(0) = (dLg)ev = Xg,

we conclude that all geodesics are integral curves of left invari-
ant vector fields. Finally, we have

expe(v) = cv(1) = exp(v).

(d) Let X be a left-invariant vector field. Then ∇XX = 0 since
its integral curves are geodesics. Hence, if X and Y are two
left-invariant vector fields, we have

0 = ∇X+Y (X + Y ) = ∇XY +∇YX = 2∇XY − [X,Y ],

where we used the symmetry of the Levi-Civita connection.
(e) To check that the standard metric in S3 ∼= SU(2) is also right-

invariant, we notice that if u ∈ SU(2) is a unit quaternion,
that is, u∗u = 1, then

〈q1u, q2u〉 = Re(q1uu
∗q∗2) = Re(q1q

∗
2) = 〈q1, q2〉.

To check that the metric induced on O(n) by the Euclidean

metric of Mn×n ∼= Rn
2
is also right-invariant, we notice that
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if S ∈ O(n) then

〈AS,BS〉 = tr(ASStBt) = tr(ABt) = 〈A,B〉.
(f) Let G be an n-dimensional compact Lie group and let 〈·, ·〉 be

a left-invariant metric on G. Given v, w ∈ TgG define

〈〈v, w〉〉 =
∫

G
f,

where the integral is taken with respect to the (left-invariant)
Riemannian volume element and f : G→ R is the function

f(h) = 〈(dRh)gv, (dRh)gw〉.
It is immediate to show that 〈〈·, ·〉〉 defines a Riemannian met-
ric on G (positivity follows from f > 0 when v = w 6= 0). On
the other hand, it is left-invariant, since

〈(dRh)kg(dLk)gv, (dRh)kg(dLk)gw〉
= 〈(d(Rh ◦ Lk))gv, (d(Rh ◦ Lk))gw〉
= 〈(d(Lk ◦Rh))gv, (d(Lk ◦Rh))gw〉
= 〈(dLk)gh(dRh)gv, (dLk)gh(dRh)gw〉
= 〈(dRh)gv, (dRh)gw〉,

and so by integration

〈〈(dLk)gv, (dLk)gw〉〉 = 〈〈v, w〉〉.
Finally, it is right-invariant because

〈(dRh)gk(dRk)gv, (dRh)gk(dRk)gw〉
= 〈(d(Rh ◦Rk))gv, (d(Rh ◦Rk))gw〉
= 〈(dRkh)gv, (dRkh)gw〉 = f(kh),

and so

〈〈(dRk)gv, (dRk)gw〉〉 =
∫

G
f ◦ Lk =

∫

G
f = 〈〈v, w〉〉

(as the volume element is left-invariant).
(4) Choose a, b ∈ I such that c(a) and c(b) are on a totally normal

neighborhood. Then the length of the restriction of c to [a, b] is
minimal. Since f is an isometry, it preserves the length of piece-
wise differentiable curves. Consequently, the length of the restric-
tion of f ◦ c to [a, b] is also minimal. By Theorem 4.6, f ◦ c is a
reparameterized geodesic on [a, b]. Since∥∥∥∥

d

dt
(f ◦ c)

∥∥∥∥ = ‖f∗ċ‖ = ‖ċ‖

is constant, t is an affine parameter for f ◦ c. We conclude that
f ◦ c is actually a geodesic on [a, b]. Therefore f ◦ c is a geodesic on
a neighborhood of each point t ∈ I, and hence must be a geodesic.
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(5) Let c : I →M be a local parametrization of N , and choose a, b ∈ I
such that c(a) and c(b) are on a totally normal neighborhood. Let
γ : [0, 1] →M be the geodesic connecting c(a) to c(b) on a normal
ball Bε(c(a)). Then f ◦ γ is also a geodesic connecting c(a) to c(b)
on Bε(c(a)) (as c(a), c(b) ∈ N are fixed points of f). Therefore the
images of γ and f ◦ γ must coincide. Since f is an isometry, the
length of γ between γ(0) and γ(t) equals the length of f ◦γ between
f(γ(0)) and f(γ(t)), and hence we must have f(γ(t)) = γ(t). In
other words, the image of γ is formed by fixed points of f . Therefore
γ([0, 1]) ⊂ N , i.e. c is a reparameterization of γ on [a, b]. We
conclude that c is a reparameterized geodesic on a neighborhood of
each point t ∈ I, and hence must be a reparameterized geodesic.

(6) (a) We have

R(X,Yi)X = ∇X∇YiX −∇Yi∇XX −∇[X,Yi]X.

Since X and Yi satisfy ∇XX = 0 and [X,Yi] = 0, we obtain

R(X,Yi)X = ∇X∇YiX = ∇X([Yi, X] +∇XYi) = ∇X∇XYi.

(b) Let

Y (t) :=
∂

∂s
expp(tv(s))|s=0

with v : (−ε, ε) → TpM satisfying v(0) = ċ(0). Since

expp(tv(0)) = expp(tċ(0)) = c(t),

we see that Y is a vector field along c. Moreover, we have
expp(0v(s)) = p, implying that Y (0) = 0. If {ċ(t0), Y (t0)}
is linearly independent then we can extend (t, s) to a system
of local coordinates in a neighborhood of c(t0) and use (a) to
show that Y satisfies the Jacobi equation along c in a neigh-
borhood of t0. We will now show that either the set D ⊂ R of
points t0 where {ċ(t0), Y (t0)} is linearly dependent has empty
interior (and then Y satisfies the Jacobi equation along c by
continuity) or Y (t) = βtċ(t) for some β ∈ R (which is also a
solution of the Jacobi equation, as R(X,X)X = 0). Indeed, if
intD 6= ∅ then Y (t) = f(t)ċ(t) on this set for some function

f : intD → R, implying that DY
dt (t) = ḟ(t)ċ(t). If R \ intD

were nonempty then it would contain a nonempty open inter-
val (take a connected component of the open set R\D), and so
Y would be a solution of the Jacobi equation along c on some
open interval with at least one finite endpoint a, satisfying
Y (a) = αċ(a) and DY

dt (a) = βċ(a) (with α := f(a), β := ḟ(a)).
Since

Ỹ (t) := (α+ β(t− a))ċ(t)
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is also a solution with Ỹ (a) = αċ(a), DỸ
dt (a) = βċ(a), the

Picard-Lindelöf theorem would imply Y (t) = Ỹ (t) on this in-
terval, which could not then be a subset of R \ D (because

Ỹ (t) and ċ(t) are linearly dependent). We conclude that if
intD 6= ∅ then D = R. Now the formula for Y (t) can be
written as

Y (t) = (d expp)tċ(0)(tv̇(0)),

and so

v̇(0) = lim
t→0

1

t
Y (t) = lim

t→0

f(t)

t
ċ(t) = βċ(0) = βv(0),

where

β = lim
t→0

f(t)

t
.

Also, notice that Y (t) depends only on v(0) and v̇(0). There-
fore we may choose for instance v(s) = (1 + sβ)v(0), in which
case

expp(tv(s)) = expp((1 + sβ)tv(0)) = c((1 + sβ)t)

and hence Y (t) = βtċ(t).
Conversely, given a solution Y (t) of the Jacobi equation along
c with Y (0) = 0, choose

Ỹ (t) =
∂

∂s
expp(t(v0 + sw0))

|s=0

,

where v0 = ċ(0) and w0 = DY
dt (0). Then Ỹ (0) = 0. More-

over, using the fact that the Christoffel symbols for normal
coordinates vanish at the origin, it is easily seen that

DỸ

dt
(0) = w0 =

DY

dt
(0).

Since, as we saw above, Ỹ (t) is also a solution of the Jacobi
equation along t, by the Picard-Lindelöf theorem we conclude

that Ỹ (t) = Y (t) for all t ∈ R.
(c) This is immediate from the formula

Y (t) = (d expp)tċ(0)(tv̇(0)).

for a Jacobi field.
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(d) From the Jacobi equation we obtain

d2

dt2
(
‖Y (t)‖2

)
= 2

d

dt

〈
DY

dt
(t), Y (t)

〉

= 2

〈
D2Y

dt2
(t), Y (t)

〉
+ 2

〈
DY

dt
(t),

DY

dt
(t)

〉

= 2 〈R(ċ(t), Y (t))ċ(t), Y (t)〉+ 2

∥∥∥∥
DY

dt
(t)

∥∥∥∥
2

≥ 0.

Moreover, it is clear that this derivative is strictly positive in
a neighborhood of t = 0, since DY

dt (0) 6= 0 (otherwise Y ≡ 0).
Therefore Y (t) can only have one zero (for t = 0).

(e) (i) Regarding Tn as [0, 1]n with the usual identifications
on the (n − 1)-dimensional faces, the cut locus of the
point p =

(
1
2 , . . . ,

1
2

)
is exactly the union of the (n− 1)-

dimensional faces. Each point in these faces can be
reached from p by at least two geodesics with the same
length but different images.

(ii) The cut locus of p ∈ Sn is formed by the antipodal point
−p, which is clearly conjugate to p.

(iii) Regarding RPn as the northern hemisphere of Sn with
antipodal identification of the equator, the cut locus of
the north pole is exactly the equator. Each point on the
equator can be reached from the north pole by exactly
two geodesics with the same length but different images.

Section 5.

(1) To prove Proposition 5.4 we start by checking that d is a distance:
(i) Since d(p, q) is the infimum of a set of nonnegative numbers,

it is clear that d(p, q) ≥ 0. Also, it is immediate to check that
d(p, p) = 0. Let Bε(p) be a normal ball and let q 6= p. If
q 6∈ Bε(p) then d(p, q) ≥ ε > 0. If q ∈ Bε(p) then d(p, q) =
‖expp−1(q)‖ > 0. Therefore d(p, q) = 0 if and only if p = q.

(ii) If γ : [a, b] →M is a piecewise differentiable curve connecting
p to q then γ̃ : [a, b] → M defined by γ̃(t) = γ(a + b − t) is a
piecewise differentiable curve connecting q to p, with the same
length. Therefore d(p, q) = d(q, p).

(iii) To each pair of piecewise differentiable curves γ1 and γ2 con-
necting p to q and q to r we can easily associate a piecewise dif-
ferentiable curve γ connecting p to r such that l(γ) = l(γ1) +
l(γ2). Taking the infimum we obtain d(p, r) ≤ d(p, q)+d(q, r).

To see that the metric topology induced onM is the usual topology
we notice that the normal balls are a basis for the metric space
topology, formed by open sets of the usual topology. On the other
hand, let U ⊂ M be an open set of the usual topology and let
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p ∈ U . If Bε(p) is a normal ball, then expp
−1(U ∩ Bε(p)) is an

open set of TpM containing the origin, and hence it contains Bδ(0)
for some δ > 0, implying that Bδ(p) ⊂ U . This shows that the
normal balls are also a basis for the usual topology, and hence the
two topologies coincide.

(2) The set B7(0, 4) is represented in Figure 6. The larger circle has
radius 7 and the smaller circles have radius 2.

x

y

3−3

(0, 4)

Figure 6. B7(0, 4) on R2 \ {(x, 0) | −3 ≤ x ≤ 3}.

(3) (a) If M is complete then for all p ∈ M the map expp is defined
in TpM . Hence, as we have see in the proof of the Hopf-Rinow
theorem, every bounded closed set is compact, implying that
the compact sets are the closed bounded sets (on a metric
space every compact set must be bounded and closed).
Conversely, take a Cauchy sequence {pn} in M . Then its
closure is a bounded closed set, and so it is, by hypothesis,
compact. Hence the Cauchy sequence has a convergent subse-
quence, implying that it is itself convergent. We conclude that
M is a complete metric space.

(b) Consider R2 \ {0} with the Euclidean metric. Then the set
{(x, y) ∈ R2 \ {0} | x2 + y2 ≤ 1} is a noncompact bounded
closed set.

(4) (a) Let p ∈ M . Then there exists ε > 0 such that expp is defined
on Bε(0). Since M is homogeneous and isometries transform
geodesics in geodesics we conclude that for any other point
q ∈ M the map expq is also defined on the ball Bε(0). Let
c : I → M be a geodesic such that c(0) = p and ċ(0) = v
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with ‖v‖ = 1, and assume that I = (a, b) is the maximal open
interval where c is defined. Taking for instance q := c(b− ε

2),

let us consider the geodesic c̃ such that c̃(0) = q and ˙̃c(0) =
w := ċ(b − ε

2). Notice that this geodesic is defined at least
for t ∈ (−ε, ε), since expq(tw) = c̃(t) is defined for ‖tw‖ < ε.
Hence c̃ extends c to the interval (a, b + ε

2), implying that
b = ∞. Similarly, we conclude that a = −∞, and so M is
geodesically complete.

(b) Since G admits a bi-invariant metric, by Exercise 4.8.3 the
exponential map exp : g → G coincides with the geodesic
exponential at the identity expe : TeG → G. Because any left
translation is an isometry, G is a homogeneous Riemannian
manifold, and so it is complete. It follows that expe (hence
exp) is surjective.

(c) By Exercise 7.17.7 in Chapter 1, exp : sl(2) → SL(2) is not
surjective. Therefore SL(2) cannot admit a bi-invariant met-
ric.

(5) (a) Since f is a local isometry, it is a local diffeomorphism. To
show that it is a covering map we just have to show that it
is surjective and that for each point q ∈ N there exists a
neighborhood U ∋ q such that f−1(U) is a disjoint union of
open sets diffeomorphic by f to U . Because (M, g) is complete
and f takes geodesics to geodesics, it is clear that (N, h) is
complete and that f is surjective. Let q ∈ N be an arbitrary
point and choose U := Bε(q) to be a normal ball (for ε > 0
sufficiently small). Then

f−1(U) = ∪p∈f−1(q)Bε(p),

and f is clearly a diffeomorphism when restricted to Bε(p)
(because f takes geodesics through p to geodesics through q,
and so in normal coordinates it is just the identity). Finally, if
p1, p2 ∈ f−1(q) with p1 6= p2 then Bε(p1)∩Bε(p2) = ∅, because
otherwise there would exist a nontrivial geodesic starting and
ending at q with length smaller than 2ε.

(b) The map f : (0,+∞) → S1 given by f(t) = eit is a surjective
local isometry (for the usual metrics) which is not a covering
map: the point 1 ∈ S1 does not admit any neighborhood U
such that f−1(U) is a disjoint union of open sets diffeomorphic
by f to U .

(c) If (M, g) has nonpositive curvature then by Exercise 4.8.6 the
exponential map expp : TpM → M has no critical points,
that is, it is a local diffeomorphism. Consider the Riemannian
metric h := expp

∗g on TpM . This choice makes expp a lo-
cal isometry which takes lines through the origin to geodesics
through p. Since these geodesics are defined for all values of
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the parameter, we conclude that exp0 : T0TpM → TpM is well
defined for all v ∈ T0TpM , and so (TpM,h) is complete. By
(a), expp is then a covering map.

Chapter 4

Section 1.

(1) (a) (i) It suffices to prove that R satisfies

R(X1 +X2, Y )Z = R(X1, Y )Z +R(X2, Y )Z

and

R(fX, Y )Z = fR(X,Y )Z

for all X,X1, X2, Y, Z ∈ X(M) and f ∈ C∞(M). The
first identity is trivially true. To prove the second, we
notice that [fX, Y ] = f [X,Y ]− (Y · f)X, and hence

R(fX, Y )Z = ∇fX∇Y Z −∇Y∇fXZ −∇[fX,Y ]Z

= f∇X∇Y Z −∇Y (f∇XZ)−∇f [X,Y ]−(Y ·f)XZ

= f∇X∇Y Z − f∇Y∇XZ − (Y · f)∇XZ

− f∇[X,Y ]Z + (Y · f)∇XZ

= f(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z) = fR(X,Y )Z.

(ii) Analogous to (i).
(iii) Again it suffices to show that R satisfies

R(X,Y )(Z1 + Z2) = R(X,Y )Z1 +R(X,Y )Z2

and

R(X,Y )(fZ) = fR(X,Y )Z

for all X,Y, Z1, Z2, Z ∈ X(M) and f ∈ C∞(M). The
first identity is trivially true. The second follows from

R(X,Y )(fZ) = ∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ)

= ∇X(f∇Y Z) +∇X((Y · f)Z)−∇Y (f∇XZ)

−∇Y ((X · f)Z)− f∇[X,Y ]Z − ([X,Y ] · f)Z
= f∇X∇Y Z + (X · f)∇Y Z + (Y · f)∇XZ

+ (X · (Y · f))Z − f∇Y∇XZ − (Y · f)∇XZ

− (X · f)∇Y Z − (Y · (X · f))Z − f∇[X,Y ]Z − ([X,Y ] · f)Z
= f(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z)

+ (X · (Y · f)− Y · (X · f))Z − ([X,Y ] · f)Z = fR(X,Y )Z.
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(b) If x : V → Rn are local coordinates around p ∈M , we have

R(X,Y )Z = R




n∑

i=1

Xi ∂

∂xi
,
n∑

j=1

Y j ∂

∂xj



(

n∑

k=1

Zk
∂

∂xk

)

=
n∑

i,j,k=1

XiY jZkR

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
=

n∑

i,j,k,l=1

XiY jZkR l
ijk

∂

∂xl
.

Therefore

(R(X,Y )Z)p =
n∑

i,j,k,j=1

Xi(p)Y j(p)Zk(p)R l
ijk (p)

(
∂

∂xl

)

p

depends only on Xp, Yp, Zp. Moreover, this dependence is lin-
ear, and hence R defines a (3, 1)-tensor.

(2) If (x1, . . . , xn) are normal coordinates centered at p then we have
Γijk(p) = 0 for i, j, k = 1, . . . , n. Since

n∑

i=1

gliΓ
i
jk =

1

2

(
∂glk
∂xj

+
∂glj
∂xk

− ∂gjk
∂xl

)

we then obtain

∂glk
∂xj

(p) +
∂glj
∂xk

(p)− ∂gjk
∂xl

(p) = 0

for j, k, l = 1, . . . , n. Subtracting the same identity with the indices
j and k interchanged yields

∂gjk
∂xl

(p) = 0

for j, k, l = 1, . . . , n. From the general expression of the Riemann
tensor in local coordinates we then have

Rijkl(p) =
n∑

m=1

glm(p)
∂Γmjk
∂xi

(p)−
n∑

m=1

glm(p)
∂Γmik
∂xj

(p)

=
∂

∂xi

(
n∑

m=1

glmΓ
m
jk

)
(p)− ∂

∂xj

(
n∑

m=1

glmΓ
m
ik

)
(p).

Since

∂

∂xi

(
n∑

m=1

glmΓ
m
jk

)
=

1

2

(
∂2gjl
∂xi∂xk

+
∂2gkl
∂xi∂xj

− ∂2gjk
∂xi∂xl

)
,

we obtain

Rijkl(p) =
1

2

(
∂2gjl
∂xi∂xk

− ∂2gil
∂xj∂xk

− ∂2gjk
∂xi∂xl

+
∂2gik
∂xj∂xl

)
(p).
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(3) If X, Y and Z are left-invariant vector fields then

∇X∇Y Z =
1

2
∇X [Y, Z] =

1

4
[X, [Y, Z]].

On the other hand, [X,Y ] is also left-invariant, and hence

∇[X,Y ]Z =
1

2
[[X,Y ], Z].

Therefore

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

=
1

4
[X, [Y, Z]]− 1

4
[Y, [X,Z]] +

1

2
[Z, [X,Y ]]

=
1

4
[X, [Y, Z]] +

1

4
[Y, [Z,X]] +

1

4
[Z, [X,Y ]] +

1

4
[Z, [X,Y ]]

=
1

4
[Z, [X,Y ]],

where we used the Jacobi identity.
(4) Let (X1

p , X
2
p ) and (Y 1

p , Y
2
p ) be the components of Xp and Yp on

an orthonormal basis of the plane generated by these two vectors.
Then the square of the area of the parallelogram spanned by Xp, Yp
is ∣∣∣∣

X1
p Y 1

p

X2
p Y 2

p

∣∣∣∣
2

= (X1
pY

2
p −X2

pY
1
p )

2

= (X1
p )

2(Y 2
p )

2 + (X2
p )

2(Y 1
p )

2 − 2X1
pX

2
pY

1
p Y

2
p .

On the other hand, we have

‖Xp‖2‖Yp‖2 − 〈Xp, Yp〉2

=
(
(X1

p )
2 + (X2

p )
2
) (

(Y 1
p )

2 + (Y 2
p )

2
)
−
(
X1
pY

1
p +X2

pY
2
p

)2

= (X1
p )

2(Y 2
p )

2 + (X2
p )

2(Y 1
p )

2 − 2X1
pX

2
pY

1
p Y

2
p .

If Zp,Wp is another basis for the plane generated by Xp, Yp, their
components on the orthonormal basis satisfy(

Z1
p W 1

p

Z2
p W 2

p

)
=

(
X1
p Y 1

p

X2
p Y 2

p

)
S,

where S is the change of basis matrix, and therefore
∣∣∣∣
Z1
p W 1

p

Z2
p W 2

p

∣∣∣∣
2

= (detS)2
∣∣∣∣
X1
p Y 1

p

X2
p Y 2

p

∣∣∣∣
2

.

Finally, we have

R(Zp,Wp, Zp,Wp)

= R(S11Xp + S21Yp, S12Xp + S22Yp, S11Xp + S21Yp, S12Xp + S22Yp)

= (S11S22S11S22 − S11S22S21S12 − S21S12S11S22 + S21S12S21S12)R(Xp, Yp, Xp, Yp)

= (S11S22 − S12S21)
2R(Xp, Yp, Xp, Yp) = (detS)2R(Xp, Yp, Xp, Yp).
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(5) Choosing an orthonormal basis {E1 . . . , En} of TpM , we have

n∑

k=1

R(Xp, Ek, Yp, Ek) = −
n∑

k=1

R(Ek, Xp, Yp, Ek) = −Ricp(Xp, Yp);

n∑

k=1

R(Xp, Yp, Ek, Ek) = 0;

n∑

k=1

R(Ek, Xp, Ek, Yp) = −
n∑

k=1

R(Ek, Xp, Yp, Ek) = −Ricp(Xp, Yp);

n∑

k=1

R(Xp, Ek, Ek, Yp) =
n∑

k=1

R(Ek, Xp, Yp, Ek) = Ricp(Xp, Yp);

n∑

k=1

R(Ek, Ek, Xp, Yp) = 0.

(6) Let {E1, E2, E3} be an orthonormal frame. By Proposition 1.4, the
curvature tensor is completely determined by the following coeffi-
cients:

R1213 = −R23, R1223 = R13, R1323 = −R12

and

R1212 =
1

2
(−R11 −R22 +R33),

R1313 =
1

2
(−R11 +R22 −R33),

R2323 =
1

2
(R11 −R22 −R33).

(7) Let {E1, . . . , En} be an orthonormal frame and let {ω1, . . . , ωn} be
its dual co-frame. Then Ric =

∑
Rij ω

i ⊗ ωj with

Rij =
n∑

k=1

R k
kij =

n∑

k=1

Rkijk.

Since M is isotropic we have

Rkijk = −K(gkjgik − gkkgij) = −K(δkjδik − δkkδij),

and so

Rij = −
n∑

k=1

K(δkjδik − δkkδij) = −K(δij − nδij) = (n− 1)Kδij ,

that is,

Ric = (n− 1)K(ω1 ⊗ ω1 + · · ·+ ωn ⊗ ωn) = (n− 1)Kg.
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Moreover the scalar curvature is equal to

S =

n∑

i,j=1

Rijg
ij =

n∑

i=1

Rii =

n∑

i=1

(n− 1)K = n(n− 1)K.

(8) (a) First we note that the corresponding Levi-Civita connections,
∇1 and ∇2, coincide. Indeed, by the Koszul formula,

2〈∇1
XY, Z〉1 = X · 〈Y, Z〉1 + Y · 〈X,Z〉1 − Z · 〈X,Y 〉1

− 〈[X,Z], Y 〉1 − 〈[Y, Z], X〉1 + 〈[X,Y ], Z〉1 = 2ρ〈∇2
XY, Z〉2,

and so 2ρ〈∇1
XY, Z〉2 = 2ρ〈∇2

XY, Z〉2 for every vector fields
X,Y, Z ∈ X(M), implying that ∇1

XY = ∇2
XY . Hence,

R1(X,Y, Z,W ) = 〈R1(X,Y )Z,W 〉1 = 〈R2(X,Y )Z,W 〉1
= ρ〈R2(X,Y )Z,W 〉2 = ρR2(X,Y, Z,W )

and so for any 2-dimensional section Π of a tangent space of
M we have,

K1(Π) = − R1(X,Y,X, Y )

‖X‖21‖Y ‖21 − 〈X,Y 〉21
= − ρR2(X,Y,X, Y )

ρ2(‖X‖22‖Y ‖22 − 〈X,Y 〉22)
= ρ−1K2(Π).

(b) We have

(R1)ij =
n∑

k=1

(R1)
k

kij =
n∑

k=1

(R2)
k

kij = (R2)ij

and so Ric1 = Ric2.
(c) Since (g1)ij = ρ(g2)ij implies (g1)

ij = ρ−1(g2)
ij , we have

S1(p) =
n∑

i,j=1

(R1)ij(g1)
ij = ρ−1

n∑

i,j=1

(R2)ij(g2)
ij = ρ−1S2(p).

(9) We can extend Definition 1.11 of the Ricci curvature to an arbi-
trary connection. However the resulting tensor may no longer be
symmetric. Consider for instance the connection on R2 defined by
the nonvanishing Christoffel symbol

Γ1
11(x, y) = f(y).

Then

Ric(X,Y ) =
∑

i,j,k

XiY jR k
kij

where the only non-zero coefficients of the Riemann tensor are

R 1
211 = −R 1

121 = f ′(y).
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Hence,

Ric(X,Y ) = −f ′(y)X2Y 1;

Ric(Y,X) = 0,

and so, provided that f ′(y) 6= 0, the Ricci curvature tensor is not
symmetric in this case.

Section 2.

(1) (a) This identity follows from

n∑

k=1

CkijXk = [Xi, Xj ] = ∇XiXj −∇XjXi

=
n∑

k=1

ΓkijXk −
n∑

k=1

ΓkjiXk =
n∑

k=1

(
Γkij − Γkji

)
Xk.

(b) From the Koszul formula we have

2〈∇XjXk, Xl〉 = Xj · 〈Xk, Xl〉+Xk · 〈Xj , Xl〉 −Xl · 〈Xj , Xk〉
− 〈[Xj , Xl], Xk〉 − 〈[Xk, Xl], Xj〉+ 〈[Xj , Xk], Xl〉,

which is equivalent to

2
n∑

m=1

Γmjkgml = Xj · gkl +Xk · gjl −Xl · gjk

−
n∑

m=1

Cmjl gmk −
n∑

m=1

Cmkl gmj +

n∑

m=1

Cmjkgml.

Multiplying by the inverse matrix (gil) = (gil)
−1 yields the

result.
(c) We have

dωi(Xj , Xk) = Xj · ωi(Xk)−Xk · ωi(Xj)− ωi([Xj , Xk])

= Xj · δik −Xk · δij − ωi

(
n∑

l=1

C ljkXl

)
= −Cijk.

Therefore

dωi = −
n∑

j,k=1

Cijkω
j ⊗ ωk = −

n∑

j<k

Cijkω
j ∧ ωk.

(2) Clearly if the connection ∇ is compatible with the metric it satisfies
this condition. Conversely, we consider arbitrary vector fields

X =
n∑

i=1

aiXi, Y =
n∑

i=1

biXi and Z =
n∑

j=1

cjXj



CHAPTER 4 399

on M . Then, using this condition, as well as the properties of a
connection, we have

X · 〈Y, Z〉 = X ·




n∑

i,j=1

bicj〈Xi, Xj〉




=

n∑

i,j=1

X · (bicj)〈Xi, Xj〉+
n∑

i,j,k=1

bicjakXk · 〈Xi, Xj〉

=
n∑

i,j=1

(X · bi)cj〈Xi, Xj〉+
n∑

i,j=1

bi(X · cj)〈Xi, Xj〉

+
n∑

i,j,k=1

bicjak (〈∇XkXi, Xj〉+ 〈Xi,∇XkXj〉)

=

n∑

i=1

(X · bi)〈Xi, Z〉+
n∑

j=1

(X · cj)〈Y,Xj〉

+
n∑

i=1

bi〈∇XXi, Z〉+
n∑

j=1

cj〈Y,∇XXj〉

= 〈∇XY, Z〉+ 〈Y,∇XZ〉.
(3) (a) Let us take the usual local coordinates on S2 ⊂ R3 defined by

the parametrization φ : (0, π)× (0, 2π) → R3 given by

φ(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ).

Consider the field of frames {X1, X2} where

X1 :=
∂

∂θ
and X2 :=

∂

∂ϕ
.

Then

〈X1, X1〉 = 1, 〈X1, X2〉 = 0 and 〈X2, X2〉 = sin2 θ,

and so a field of orthonormal frames {E1, E2} is given by E1 :=
X1 and E2 := 1

sin θX2, and {ω1, ω2}, with ω1 := dθ and ω2 :=
sin θdϕ, is its associated field of dual co-frames. Moreover,

dω1 = 0 and dω2 = cos θ dθ ∧ dϕ = cot θ ω1 ∧ ω2.

The first Cartan structure equations,

dω1 = ω2 ∧ ω1
2 and dω2 = ω1 ∧ ω2

1,

imply that

dω1(E1, E2) = −ω1
2(E1) = ω2

1(E1)

and

dω2(E1, E2) = ω2
1(E2).
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Therefore the connection form ω2
1 is given by

ω2
1 = dω1(E1, E2)ω

1 + dω2(E1, E2)ω
2 = cot θ ω2 = cos θ dϕ.

Hence dω2
1 = − sin θ dθ∧dϕ = −ω1∧ω2, and we conclude from

Proposition 2.6 that the Gauss curvature of S2 is K = 1.
(b) Let us consider on H the field of frames {X1, X2} where

X1 :=
∂

∂x
and X2 :=

∂

∂y
.

Then

〈X1, X1〉 =
1

y2
, 〈X1, X2〉 = 0 and 〈X2, X2〉 =

1

y2
,

and so {E1, E2} given by E1 := y X1 and E2 := y X2 is a
field of orthonormal frames and {ω1, ω2}, with ω1 := 1

ydx and

ω2 := 1
ydy, is the associated field of dual co-frames. Moreover,

dω1 =
1

y2
dx ∧ dy = ω1 ∧ ω2 and dω2 = 0,

and so the connection form ω2
1 is given by

ω2
1 = dω1(E1, E2)ω

1 + dω2(E1, E2)ω
2 = ω1.

Hence dω2
1 = 1

y2
dx ∧ dy = ω1 ∧ ω2, and we conclude from

Proposition 2.6 that the Gauss curvature of H is K = −1.
(4) Let us take the local coordinates on the surface of revolution S ⊂ R3

defined by the parametrization ϕ : R× (0, 2π) → R3 given by

ϕ(s, θ) = (h(s) cos θ, h(s) sin θ, g(s)),

where g, h : R → R are smooth functions. Here S is the surface
obtained by rotating the curve α(s) = (h(s), g(s)) around the axis
Oz. Let us assume for simplicity that h > 0 and that the curve α is
parametrized by the arc length, so that (h′)2 + (g′)2 = 1. Consider
the field of frames {X1, X2}, where

X1 :=
∂

∂s
and X2 :=

∂

∂θ
.

Then

〈X1, X1〉 = 1, 〈X1, X2〉 = 0 and 〈X2, X2〉 = h2(s),

and so {E1, E2}, given by

E1 := X1 and E2 :=
1

h
X2,

is a field of orthonormal frames, with associated field of dual co-
frames {ω1, ω2} given by ω1 := ds and ω2 := hdθ. Moreover,

dω1 = 0 and dω2 = h′ds ∧ dθ = h′

h
ω1 ∧ ω2,
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and so the connection form ω2
1 is given by

ω2
1 = dω1(E1, E2)ω

1 + dω2(E1, E2)ω
2 =

h′

h
ω2 = h′dθ.

Hence

dω2
1 = h′′ds ∧ dθ = h′′

h
ω1 ∧ ω2,

and we conclude from Proposition 2.6 that the Gauss curvature of
S is K = −h′′

h . If we want K to be constant we need h′′ +Kh ≡ 0,
and so we have

h(s) =





A cos(
√
Ks) +B sin(

√
Ks) if K > 0

As+B if K = 0

Ae
√

|K|s +Be−
√

|K|s if K < 0

for some constants A,B ∈ R. Moreover, the function g has to
satisfy (h′)2 + (g′)2 = 1. In the case K = 0, for instance, this

implies g(s) = ±
√
1−A2 s+C for some constant C ∈ R. Therefore

the curve α is a straight line, and S is either a plane, a cone or a
cylinder.

(5) Using the given local coordinates on M we consider the field of
frames {X1, X2} where

X1 :=
∂

∂u
and X2 :=

∂

∂v
.

Then

〈X1, X1〉 = 1, 〈X1, X2〉 = 0 and 〈X2, X2〉 = 1 + u2,

and so {E1, E2}, given by

E1 := X1 and E2 :=
1√

1 + u2
X2,

is a field of orthonormal frames, with associated field of dual co-
frames {ω1, ω2} given by ω1 := du and ω2 :=

√
1 + u2 dv. More-

over,

dω1 = 0 and dω2 =
u√

1 + u2
du ∧ dv =

u

1 + u2
ω1 ∧ ω2

and so the connection form ω2
1 is given by

ω2
1 = dω1(E1, E2)ω

1+dω2(E1, E2)ω
2 =

u

1 + u2
ω2 =

u√
1 + u2

dv.

Hence,

dω2
1 =

1

(1 + u2)
3
2

du ∧ dv =
1

(1 + u2)2
ω1 ∧ ω2,

and so KM = − 1
(1+u2)2

.
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Similarly, using the given local coordinates on f(M), we con-
sider the field of frames {Y1, Y2} defined by

Y1 :=
∂

∂u
and Y2 :=

∂

∂v
.

Then

〈Y1, Y1〉 =
1 + u2

u2
, 〈Y1, Y2〉 = 0 and 〈Y2, Y2〉 = u2,

and so {F1, F2}, given by

F1 :=
u√

1 + u2
Y1 and F2 :=

1

u
Y2,

is a field of orthonormal frames, with associated field of dual co-

frames {ω1, ω2} given by ω1 :=
√
1+u2

u du and ω2 := u dv. Repeating
the argument for M , we have

dω1 = 0, dω2 = du ∧ dv =
1√

1 + u2
ω1 ∧ ω2

and

ω2
1 =

1√
1 + u2

ω2 =
u√

1 + u2
dv,

implying that again

dω2
1 =

1

(1 + u2)
3
2

du ∧ dv =
1

(1 + u2)2
ω1 ∧ ω2,

and so the Gauss curvature is KN = − 1
(1+u2)2

. We conclude that f

preserves the Gauss curvature. However it is not an isometry, since
for instance

〈X1, X1〉 = 1 while 〈f∗X1, f∗X1〉 = 〈Y1, Y1〉 =
1 + u2

u2
.

(6) (a) An orthonormal co-frame is given by

ωr = A(r)dr, ωθ = rdθ and ωϕ = r sin θdϕ.

From the Cartan structure equations we obtain

dωr = 0 = ωθ ∧ ωrθ + ωϕ ∧ ωrϕ;
dωθ = dr ∧ dθ = ωr ∧ ωθr + ωϕ ∧ ωθϕ;
dωϕ = sin θ dr ∧ dϕ+ r cos θ dθ ∧ dϕ = ωr ∧ ωϕr + ωθ ∧ ωϕθ ,
from which one readily guesses that

ωθr = −ωrθ =
1

A
dθ;

ωϕr = −ωrϕ =
sin θ

A
dϕ;

ωϕθ = −ωθϕ = cos θdϕ.
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The curvature forms are given by

Ωθr = dωθr − ωϕr ∧ ωθϕ = −A′

A2
dr ∧ dθ = − A′

rA3
ωr ∧ ωθ;

Ωϕr = dωϕr − ωθr ∧ ωϕθ = −A
′ sin θ
A2

dr ∧ dϕ = − A′

rA3
ωr ∧ ωϕ;

Ωϕθ = dωϕθ − ωrθ ∧ ωϕr =

(
sin θ

A2
− sin θ

)
dθ ∧ dϕ =

1

r2

(
1

A2
− 1

)
ωθ ∧ ωϕ,

and hence the nonvanishing components of the curvature ten-
sor on this orthonormal frame are

R θ
rθr = Ωθr(Er, Eθ) = − A′

rA3
;

R ϕ
rϕr = Ωϕr (Er, Eϕ) = − A′

rA3
;

R ϕ
θϕθ = Ωϕθ (Eθ, Eϕ) =

1

r2

(
1

A2
− 1

)

(plus the components related to these by symmetries). We
conclude that the components of the Ricci tensor on this or-
thonormal frame are

Rrr = R θ
θrr +R ϕ

ϕrr =
2A′

rA3
;

Rθθ = R r
rθθ +R ϕ

ϕθθ =
A′

rA3
− 1

r2

(
1

A2
− 1

)
;

Rϕϕ = R r
rϕϕ +R θ

θϕϕ =
A′

rA3
− 1

r2

(
1

A2
− 1

)
.

The scalar curvature is then

S = Rrr +Rθθ +Rϕϕ =
4A′

rA3
− 2

r2

(
1

A2
− 1

)
.

(b) In this case we have Rrr = Rθθ = Rϕϕ = 2, i.e. Ric = 2g, and
hence S = 6.

(c) In this case we have Rrr = Rθθ = Rϕϕ = −2, i.e. Ric = −2g,
and hence S = −6.

(d) We have to solve the differential equation

4A′

rA3
− 2

r2

(
1

A2
− 1

)
= S

for constant S. This equation can be written as

−2A′r
A3

+
1

A2
= 1− Sr2

2
⇔
( r

A2

)′
= 1− Sr2

2
,

which has the immediate solution

A(r) =

(
1− Sr2

6
+
C

r

)− 1
2
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(where C ∈ R is an integration constant).
(7) Defining fields of positive orthonormal frames {E1, E2} and {F1, F2}

such that {E1, E2} is well defined on D and F1 = X, we have by
Proposition 2.7

∆θ =

∫

∂D
σ =

∫

∂D
ω2
1 − ω2

1.

Since X is parallel-transported along ∂D, we have

∇ċF1 = 0 ⇔ ω2
1(ċ) = 0 ⇔ c∗ω2

1 = 0.

We conclude that

∆θ = −
∫

∂D
ω2
1 = −

∫

D
dω2

1 =

∫

D
Kω1 ∧ ω2 =

∫

D
K,

where we have used the Stokes theorem. The formula for K(p) as
a limit can be obtained by standard arguments.

(8) (a) We can assume without loss of generality that the circle is
centered at the origin. If the circle has radius R > 0 then its
parameterization by the arclength is

c(s) =
(
R cos

( s
R

)
, R sin

( s
R

))
,

and hence a positive orthonormal frame along c with E1 = ċ
is

E1(s) = ċ(s) =
(
− sin

( s
R

)
, cos

( s
R

))
;

E2(s) =
(
− cos

( s
R

)
,− sin

( s
R

))
.

Therefore

∇E1E1 = c̈ =

(
− 1

R
cos
( s
R

)
,− 1

R
sin
( s
R

))
=

1

R
E2,

and the geodesic curvature of this circle is kg =
1
R .

(b) Again we can assume without loss of generality that the cir-
cle is centered at the north pole. Using spherical coordinates
(θ, ϕ), we see that the circle is given by θ = θ0 for some
θ0 ∈ (0, π), and its unit tangent vector is

Eϕ =
1

sin θ0

∂

∂ϕ
.

Moreover, it is easy to check from Exercise 3 that

∇EϕEϕ = ωθϕ(Eϕ)Eθ = − cot θ0
∂

∂θ
.

Since
{
Eϕ,− ∂

∂θ

}
form a positive orthonormal frame, we con-

clude that the geodesic curvature of the circle is kg = cot θ0.
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(9) Considering two fields of orthonormal frames {E1, E2} and {F1, F2}
positively oriented such that E1 =

X
‖X‖ and F1 = ċ, we have

dθ

ds
(s) = dθ(ċ(s)) = ω2

1(ċ(s))− ω2
1(ċ(s)) = ω2

1(F1) = kg(s),

where we used the fact that

∇ċE1 = 0 ⇔ ω2
1(ċ(s)) = 0.

Section 3.

(1) Clearly 〈·, ·〉t is bilinear, symmetric and satisfies 〈v, v〉t ≥ 0. More-
over, 〈v, v〉t = 0 if and only if

(1− t)‖v‖20 + t‖v‖21 = 0,

that is, if and only if ‖v‖20 = ‖v‖21 = 0, and so v = 0. To see that the
function Ip(t) is continuous we consider the positive orthonormal
frame {F1,t, F2,t} with respect to the metric 〈·, ·〉t such that

F1,t =
X

‖X‖t
.

Then

(ω1)t :=
‖X‖t
‖X‖1

(ω1)1

is continuous with respect to t. Since F2,t, d(ω
1)t and d(ω

2)t change
continuously with t, so does

(ω2
1)t = d(ω1)t(F1,t, F2,t)(ω

1)t + d(ω2)t(F1,t, F2,t)(ω
2)t,

and consequently Ip(t).

(2) (a) Let π : M → M be the orientable double covering of M . We
can choose a triangulation of M such that each of its triangles
is contained in an open set V such that π−1(V ) = W1 ∪W2

with W1 ∩W2 = ∅. This triangulation lifts to a triangulation
of M with twice the number of faces, edges and vertices of the
original triangulation of M . Hence, using these triangulations
of M and M we obtain

χ(M) = 2χ(M).

(b) This is obvious from the fact that π is a local isometry.
(c) Using the Gauss-Bonnet theorem on M we have:

2πχ(M) = πχ(M) =
1

2

∫

M
K.

(3) Let us consider a positively oriented orthonormal frame {F1, F2}
with F1 = X/‖X‖, defined on M \ ∪ki=1pi, with dual co-frame
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{ω1, ω2} and connection form ω2
1. For r sufficiently small, we take

Bi := Br(pi) ⊂M \ ∂M such that Bi ∩Bj = ∅ for i 6= j. Then
∫

M\∪ki=1Bi

K =

∫

M\∪ki=1Bi

K ω1 ∧ ω2 = −
∫

M\∪ki=1Bi

dω2
1

= −
∫

∂(M\∪ki=1Bi)
ω2
1 =

k∑

i=1

∫

∂Bi

ω2
1 −

∫

∂M
ω2
1.

If c : I → ∂M is a parametrization of ∂M by the arc length
(‖ċ‖ = 1), kg is the geodesic curvature of c and {E1, E2} is a pos-
itive orthonormal frame defined on a neighborhood of ∂M with
(E1)c(s) = ċ(s) then

∫

∂M
ω2
1 =

∫

∂M
ω2
1 + σ =

∫

I
ω2
1(ċ(s)) ds =

∫

I
kg(s)ds =

∫

∂M
kg,

where we used the fact that
∫

∂M
σ = 0,

as X is transverse to ∂M and hence does not rotate with respect
to ċ as one goes once around ∂M . Taking the limit as r → 0 we
then obtain

∫

M
K = 2π

k∑

i=1

Ipi −
∫

∂M
kg.

(4) Since M is a compact orientable 2-dimensional Riemannian mani-
fold with positive Gauss curvature its Euler characteristic is posi-
tive, and soM is homeomorphic to a sphere. Let c1, c2 : [0, 1] →M
be two non-self-intersecting closed geodesics on M . Assuming they
do not intersect they bound a region S onM that is homeomorphic
to a cylinder. Hence χ(S) = 0 (the cylinder admits a nonvanishing
vector field) and so, by the Gauss-Bonnet theorem for surfaces with
boundary stated in Exercise 3, we have

∫

S
K = 0,

which is impossible since K > 0 (note that the geodesic curvature
of c1 and c2 is zero since these two curves are geodesics).

(5) (a) Let x = (x1, . . . , xn) be local coordinates centered at p and

f̂ := f ◦ x−1 the expression of f in these local coordinates.
Since p is a critical point we have

∂f̂

∂xi
(0, . . . , 0) = 0.
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Now

∂

∂s
(f ◦ γ) =

n∑

i=1

∂f̂

∂xi
∂γi

∂s

(where γi := xi ◦ γ), and hence

∂2

∂t∂s
(f ◦ γ) =

n∑

i,j=1

∂2f̂

∂xi∂xj
∂γi

∂s

∂γj

∂t
+

n∑

i=1

∂f̂

∂xi
∂2γi

∂t∂s
.

Setting (s, t) = (0, 0) we obtain

(Hf)p(v, w) =
n∑

i,j=1

∂2f̂

∂xixj
(0, . . . , 0)viwj ,

which shows that (Hf)p is indeed a symmetric 2-tensor. Since
it depends only on the components of v and w, we see that it
is well defined (i.e. independent of the choice of the map γ).

(b) In local coordinates x = (x1, . . . , xn) centered at a particular
critical point p ∈M we have

f̂(x1, . . . , xn) = f(p) +
n∑

i,j=1

1

2
Hijx

ixj + o(‖x‖2)

where f̂ := f ◦ x−1 and

Hij :=
∂2f̂

∂xixj
(0, . . . , 0)

are the components of the Hessian, and so

∂f̂

∂xi
(x1, . . . , xn) =

n∑

j=1

Hijx
j + o(‖x‖).

Since the Hessian is nondegenerate, the matrix (Hij) is in-
vertible, and hence there exists a neighborhood of p where p
is the only critical point of f . We conclude that the criti-
cal points of f are isolated, and since M is compact, there
can only be a finite number of them (otherwise they would
accumulate on a non-isolated critical point). Since (Hij) is
symmetric and non-degenerate, there exists a linear change
of coordinates which reduces it to a diagonal matrix of the
form diag(1, . . . , 1,−1, . . . ,−1). If M is 2-dimensional then
the possibilities are diag(1, 1) (in which case p is a minimum),
diag(−1,−1) (in which case p is a maximum), and diag(1,−1)
(in which case p is a saddle point). Choosing a Riemannian
metric on M which coincides with the Euclidean metric in
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these coordinates in a neighborhood of each critical point, we
see that close to p

grad f = (x1 + o(‖x‖)) ∂

∂x1
+ (x2 + o(‖x‖)) ∂

∂x2

if p is a minimum,

grad f = (−x1 + o(‖x‖)) ∂

∂x1
+ (−x2 + o(‖x‖)) ∂

∂x2

if p is a maximum, and

grad f = (x1 + o(‖x‖)) ∂

∂x1
+ (−x2 + o(‖x‖)) ∂

∂x2

if p is a saddle point. From Example 3.2 we see that grad f
has index 1 at p if p is a maximum or a minimum and index
−1 if p is a saddle point. Since the zeros of grad f are precisely
the critical points of f , we obtain

χ(M) = m− s+ n.

(6) Note that although ∂∆ is not a smooth manifold we can approxi-
mate it by a sequence of smooth manifolds by “rounding the cor-
ners” and then take the limit. In what follows we shall therefore
treat ∂∆ as if it were a smooth manifold.
(a) Let us consider a vector field V parallel along ∂∆. Since the

edges of ∆ are geodesics, the tangent vector to ∂∆ rotates with
respect to V only at the vertices, by a total amount of

(π − α) + (π − β) + (π − γ).

This must be equal to 2π minus the angle by which V rotates.
Therefore we have

3π − α− β − γ = 2π −
∫

∆
K.

(b) We just saw that the tangent vector to ∂∆ rotates with respect
to a parallel vector V by a total amount of

∫

∂∆
kg = (π − α) + (π − β) + (π − γ).

By the Gauss-Bonnet theorem for manifolds with boundary,
we have

3π − α− β − γ +

∫

∆
K = 2πχ(∆).

Since ∆ is homeomorphic to a disk, we have χ(∆) = 1, which
proves the result.
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(7) Assume that two geodesics intersected in more than one point.
Then there would exist a geodesic biangle B. Let α and β be its
internal angles. The same exact argument used in Exercise 6 shows
that ∫

B
K = α+ β,

which is a contradiction ifK ≤ 0. (Notice however that we can have
geodesic biangles in 2-manifolds with positive curvature, e.g. the 2-
sphere).

Section 4.

(1) If g and h are the affine maps corresponding to (x1, . . . , xn) and
(y1, . . . , yn) we have

(h ◦ g)(t1, . . . , tn−1) = h(xn(t1, . . . , tn−1) + (x1, . . . , xn−1))

= ynxn(t1, . . . , tn−1) + (ynx1, . . . , ynxn−1) + (y1, . . . , yn−1).

Therefore

L(y1,...,yn)(x
1, . . . , xn) = (ynx1 + y1, . . . , ynxn−1 + yn−1, ynxn),

and hence

L∗
(y1,...,yn)

(
a2

(xn)2

n∑

i=1

dxi ⊗ dxi

)
=

a2

(ynxn)2

n∑

i=1

(yndxi)⊗ (yndxi)

=
a2

(xn)2

n∑

i=1

dxi ⊗ dxi.

(2) Since dωi = α ∧ ωi for every i and dωi =∑n
l=1 ω

l ∧ ωil , we have

dωi(Ei, Ej) = −α(Ej) = −ωij(Ei)

for i 6= j (where we used the fact that ωii = 0 on any orthonormal

frame). Hence, ωij(Ei) = −ωji (Ei) = α(Ej), and, relabeling indices

ωji (Ej) = −ωij(Ej) = α(Ei). Moreover, for m 6= i, j we have 0 =

dωi(Em, Ej) = ωim(Ej)− ωij(Em). Hence, relabeling indices,

ωim(Ej)−ωij(Em) = ωjm(Ei)−ωji (Em) = ωmj (Ei)−ωmi (Ej) = 0.

Adding the first two equations we have

ωim(Ej) + ωjm(Ei) = 0,

and so, using the third equation we conclude that ωjm(Ei) = 0 for
every pairwise different i, j,m. Thus

ωji =
∑

k

ωji (Ek)ω
k = ωji (Ej)ω

j+ωji (Ei)ω
i = α(Ei)ω

j−α(Ej)ωi.
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Going back to Example 4.2, we have dωi = − 1
aω

n ∧ ωi and so

α = − 1
aω

n. Hence,

ωji = α(Ei)ω
j − α(Ej)ω

i = −1

a
δinω

j +
1

a
δjnω

i,

confirming the results previously obtained.
(3) A field of orthonormal frames for this metric on Rn is given by

{E1, . . . , En} with Ei = ρ ∂
∂xi

, and the corresponding dual field of

co-frames {ω1, . . . , ωn} is given by ωi = 1
ρdx

i. Hence,

dωi = − 1

ρ2
dρ ∧ dxi = − K

2ρ2

(
n∑

l=1

xldxl

)
∧ dxi = −K

2

(
n∑

l=1

xlωl

)
∧ ωi.

Using Exercise 4.7.2 with α = −K
2

∑n
l=1 x

lωl we have

ωji = α(Ei)ω
j − α(Ej)ω

i =
K

2
(xjωi − xiωj),

and so

dωji = −Kρωi ∧ ωj − K2

4

n∑

m=1

(xjxmωm ∧ ωi − xixmωm ∧ ωj)

and

Ωji = dωji −
n∑

m=1

ωmi ∧ ωjm

= dωji −
K2

4

n∑

m=1

(
xmxjωi ∧ ωm − (xm)2 ωi ∧ ωj + xixmωm ∧ ωj

)

= −Kρωi ∧ ωj + K2

4

n∑

m=1

(xm)2 ωi ∧ ωj = −Kωi ∧ ωj .

We conclude that the sectional curvature is constant equal to K.
(4) An isometry of the Euclidean space Rn preserves the Euclidean

metric

gE = dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn.

If it also preserves the coordinate function xn then it must be an

isometry of the metric g = a2

(xn)2
gE of the hyperbolic space. Any

tangent vector on Hn(a) can be obtained by applying one of these
isometries to a vector which is tangent to the submanifold

H = {(x1, 0, . . . , 0, xn) | x1 ∈ R and xn > 0}.

Therefore it suffices to determine the geodesics whose initial condi-
tions are tangent to H. Recall that the connection forms associated
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to the orthonormal frame {E1, . . . , En} given by Ei =
xn

a
∂
∂xi

are

ωji =
1
a(δjnω

i − δinω
j). The tangent vector to any curve is

ċ =
n∑

i=1

ẋi
∂

∂xi
=

n∑

i=1

ẋi
a

xn
Ei,

and hence

∇ċċ =
n∑

i=1

(
ẍi
a

xn
− aẋiẋn

(xn)2

)
Ei +

n∑

i,j=1

ẋi
a

xn
ωji (ċ)Ej

=
n∑

i=1

(
ẍi
a

xn
− aẋiẋn

(xn)2

)
Ei +

n∑

i,j=1

ẋi
a

xn

(
δjn

ẋi

xn
− δin

ẋj

xn

)
Ej

=

n∑

i=1

(
ẍi
a

xn
− 2aẋiẋn

(xn)2

)
Ei +

n∑

i

a(ẋi)2

(xn)2
En.

The i-th component of the geodesic equation for i < n can therefore
be written as

d

dt

(
ẋi

(xn)2

)
= 0.

Since ẋ2(0) = · · · = ẋn−1(0) = 0 for geodesics which are initially
tangent to H, we will have ẋ2(t) = · · · = ẋn−1(t) = 0 for all t, and
consequently x2(t) = · · · = xn−1(t) = 0 for all t. We conclude that
geodesics which are initially tangent to H remain on H. Moreover,
it is clear from the geodesic equations that these geodesics are ex-
actly the geodesics of the hyperbolic plane (cf. Exercise 3.3.5 in
Chapter 3). The geodesics of Hn(a) are therefore images by isome-
tries preserving xn of the geodesics of H seen as the hyperbolic
plane. In particular, Hn(a) is complete, and its geodesics traverse
either half circles perpendicular to the plane xn = 0 and centered
on this plane, or vertical half lines starting at the plane xn = 0.

(5) Let K(p) be the sectional curvature at p (i.e. K(p) = Kp). We will
show thatK is constant. For that let us consider an open set U with
a field of orthonormal frames {E1, . . . , En}, and let {ω1, . . . , ωn} be
the corresponding field of dual co-frames. The same calculation as
in the proof of Lemma 4.1 shows that

Ωji = −K ωi ∧ ωj ,

and hence

dΩji = −d(K ωi ∧ ωj) = −dK ∧ ωi ∧ ωj −K dωi ∧ ωj +K ωi ∧ dωj

= −dK ∧ ωi ∧ ωj −
n∑

k=1

K ωk ∧ ωik ∧ ωj +
n∑

k=1

K ωi ∧ ωk ∧ ωjk.
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Since dωji = Ωji +
∑

k ω
k
i ∧ ω

j
k and

d

(∑

k

ωki ∧ ωjk

)
=

n∑

k=1

dωki ∧ ωjk −
n∑

k=1

ωki ∧ dωjk

=

n∑

k=1

Ωki ∧ ωjk +
n∑

k,m=1

ωmi ∧ ωkm ∧ ωjk −
n∑

k=1

ωki ∧ Ωjk −
n∑

k,m=1

ωki ∧ ωmk ∧ ωjm

= −
n∑

k=1

Kωi ∧ ωk ∧ ωjk +
n∑

k=1

K ωki ∧ ωk ∧ ωj ,

we have

0 = d(dωji ) = d

(
Ωji +

∑

k

ωki ∧ ωjk

)
= −dK ∧ ωi ∧ ωj .

Write

dK = K1ω
1 + · · ·+Knω

n

and for each k = 1, . . . , n take i, j 6= k with i 6= j (which is always
possible in dimension n ≥ 3). Then

Kk =
(
dK ∧ ωi ∧ ωj

)
(Ek, Ei, Ej) = 0,

and so dK = 0 in U . Since U is arbitrary and M is connected, we
conclude that K is constant.

(6) (a) The group of isometries of R2 is

Iso(R2) = {Ax+ b | A ∈ O(2), b ∈ R2}.
Identifying R2 with the complex plane C, we can write any
orientation-preserving element f ∈ Iso(R2) as f(z) = eiθz+ b,
with θ ∈ R and b ∈ C. The fixed points of f are given by

f(z) = z ⇔
(
1− eiθ

)
z = b,

and hence f has no fixed points if and only if eiθ = 1, i.e. if and
only if f is a translation. On the other hand, we can write any
orientation-reversing element g ∈ Iso(R2) as g(z) = eiθz + b,
with θ ∈ R and b ∈ C. For instance, a gliding reflection along
the real axis is given by h(z) = z + ξ (with ξ ∈ R). Let

r(z) = ei
θ
2 z be the rotation by θ

2 and let t(z) = z + iη (with
η ∈ R) be the translation by iη ∈ iR. Then

(r ◦ h ◦ t ◦ r−1)(z) = ei
θ
2

(
e−i

θ
2 z + iη + ξ

)
= eiθz + ei

θ
2 (ξ − iη)

is a gliding reflection (with axis of slope tan θ
2 at a distance |η|

from the origin). Since this map is equal to g for ξ, η satisfying

ξ + iη = ei
θ
2 b,
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we conclude that any orientation-reversing isometry of R2 is
a gliding reflection. These obviously do not have fixed points
as long as the translation along the reflection axis is nonzero,

that is, as long as e−i
θ
2 b 6∈ iR.

(b) Let Γ be a discrete group of Iso(R2) acting properly and freely
on R2. Hence, Γ can only contain translations and gliding
reflections.
Suppose first that Γ only contains translations and let t1 ∈ Γ
be a translation in Γ such that t1(0) has minimum length (it
exists since the action of Γ is proper). Then the group Γ1 :=
〈t1〉 ⊂ Γ generated by t1 contains all translations of Γ with
the same direction as t1. Indeed, if t is a translation in Γ \ Γ1

with the same direction as t1 then, taking m ∈ Z for which tm1
is the element of Γ1 with tm1 (0) closest to t(0), the length of
t−1tm1 (0) is smaller than the length of t1(0), contradicting our
initial assumption.
If Γ1 6= Γ then let t2 ∈ Γ \ Γ1 be such that t2(0) has minimum
length. Then t1 and t2 generate a lattice in R2 and Γ = 〈t1, t2〉.
Indeed, if there were an element t in Γ \ 〈t1, t2〉 then, taking
m,n ∈ Z for which tm1 t

n
2 (0) is closest to t(0), the length of

t−1tm1 t
n
2 (0) would either be smaller than the length of t1(0) or

the length of t2(0).
If Γ contains gliding reflections then let g ∈ Γ be a gliding
reflection such that g2(0) has minimum length (it exists since
the action of Γ is proper). If Γ1 := 〈g〉 6= Γ then Γ\Γ1 contains
translations (if g1 ∈ Γ \ Γ1 is a gliding reflection then g−1g1
is a translation in Γ \ Γ1). Let t ∈ Γ \ Γ1 be a translation
such that t(0) has minimal length (it exists since the action
of Γ is proper). By a suitable choice of coordinates we can
assume that g(z) = z + ξ with ξ ∈ R. Let t(z) = z + b with
b = α+ iβ ∈ C (where α, β ∈ R). Then

(g−1 ◦ t ◦ g)(z) = g−1(z + ξ + b) = z + b,

and we conclude that Γ contains the translations by b and b,
and hence by 2α and 2iβ. Since g2(0) = 2ξ has minimal length,
it is easy to check that 2α must be an integer multiple of ξ, as
otherwise it would be possible to construct a gliding reflection
g̃ with |g̃2(0)| < |g2(0)|. Since t(0) has minimal length, we see

that α must be either 0, ± ξ
2 or ±ξ; however, it cannot be ± ξ

2 ,
as in that case Γ would contain the reflection z 7→ z, and it
cannot be ±ξ, as in that case Γ would contain the reflection
z 7→ z + iβ. We conclude that t is the translation by iβ, and
hence the orbit of 0 ∈ R2 under 〈g, t〉 is the same as its orbit
by the group generated by the translations by ξ and iβ. A
similar argument to the one above shows that Γ = 〈g, t〉.
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(7) To determine R2/〈f〉 we start by noticing that each point in the
open half-plane {(x, y) ∈ R2 | x < 0} is equivalent to a point in the
open half-plane {(x, y) ∈ R2 | x > 0}. On the other hand, we have

f2(x, y) = f(f(x, y)) = f(−x, y + 1) = (x, y + 2).

Therefore any point in R2 is equivalent to a point in the strip

S = {(x, y) ∈ R2 | x ≥ 0 and 0 ≤ y ≤ 2},
and hence R2/〈f〉 is homeomorphic to S/ ∼, where the equivalence
relation ∼ is defined on S by

(x, 0) ∼ (x, 2) and (0, y) ∼ (0, y + 1).

Now S/ ∼ is clearly homeomorphic to the semi-infinite cylinder

C = {(x, y, z) ∈ R3 | x2 + y2 = 1 and z ≥ 0}
quotiented by the identification (x, y, 0) ∼ (−x,−y, 0) on the bound-
ary (cf. Figure 7). This, in turn, is clearly homeomorphic to a
projective plane minus a closed disk, which is homeomorphic to a
Möbius band (without the boundary).

To determine R2/〈f, g〉, we notice that any point of R2 will be
equivalent to a point in the rectangle R = [0, 1]× [0, 2]. Moreover,
since

g(f(x, y)) = g(−x, y + 1) = (1− x, y + 1),

we see that actually any point in R2 is equivalent to a point in the
square Q = [0, 1] × [0, 1]. Therefore R2/〈f, g〉 is homeomorphic to
Q/ ∼, where the equivalence relation ∼ is defined on Q by

(0, y) ∼ (1, y) and (x, 0) ∼ (1− x, 1).

This is precisely a Klein bottle.

x

y

C

S ∼=

Figure 7. R2/〈f〉.
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(8) (a) First note that the map

f(z) :=
az + b

cz + d

satisfies f ′(z) = 1
(cz+d)2

and Im(f(z)) = y
|cz+d|2 , where z =

x+ iy. Then, we easily check that g maps H2 onto itself and
that, for f(z) = u(x, y) + iv(x, y),

(f∗g)z

(
∂

∂x
,
∂

∂x

)
= gf(z)

(
f∗

∂

∂x
, f∗

∂

∂x

)

= gf(z)

(
∂u

∂x

∂

∂x
+
∂v

∂x

∂

∂y
,
∂u

∂x

∂

∂x
+
∂v

∂x

∂

∂y

)

= gf(z)

(
∂u

∂x

∂

∂x
− ∂u

∂y

∂

∂y
,
∂u

∂x

∂

∂x
− ∂u

∂y

∂

∂y

)

=
1

v2

((
∂u

∂x

)2

+

(
∂u

∂y

)2
)

=
1

v2
|f ′(z)|2

=
1

y2
= gp

(
∂

∂x
,
∂

∂x

)
,

where we used the Cauchy-Riemann equations for f (see for
instance [Ahl79]). Similarly, we can see that

(f∗g)p

(
∂

∂x
,
∂

∂y

)
= 0 and (f∗g)p

(
∂

∂y
,
∂

∂y

)
=

1

y2

and so f is an isometry of H2. Moreover, det(df) = |f ′(z)|2 >
0 and so f is orientation preserving.

(b) Recall that an isometry maps geodesics to geodesics. Hence,
if we prove that given two points p, q ∈ H2 and two unit
vectors v, w respectively at p and q there exists g ∈ PSL(2,R)
such that g(p) = q and (dg)pv = w we are done (here we
also denoted by g the map given by g(z) = g · z). For that
we first see that the orbit of i is all of H2. Indeed, given
any z0 = x0 + iy0 with y0 > 0, the map fz0(z) := y0z + x0,
corresponding to the matrix




√
y0

x0√
y0

0 1√
y0


 ∈ PSL(2,R),

takes i to z0. In addition, the maps rθ : H
2 → H2 correspond-

ing to the matrices



cos θ sin θ

− sin θ cos θ


 ∈ PSL(2,R)
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fix i (i.e. rθ(i) = i for every θ) and are transitive on vectors at
i, since

(drθ)i =




cos(2θ) − sin(2θ)

sin(2θ) cos(2θ)




(they act as SO(2) on TiH
2). Hence the map g = fq ◦rθ ◦f−1

p ,

where θ is such that (drθ)i(df
−1
p )pv = (df−1

q )qw, takes p to q
and is such that (dg)pv = w.

(c) This is an immediate consequence of (b).
(d) Let f : H2 → H2 be an orientation-preserving isometry. If

f has two fixed points then it must fix the geodesic through
them. Let z be a point in this geodesic and choose a positive
orthonormal frame {E1, E2} ∈ TzH

2 with E1 tangent to the
geodesic. Then (df)zE1 = E1, and, since f is an orientation-
preserving isometry, (df)zE2 = E2. We conclude that (df)z
must be the identity, and so f fixes all geodesics through z,
that is, f is the identity map.
Now let f : H2 → H2 be any orientation-preserving isometry,
choose two points z1, z2 ∈ H2 and let g be the element of
PSL(2,R) such that g(z1) = f(z1) and g(z2) = f(z2), given
by (c). Then f ◦g−1 is an orientation-preserving isometry with
two fixed points, and so it must be the identity, that is, f = g.

(9) Clearly the isometry g(z) = z + 2 identifies the sides Re(z) = −1
and Re(z) = 1 of the polygon. On the other hand, we have

h(−1) = 1, h(0) = 0 and h

(
−1

2
+
i

2

)
=

1

2
+
i

2
.

Since Möbius transformations carry circles to lines or circles, we
see that h carries {z ∈ C | |z + 1

2 | = 1
2} to {z ∈ C | |z − 1

2 | = 1
2},

with the reverse orientation.
(10) The plane curve (x(u), y(u)) = (u− tanhu, sechu) satisfies

(
ds

du

)2

= ẋ2 + ẏ2 =
(
1− sech2 u

)2
+ (tanhu sechu)2 = tanh2 u,

and hence

ds

du
= tanhu⇔ s = log coshu⇔ coshu = es,

where we chose s(0) = 0. From the resolution of Exercise 2.8.4, we

see that the Gauss curvature of the tractroid is K = −h′′(s)
h(s) , where

h(s) = y(u(s)) = e−s.

Therefore K = −1. Since the radius of the circles of constant u
tend to 1 as u tends to zero, we see that the tractroid is isometric
to the region {y > 1} of the pseudosphere.
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(11) Any matrix A ∈ O(n + 1) determines an isometry of Rn+1 which
preserves Sn. Therefore if v, w ∈ TpS

n then Av,Aw ∈ TApS
n,

and 〈Av,Aw〉 = 〈v, w〉. Since the metric of Sn is induced by the
Euclidean metric 〈·, ·〉, we see that A gives an isometry of Sn. This
shows that the group of isometries of Sn contains O(n+ 1).

On the other hand, let f : Sn → Sn be an isometry of Sn and

define f̃ : Rn+1 → Rn+1 by

f̃(x) = ‖x‖f
(

x

‖x‖

)
(x 6= 0)

(and f̃(0) = 0). The map f̃ preserves inner products of vectors
which are tangent to the spheres {‖x‖ = constant}. On the other
hand, it also preserves the radial unit vector field. Consequently

f̃ is an isometry of Rn+1 which preserves the origin, and hence

f̃(x) = Ax for some A ∈ O(n+ 1).
(12) (a) We can use any frame of left-invariant vector fields to define

an orientation on G.
(b) Any nonzero left-invariant vector field has no singularities.
(c) Since the metric is left-invariant, so is the Gauss curvature.

But a function is left-invariant if and only if it is constant.
(d) Put any left-invariant metric on G. Then the Gauss curvature

K of this metric is constant. Since G is orientable, we can use
the Gauss-Bonnet theorem to conclude that∫

G
K = 2πχ(G) = 0 ⇒ K = 0.

As G is compact, it is complete, and hence it is a complete
2-manifold with constant zero curvature. Since G is also ori-
entable, by Example 4.4 it must be a 2-torus.

Section 5.

(1) (a) This is clear from the fact that
(
∇̃
X̃
Ỹ
)
|N

depends only on

X̃|N = X and Ỹ|N = Y .
(b) This is also immediate from the fact that

B(X,Y ) = ∇̃
X̃
Ỹ −

(
∇̃
X̃
Ỹ
)⊤

=
(
∇̃
X̃
Ỹ
)⊥

.

(c) By Exercise 6.11.7 in Chapter 1 we know that [X̃, Ỹ ] is tangent
to N . Therefore

B(X,Y )−B(Y,X) =
(
∇̃
X̃
Ỹ
)⊥

−
(
∇̃
Ỹ
X̃
)⊥

= [X̃, Ỹ ]⊥ = 0.

(d) Let f be a function on N and let f̃ be any extension of f to
M . Then

B(fX, Y ) =
(
∇̃
f̃ X̃
Ỹ
)⊥

= f̃
(
∇̃
X̃
Ỹ
)⊥

= fB(X,Y ),
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and, by symmetry,

B(X, fY ) = fB(X,Y ).

Moreover, it is clear that

B(X + Y, Z) = B(X,Z) +B(Y, Z)

and

B(X,Y + Z) = B(X,Y ) +B(X,Z).

(e) If x : V → Rn are local coordinates around p ∈M , we have

B(X,Y ) = B




n∑

i=1

Xi ∂

∂xi
,
n∑

j=1

Y j ∂

∂xj


 =

n∑

i,j=1

XiY jB

(
∂

∂xi
,
∂

∂xj

)
.

Therefore

B(X,Y )p =
n∑

i,j=1

Xi(p)Y j(p)B

(
∂

∂xi
,
∂

∂xj

)

p

depends only on Xp, Yp.

(f) From Exercise 6.11.7 in Chapter 1 it is clear that [X̃, Ỹ ] is an
extension of [X,Y ]. Therefore

∇̃
[X̃,Ỹ ]

X̃ −∇[X,Y ]X = B([X,Y ], X)

is orthogonal to N .
(2) (a) In this case the Gauss map g : Sn(r) → Sn is simply g(p) = p

r .
(b) If p ∈ Sn(r) and v ∈ TpS

n(r) then v = ċ(0) for some curve
c : (−ε, ε) → Sn(r) satisfying c(0) = p. We then have

(dg)pv =
d

dt |t=0

g(c(t)) =
d

dt |t=0

c(t)

r
=
v

r
,

and hence the derivative of the Gauss map has 1
r as its unique

eigenvalue.
(c) The linear map associated to the second fundamental form of

the inclusion of Sn(r) in Rn is given by

Snp(v) = −(dg)pv = −v
r
,

and so all its eigenvalues are equal to −1
r . It is then clear from

Example 5.4 that for any 2-plane Π ⊂ TpS
n(r) we have

KSn(r)(Π) = KSn(r)(Π)−KRn+1
(Π) =

1

r2
.

(3) (a) Let N be totally geodesic and let v ∈ TN . Consider the
geodesic c : I → N of N with initial condition v. Then c is
also a geodesic of M , and hence

0 = ∇̃ċ ċ = ∇ċ ċ+B(ċ, ċ) = B(ċ, ċ),
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implying that B(v, v) = 0.
On the other hand, suppose that B ≡ 0 and let c : I → N be
a geodesic of N . Then

∇̃ċ ċ = ∇ċ ċ+B(ċ, ċ) = 0,

and hence c is a geodesic of M .
(b) We start by showing that if c : I → M is a geodesic of M

whose image is contained in N then c is also a geodesic of N .
Indeed, we have

0 = ∇̃ċ ċ = ∇ċ ċ+B(ċ, ċ),

and since ∇ċ ċ and B(ċ, ċ) are orthogonal they must vanish
separately.
Now let U be a totally normal neighborhood ofM intersecting
N in a totally normal neighborhood, and take p, q ∈ N ∩ U .
The image of the minimal length geodesic connecting p to q
must be contained in N , as it must coincide with its image
by the isometry. Therefore the minimal length geodesic of N
connecting p to q coincides with the minimal length geodesic
of M connecting p to q. Since U , p and q are arbitrary, we
conclude that N is totally geodesic.
Obvious isometries of Rn, Sn and Hn whose fixed points are
submanifolds are reflections with respect to (n − 1)-planes in
Rn, reflections with respect to n-dimensional planes through
the origin in Rn+1 ⊃ Sn and reflections with respect to ver-
tical half-planes in Hn. The corresponding totally geodesic
submanifolds are (n − 1)-planes in Rn, (n − 1)-dimensional
spheres in Sn and (n − 1)-dimensional hyperbolic spaces in
Hn.

(4) Let g : D ⊂ N → Sn be the Gauss map defined on a neighborhood
D of p. Since det(dg)p = (−1)n det(Snp) = (−1)nK(p) 6= 0, we
may assume that g is a diffeomorphism on D. If ω is the standard
volume form of Sn, we have

vol(g(D)) =

∫

g(D)
ω =

∣∣∣∣
∫

D
g∗ω

∣∣∣∣

(as g may be orientation reversing). If {v1, . . . , vn} is an orthonor-
mal basis for TqN ∼= Tg(q)S

n with q ∈ D then

g∗ω(v1, . . . , vn) = ω((dg)q v1, . . . , (dg)q vn)

= det(dg)q ω(v1, . . . , vn) = det(dg)q,

and hence g∗ω = det(dg)ωN on D (where ωN is the volume element
of N). We conclude that

vol(g(D)) =

∣∣∣∣
∫

D
det(dg)

∣∣∣∣ =
∫

D
| det(dg)| =

∫

D
|K|
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(as det(dg) does not change sign on D). The result then follows by
the mean value theorem:

|K(p)| = lim
D→p

∫
D |K|

vol(D)
= lim

D→p

vol(g(D))

vol(D)
.

(5) (a) The ball Bε(p) is covered by geodesics of length ε that start
at p, defined by cv(t) := expp(tv), with 0 ≤ t ≤ ε and ‖v‖ = 1.
Hence, Np := expp(Bε∩Π) is formed by the geodesics in Bε(p)
that are tangent to Π. Let us choose an orthonormal basis
{(E1)p, . . . , (En)p} of TpM such that {(E1)p, (E2)p} is a basis
of Π. Choosing normal coordinates

ϕ(x1, . . . , xn) = expp

(
n∑

i=1

xi(Ei)p

)
,

we have

Np = {q ∈ Bε(p) | x3(q) = · · · = xn(q) = 0}.
We conclude from Exercise 5.9.3 in Chapter 1 that Np is a
2-dimensional submanifold of M .

(b) From Exercise 4.8.2 in Chapter 3 we know that normal coor-
dinates satisfy

(
∇̃ ∂

∂xi

∂

∂xj

)

p

= 0

for i, j = 1, . . . , n, where ∇̃ is the Levi-Civita connection of
M . Consequently,

B

((
∂

∂xi

)

p

,

(
∂

∂xj

)

p

)
=

(
∇̃ ∂

∂xi

∂

∂xj

)⊥

p

= 0,

for i, j = 1, 2, and hence the second fundamental form of Np

vanishes at p. From Proposition 5.3 we then have KNp(Π) =
KM (Π).

(6) Let c : I → N be a geodesic in N parameterized by arc length and
tangent at a point c(s) to the principal direction (Ei)c(s) (a unit
eigenvector of Snc(s)). Then the geodesic curvature (in M) of c is
given by

kg(s) = ‖∇̃ċ(s)ċ(s)‖ = ‖B(ċ(s), ċ(s)) +∇ċ(s)ċ(s)‖
= ‖B(ċ(s), ċ(s))‖ = |〈〈Snc(s)(ċ(s)), ċ(s)〉〉|
= |〈〈Snc(s)((Ei)c(s)), (Ei)c(s)〉〉| = |λi|.

(7) (a) A parameterization of the paraboloid is, for instance, the map
ϕ : R2 → R3 given by

ϕ(u, v) =

(
u, v,

1

2
(u2 + v2)

)
.
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The tangent space to the paraboloid at ϕ(u, v) is generated by

∂ϕ

∂u
= (1, 0, u) and

∂ϕ

∂v
= (0, 1, v),

and a normal vector is
∂ϕ

∂u
× ∂ϕ

∂v
= (−u,−v, 1).

A possible choice for the Gauss map is therefore

g(u, v) =
(u, v,−1)√
1 + u2 + v2

.

Notice that the image of the paraboloid by this map is con-
tained in the southern hemisphere of S2, where we can again
use the two first coordinate functions of R3 as coordinates. In
these coordinates, the Gauss map is simply written

ĝ(u, v) =
(u, v)√

1 + u2 + v2
,

and its derivative is represented by the Jacobian matrix

dĝ =

(
(1 + v2)(1 + u2 + v2)−

3
2 −uv(1 + u2 + v2)−

3
2

−uv(1 + u2 + v2)−
3
2 (1 + u2)(1 + u2 + v2)−

3
2

)
.

We conclude that the Gauss curvature of the paraboloid is

K = det(dg) = (1 + u2 + v2)−2.

(b) A parameterization of the saddle surface is, for instance, the
map ϕ : R2 → R2 given by

ϕ(u, v) = (u, v, uv) .

The tangent space to the saddle surface at ϕ(u, v) is generated
by

∂ϕ

∂u
= (1, 0, v) and

∂ϕ

∂v
= (0, 1, u),

and a normal vector is
∂ϕ

∂u
× ∂ϕ

∂v
= (−v,−u, 1).

A possible choice for the Gauss map is therefore

g(u, v) =
(v, u,−1)√
1 + u2 + v2

.

Notice that the image of the saddle surface by this map is con-
tained in the southern hemisphere of S2, where we can again
use the two first coordinate functions of R3 as coordinates. In
these coordinates, the Gauss map is simply written

ĝ(u, v) =
(v, u)√

1 + u2 + v2
,
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and its derivative is represented by the Jacobian matrix

dĝ =

(
−uv(1 + u2 + v2)−

3
2 (1 + u2)(1 + u2 + v2)−

3
2

(1 + v2)(1 + u2 + v2)−
3
2 −uv(1 + u2 + v2)−

3
2

)
.

We conclude that the Gauss curvature of the saddle surface is

K = det(dg) = −(1 + u2 + v2)−2.

(8) (a) Since

(df)(s,θ) =




h′(s) cos θ −h(s) sin θ
h′(s) sin θ h(s) cos θ
g′(s) 0




we immediately see that if g′(s) 6= 0 then (df)(s,θ) is injective.
If g′(s) = 0 then (df)(s,θ) is also injective since

det

(
h′(s) cos θ −h(s) sin θ
h′(s) sin v h(s) cos θ

)
= h′(s)h(s)

and we know that h > 0 and that, if g′(s) = 0, then (h′(s))2 =
1− (g′(s))2 = 1, implying that h′(s) = ±1.

(b) Since

fs := (df)

(
∂

∂s

)
= (h′(s) cos θ, h′(s) sin θ, g′(s))

and

fθ := (df)

(
∂

∂θ

)
= (−h(s) sin θ, h(s) cos θ, 0)

we clearly have 〈fs, fθ〉 = 0.
(c) We can consider the field of orthonormal frames {Es, Eθ} given

by

Es :=
fs
‖fs‖

= fs and Eθ :=
fθ
‖fθ‖

= (− sin θ, cos θ, 0).

Then the vector field E3 given by

E3 =
Es × Eθ

‖Es × Eθ‖
= (−g′(s) cos θ,−g′(s) sin θ, h′(s))

is unitary (since (h′(s))2 + (g′(s))2 = 1) and normal to the
surface, thus defining the Gauss map in these coordinates:

E3 : R× (0, 2π) → S2 ⊂ R3.

To obtain the matrix representing the second fundamental
form we consider

dE3 =




−g′′(s) cos θ g′(s) sin θ
−g′′(s) sin θ −g′(s) cos θ

h′′(s) 0
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and we write this transformation with respect to the basis
{Es, Eθ}. For that, we have

(dE3)(Es) = (dE3)

(
1
0

)
=




−g′′(s) cos θ
−g′′(s) sin θ

h′′(s)




=





h′′(s)
g′(s) Es if g′(s) 6= 0

− g′′(s)
h′(s)Es if g′(s) = 0.

Note that, since (h′(s))2+(g′(s))2 = 1, we have h′h′′ = −g′g′′,
and so, if g′ = 0 then h′ = ±1 and h′′ = 0.
Similarly, we have

(dE3)(Eθ) = (dE3)

(
0
1
h

)
=




g′(s)
h(s) sin θ

− g′(s)
h(s) cos θ

0




= −g
′(s)
h(s)

Eθ.

Hence, the matrix of the second fundamental form associated
to the frame {Es, Eθ} is

II :=

(
−h′′
g′ 0

0 g′

h

)
if g′ 6= 0

and

II :=

(
g′′

h′ 0
0 0

)
if g′ = 0.

(d) From (c) we conclude that the Gauss curvature is equal to

K = −h′′
h if g′ 6= 0, and K = 0 if g′ = 0. Moreover, the mean

curvature is equal to

H =
1

2
tr II =

1

2

(
g′

h
− h′′

g′

)

if g′ 6= 0 and H = g′′

2h′ otherwise.
(e) (i) Just take h(s) = As + B for some constants A,B ∈ R.

Then g(s) = ±
√
1−A2s + C for some constant C and

so the curve α is a straight line and S is either a plane,
a cone or a cylinder.

(ii) To obtain K ≡ 1 we get h(s) = A cos s + B sin s for
some constants A,B ∈ R . Taking for instance A = 0
and B = 1 we obtain h(s) = sin s and we can take for
instance g(s) = cos s. Then the curve α is a circle with
center at the origin and radius 1 and S is a sphere of
radius 1.
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(iii) To obtain K ≡ −1 we get h(s) = Aes + Be−s for some
constants A,B ∈ R. Choosing for instance A = 1 and
B = 0 we obtain h(s) = es and we can choose g satisfying

the equation g′(s) =
√
1− e2s. The curve α is then given

by

α(s) =

(
es,

∫ s

0

√
1− e2tdt

)
.

Changing variables so that es = 1/ cosh t we obtain

α(t) =

(
1

cosh t
, tanh t− t

)
(t < 0),

which is the equation of a tractrix, and S is the pseudo-
sphere (cf. Exercise 4.7.10).

(iv) To obtain H ≡ 0 we need (g′)2 = hh′′ and so (h′)2 +
hh′′ = 1. Hence, (h2)′′ = 2 and so h is of the form

h(s) =
√
s2 +As+B

for some constants A,B ∈ R. Taking, for instance, A =
B = 0 we get h(s) = s and g a constant function. Hence
the curve α is given by α = (s, C) for some constant
C ∈ R and S is a plane. If we take, for instance, A = 0
and B = 1 we get h(s) =

√
s2 + 1 and g(s) = sinh−1(s).

Hence h = cosh g and so α is a catenoid.

Chapter 5

Section 1.

(1) A system of k particles moving in Rn will be described by k curves
xi : I ⊂ R → Rn. Newton’s Second law will be

miẍi = Fi(x1, . . . , xk, ẋ1, . . . , ẋk) (i = 1, . . . , k),

where Fi : R
2kn → Rn is the force acting on the i-th particle and

mi > 0 is the mass of the particle. The configuration space will be
in this case Rkn, and we can obtain Newton’s Second Law from the
inner product

〈〈(v1, . . . , vk), (w1, . . . , wk)〉〉 :=
k∑

i=1

mi 〈vi, wi〉

in Rkn (where 〈·, ·〉 is the Euclidean inner product in Rn) and

F(x1, . . . , xk, v1, . . . , vk)(w1, . . . , wk) :=
k∑

i=1

〈Fi(x1, . . . , xk, v1, . . . , vk), wi〉.
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The kinetic energy for this system will be

K(v1, . . . , vk) :=
1

2

k∑

i=1

mi〈vi, vi〉.

(2) Newton’s equation is

µ

(
Dċ

dt

)
= F(ċ) ⇔

n∑

i,j=1

gij(x)


ẍj +

n∑

k,l=1

Γjkl(x)ẋ
kẋl


 dxi =

n∑

i=1

Fi(x, ẋ)dx
i.

Equating the components of these covectors and multiplying by the
inverse (gij(x)) of the matrix (gij(x)) yields the system of second
order ODEs

ẍi +
n∑

j,k=1

Γijk(x)ẋ
j ẋk =

n∑

j=1

gij(x)Fj(x, ẋ) (i = 1, . . . , n),

which is equivalent to the system of first order ODEs
{
ẋi = vi

v̇i =
∑n

j=1 g
ij(x)Fj(x, v)−

∑n
j,k=1 Γ

i
jk(x)v

jvk
(i = 1, . . . , n).

These are the equations for the flow of the vector field X. The
fixed points of the flow are given in local coordinates by

vi = Fi(x, 0) = 0 (i = 1, . . . , n).

These are the vectors v ∈ TM such that v = 0 and F(v) = 0.
(3) (a) Since the kinetic energy is given by K(x, v) = 1

2 v
2 we have

∂K

∂x
= 0 and

∂K

∂v
= v.

Moreover, since

dU

dx
= ω2x,

and F is conservative, Proposition 1.14 yields the equation of
motion ẍ = −ω2x. The general solution of this equation is

x(t) = A cos (ω t) +B sin (ω t),

for some constants A,B ∈ R.
(b) By Newton’s equation we know that µ

(
Dċ
dt

)
= F(ċ). Hence

Proposition 1.14 yields

ẍ = −dU
dx

− 2kẋ = −ω2x− 2kẋ.
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The general solution of this equation is

x(t) = Ae(−k+
√
k2−ω2)t +Be(−k−

√
k2−ω2)t, if k2 − ω2 > 0,

x(t) = Ae−kt +Bte−kt, if k2 − ω2 = 0,

x(t) = Ae−kt cos (
√
ω2 − k2 t) +Be−kt sin (

√
ω2 − k2 t), if k2 − ω2 < 0,

for some constants A,B ∈ R. These three cases are some-
times referred to as overdamped, critically damped and un-
derdamped, respectively. In the first two cases the friction is
large enough to suppress oscillation as the system approaches
the equilibrium. In the last case there is oscillation, but the
frequency decreases as the friction increases.

(c) Generalizing the results in (a) to any dimension we obtain

ẍi(t) = −∂U
∂xi

= −ω2xi,

giving xi(t) = Ai cos (ωt) + Bi sin (ωt), for some constants
Ai, Bi ∈ R, i = 1, . . . , n.

(4) (a) This is obvious from Exercise 2, since the metric is in this
case given by the 1 × 1 matrix g(x) = (1), implying that the
Christoffel symbols vanish, and

F = −dU = −U ′(x)dx.

(b) Trivial.
(c) In local coordinates, the ODE system for the flow of X is

{
ẋ = v

v̇ = −U ′(x)
.

Linearizing around the fixed point (x0, 0) yields the linear sys-
tem {

ẋ = v

v̇ = −U ′′(x0)(x− x0)
.

The system’s matrix,

A =

(
0 1

−U ′′(x0) 0

)
,

has eigenvalues λ = ±
√
−U ′′(x0). Therefore if U ′′(x0) < 0

then the fixed point (x0, 0) is hyperbolic with a positive and a
negative eigenvalue, hence unstable.

(d) If U ′′(x0) > 0 then the fixed point (x0, 0) is elliptic, and no
conclusion about stability can be obtained from the linearized
system. However, in this case the mechanical energy

E(x, v) =
1

2
v2 + U(x)
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has a critical point at (x0, 0) with Hessian

HE(x0, 0) =

(
U ′′(x0) 0

0 1

)
,

implying that its level surfaces around (x0, 0) are close to el-
lipses centered at (x0, 0). Since the system’s motions must lie
on these level sets, we conclude that (x0, 0) has a neighborhood
formed by periodic orbits. In particular it is stable.

(e) Now that we know that (x0, 0) has a neighborhood formed by
periodic orbits, we know that the period of these orbits will
converge to the period of the orbits of the linearized system.
Setting ξ = x− x0, it is easily seen that the linearized system
is equivalent to

ξ̈ + U ′′(x0)ξ = 0,

whose solutions are periodic with period 2πU ′′(x0)
− 1

2 .
(f) We just have to check that it is always possible to find a local

coordinate x such that g = dx⊗dx. This is easily accomplished
in the neighborhood of any point p ∈ M by choosing x to be
the distance from p (with sign).

(5) The Koszul formula yields

2〈〈∇̃XY, Z〉〉 = X · 〈〈Y, Z〉〉+ Y · 〈〈X,Z〉〉 − Z · 〈〈X,Y 〉〉
− 〈〈[X,Z], Y 〉〉 − 〈〈[Y, Z], X〉〉+ 〈〈[X,Y ], Z〉〉.

Noting that for instance

X · 〈〈Y, Z〉〉 = X ·
(
e2ρ〈Y, Z〉

)
= e2ρX · 〈Y, Z〉+ 2dρ(X)e2ρ〈Y, Z〉,

it should be clear that

2〈〈∇̃XY, Z〉〉 = 2e2ρ〈∇XY, Z〉+ 2dρ(X)e2ρ〈Y, Z〉
+ 2dρ(Y )e2ρ〈X,Z〉 − 2dρ(Z)e2ρ〈X,Y 〉
= 2〈〈∇XY, Z〉〉+ 2〈〈dρ(X)Y, Z〉〉
+ 2〈〈dρ(Y )X,Z〉〉 − 2e2ρ〈grad ρ, Z〉〈X,Y 〉.

Since
e2ρ〈grad ρ, Z〉 = 〈〈grad ρ, Z〉〉

and Z is arbitrary we obtain

∇̃XY = ∇XY + dρ(X)Y + dρ(Y )X − 〈X,Y 〉 grad ρ.
(6) Let s : I → J be a diffeomorphism and γ : J → M the reparame-

terization of c : I →M defined by

c(t) := γ(s(t)).

We have

(31) ċ(t) = γ̇(s(t))
ds

dt
(t)
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and consequently

∇ċ ċ = ∇ċ

(
ds

dt
γ̇

)
=

(
d2s

dt2

)
γ̇ +

(
ds

dt

)
∇ ds

dt
γ̇ γ̇

=
d

dt

(
log

∣∣∣∣
ds

dt

∣∣∣∣
)
ċ+

(
ds

dt

)2

∇γ̇ γ̇

Therefore, if c is a reparameterization of a geodesic γ, then c satis-
fies

∇ċ ċ = f(t)ċ

with

f(t) =
d

dt

(
log

∣∣∣∣
ds

dt

∣∣∣∣
)
.

On the other hand, if c satisfies (31), then the reparameterization
γ of c determined by

s(t) =

∫
exp

(∫
f(t)dt

)
dt

is a geodesic.
(7) SinceM is compact and U is continuous U has a maximum value in

M i.e. there exists a number h0 such that U(p) < h0 for every p ∈
M . With such a number we can consider the Jacobi metric 〈〈·, ·〉〉 =
2(h0−U)〈·, ·〉 on Mh0 =M , obtaining from Theorem 1.11 that the
motions of the conservative mechanical system (M, 〈·, ·〉,−dU) are,
up to reparametrization, the geodesics of the Jacobi metric on M .
Hence we can conclude that if M is compact the system admits a
nontrivial periodic motion.

(8) Recall that the local coordinates (x1, . . . , xn, v1, . . . , vn) on TM
parameterize the vector

n∑

i=1

vi
∂

∂xi

which is tangent to M at the point with coordinates (x1, . . . , xn).
Therefore, we have

K(x1, . . . , xn, v1, . . . , vn) =
1

2

n∑

i,j=1

gij(x
1, . . . , xn)vivj ,

where

gij =

〈
∂

∂xi
,
∂

∂xj

〉

are the components of the metric in this coordinate system. Con-
sequently,

∂K

∂vi
=

n∑

j=1

gijv
j
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and hence

∂K

∂vi
(x(t), ẋ(t)) =

n∑

j=1

gij(x(t))ẋ
j(t),

leading to

d

dt

(
∂K

∂vi
(x(t), ẋ(t))

)
=

n∑

j=1

gij(x(t))ẍ
j(t) +

n∑

j,k=1

∂gij
∂xk

(x(t))ẋk(t)ẋj(t).

Moreover,

∂K

∂xi
=

1

2

n∑

j,k=1

∂gjk
∂xi

vjvk,

and hence

∂K

∂xi
(x(t), ẋ(t)) =

1

2

n∑

j,k=1

∂gjk
∂xi

(x(t))ẋj(t)ẋk(t).

We conclude that

d

dt

(
∂K

∂vi
(x(t), ẋ(t))

)
− ∂K

∂xi
(x(t), ẋ(t)) =

n∑

j=1

gij(x(t))ẍ
j(t) +

n∑

j,k=1

(
∂gij
∂xk

(x(t))− 1

2

∂gjk
∂xi

(x(t))

)
ẋj(t)ẋk(t).

On the other hand, if v, w ∈ TpM are written as

v =

n∑

i=1

vi
∂

∂xi
, w =

n∑

i=1

wi
∂

∂xi

then we have

µ(v)(w) =

n∑

i,j=1

gijv
iwj =

n∑

i,j=1

gijv
idxj(w),

and hence

µ(v) =

n∑

i,j=1

gijv
idxj =

n∑

i,j=1

gijv
jdxi.

Therefore

µ

(
Dċ

dt
(t)

)
=

n∑

i,j=1

gij(x(t))


ẍj(t) +

n∑

k,l=1

Γjkl(x(t))ẋ
k(t)ẋl(t)


 dxi.
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Since

n∑

j=1

gijΓ
j
kl =

1

2

n∑

j,m=1

gij g
jm

(
∂gml
∂xk

+
∂gmk
∂xl

− ∂gkl
∂xm

)

=
1

2

(
∂gil
∂xk

+
∂gik
∂xl

− ∂gkl
∂xi

)
,

we have

n∑

j,k,l=1

gij(x(t))Γ
j
kl(x(t))ẋ

k(t)ẋl(t)

=
1

2

n∑

k,l=1

(
∂gil
∂xk

(x(t)) +
∂gik
∂xl

(x(t))− ∂gkl
∂xi

(x(t))

)
ẋk(t)ẋl(t)

=
n∑

j,k=1

(
∂gij
∂xk

(x(t))− 1

2

∂gjk
∂xi

(x(t))

)
ẋj(t)ẋk(t),

which completes the proof.
(9) Since K(x, y, vx, vy) = 1

2 y2

(
(vx)2 + (vy)2

)
we have

∂K

∂vx
(x, y, ẋ, ẏ) =

ẋ

y2
,

∂K

∂x
= 0

∂K

∂vy
(x, y, ẋ, ẏ) =

ẏ

y2
,

∂K

∂y
(x, y, ẋ, ẏ) = − 1

y3
(ẋ2 + ẏ2).

Therefore Newton’s equations for a free particle in H are

d

dt

(
ẋ

y2

)
= 0 ⇔ ẍ− 2

y
ẋẏ = 0,

d

dt

(
ẏ

y2

)
+

1

y3
(ẋ2 + ẏ2) = 0 ⇔ ÿ +

1

y
ẋ2 − 1

y
ẏ2 = 0.

Since these must be the equations for a geodesic on H, by compar-
ison with the geodesic equations (and using the symmetry of the
Levi-Civita connection),

ẍ+ Γxxxẋ
2 + 2Γxxyẋẏ + Γxyyẏ

2 = 0,

ÿ + Γyxxẋ
2 + 2Γyxyẋẏ + Γyyyẏ

2 = 0,

we obtain the following nonvanishing Christoffel symbols:

Γxxy = Γxyx = −1

y
, Γyxx =

1

y
, Γyyy = −1

y
.
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(10) (a) Considering Example 1.15(1) with m = 1 we know that New-
ton’s equations are

d

dt
(ṙ)− rθ̇2 = −

(
−1

r

)′
= − 1

r2
,

d

dt
(r2θ̇) = 0.

The second equation implies that the angular momentum pθ :=
r2θ̇ is constant along the motion. The first equation then
becomes

r̈ =
p2θ
r3

− 1

r2
=

d

dr

(
− p2θ
2r2

+
1

r

)
.

Multiplying both sides of this equation be ṙ one obtains

d

dt

(
ṙ2

2

)
=

d

dt

(
− p2θ
2r2

+
1

r

)

and so
ṙ2

2
= − p2θ

2r2
+

1

r
+ E

for some constant E ∈ R (which is easily seen to be the me-
chanical energy).

(b) From (a) we know that

d

dt
=
pθ
r2

d

dθ

and so

d2

dθ2
=
r2

pθ

d

dt

(
r2

pθ

d

dt

)

=
r2

pθ

(
2rṙ

pθ

d

dt
+
r2

pθ

d2

dt2

)
.

Hence
d2u

dθ2
=

2r3ṙ

p2θ

du

dt
+
r4

p2θ

d2u

dt2
.

Since

du

dt
= − ṙ

r2
and

d2u

dt2
=

2ṙ2

r3
− r̈

r2
,

we obtain

d2u

dθ2
= − r̈r

2

p2θ
= −

(
p2θ
r3

− 1

r2

)
r2

p2θ
=

1

p2θ
− 1

r
,

and so
d2u

dθ2
+ u =

1

p2θ
.
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(c) Since up =
1
p2
θ

is a particular solution of the equation

d2u

dθ2
+ u =

1

p2θ

obtained in (b), the general solution of this equation is

u(θ) = A cos θ +B sin θ +
1

p2θ
for some constants A,B ∈ R. Since the minimal value of r
occurs when θ = 0 we know that u = 1

r has a maximum at
θ = 0 and so we must have u′(0) = 0, yielding B = 0. Hence

u(θ) = A cos θ +
1

p2θ
,

and we obtain

r =
1

u
=

p2θ
1 + ε cos θ

,

where ε = Ap2θ. Since from (a) we have ṙ2 + p2θu
2 − 2u = 2E

we obtain for θ = 0,

ṙ2(0) + p2θu
2(0)− 2u(0) = 2E.

On the other hand,

ṙ =
dr

dt
=
dr

dθ

dθ

dt
=
ε sin θ

pθ
,

implying that ṙ(0) = 0. Hence we have

p2θu
2(0)− 2u(0) = 2E,

that is,

p2θ
(1 + ε)2

p4θ
− 2

(
1 + ε

p2θ

)
= 2E.

We then obtain the quadratic equation

(1 + ε)2 − 2(1 + ε)− 2Ep2θ = 0

yielding ε = ±
√
1 + 2Ep2θ. Since r has a minimum at θ = 0

the constant ε must be positive and so ε =
√
1 + 2Ep2θ.

(d) Considering the Jacobi metric

2

(
h+

1

r

)(
dr ⊗ dr + r2dθ ⊗ dθ

)

on Uh = {−1
r < h} we obtain, taking h = 0 and dropping the

factor of 2 (which does not alter the geodesics), the metric

1

r

(
dr ⊗ dr + r2dθ ⊗ dθ

)
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on U0 = R2 \ {(0, 0)}. Hence, the geodesics on U0 are, up
to reparametrization, the motions given in (c) for E = 0,
implying ε = 1. These are conic sections of eccentricity 1,
that is, parabolas (in particular all nontrivial geodesics are
unbounded).
Introducing the new coordinate ρ =

√
r we can write this

metric as

4dρ⊗ dρ+ ρ2dθ ⊗ dθ,

which is the metric induced on the surface of the cone given in
cylindrical coordinates (ρ, θ, z) by z =

√
3ρ. Indeed, consider-

ing the parameterization

ϕ(ρ, θ) = (ρ cos θ, ρ sin θ,
√
3ρ)

we obtain
〈
∂ϕ

∂ρ
,
∂ϕ

∂ρ

〉
= 4,

〈
∂ϕ

∂ρ
,
∂ϕ

∂θ

〉
= 0,

〈
∂ϕ

∂θ
,
∂ϕ

∂θ

〉
= ρ2.

Section 2.

(1) Using spherical coordinates (θ, ϕ) (the radius l of the sphere N is
fixed) we parameterize N using the map φ : (0, π) × (0, 2π) → R3

defined by

φ(θ, ϕ) = (l sin θ cosϕ, l sin θ sinϕ, l cos θ).

We then have

∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y
+
∂z

∂θ

∂

∂z

= l cos θ cosϕ
∂

∂x
+ l cos θ sinϕ

∂

∂y
− l sin θ

∂

∂z

and

∂

∂ϕ
=
∂x

∂ϕ

∂

∂x
+
∂y

∂ϕ

∂

∂y
+
∂z

∂ϕ

∂

∂z

= −l sin θ sinϕ ∂

∂x
+ l sin θ cosϕ

∂

∂y
,

and so the kinetic energy of the spherical pendulum is

K(θ, ϕ, vθ, vϕ) =
1

2
m

〈
vθ

∂

∂θ
+ vϕ

∂

∂ϕ
, vθ

∂

∂θ
+ vϕ

∂

∂ϕ

〉

=
1

2
ml2

(
(vθ)2 + (vϕ)2 sin2 θ

)
.
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Hence,

∂K

∂θ
= ml2(vϕ)2 sin θ cos θ,

∂K

∂ϕ
= 0,

∂K

∂vθ
= ml2vθ,

∂K

∂vϕ
= ml2vϕ sin2 θ.

On the other hand, the potential energy is given by

U(x, y, z) = mgz

and so its restriction to N has the local expression

U(θ, ϕ) = mgl cos θ.

Consequently, the equations of motion are




d

dt

(
∂K

∂vθ
(θ, ϕ, θ̇, ϕ̇)

)
− ∂K

∂θ
(θ, ϕ, θ̇, ϕ̇) = −∂U

∂θ
(θ, ϕ)

d

dt

(
∂K

∂vϕ
(θ, ϕ, θ̇, ϕ̇)

)
− ∂K

∂ϕ
(θ, ϕ, θ̇, ϕ̇) = −∂U

∂ϕ
(θ, ϕ)

that is

d

dt

(
ml2θ̇

)
−ml2ϕ̇2 sin θ cos θ −mgl sin θ = 0

and
d

dt

(
ml2ϕ̇ sin2 θ

)
= 0.

Hence the equations of motion for the spherical pendulum are
{
lθ̈ − lϕ̇2 sin θ cos θ − g sin θ = 0

ϕ̈ sin2 θ + 2θ̇ϕ̇ sin θ cos θ = 0
.

Parallels of N are curves for which θ = θ0 is constant and so, since
sin θ0 6= 0, they are solutions of the equations of motion iff

ϕ̇2 = − g

l cos θ0
.

Thus we need θ0 ∈
(
π
2 , π

)
and then the only parallels that are

solutions are of the form

(θ(t), ϕ(t)) =

(
θ0,

√
− g

l cos θ0
t+ C

)

with θ0 ∈
(
π
2 , π

)
and C ∈ R. Physically this makes sense, since only

when θ0 ∈
(
π
2 , π

)
can the reaction force have an upward component

to balance the gravitational acceleration.
(2) Using the map φ : (0,∞)× (0, 2π) → R3 defined by

φ(r, θ) = (r cos θ, r sin θ, f(r))
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to parameterize the surface of revolution N , we have

∂

∂r
=
∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y
+
∂z

∂r

∂

∂z

= cos θ
∂

∂x
+ sin θ

∂

∂y
+ f ′(r)

∂

∂z

and

∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y
+
∂z

∂θ

∂

∂z

= −r sin θ ∂
∂x

+ r cos θ
∂

∂y
,

and so the kinetic energy is

K(θ, ϕ, vr, vθ) =

〈
vr
∂

∂r
+ vθ

∂

∂θ
, vr

∂

∂r
+ vθ

∂

∂θ

〉

=
1

2
m
((

1 + f ′(r)2
)
(vr)2 + r2(vθ)2

)
.

Hence,

∂K

∂r
= mf ′(r)f ′′(r)(vr)2 +mr(vθ)2,

∂K

∂θ
= 0,

∂K

∂vr
= m

(
1 + f ′(r)2

)
vr,

∂K

∂vθ
= mr2vθ.

On the other hand, the potential energy is given by

U(x, y, z) = mgz

and so its restriction to N has the local expression

U(r, θ) = mgf(r).

Consequently, the equations of motion are




d

dt

(
∂K

∂vr
(r, θ, ṙ, θ̇)

)
− ∂K

∂r
(r, θ, ṙ, θ̇) = −∂U

∂r
(r, θ)

d

dt

(
∂K

∂vθ
(r, θ, ṙ, θ̇)

)
− ∂K

∂θ
(r, θ, ṙ, θ̇) = −∂U

∂θ
(r, θ)

that is

d

dt

(
m
(
1 + f ′(r)2

)
ṙ
)
−mf ′(r)f ′′(r)ṙ2 −mrθ̇2 = −mgf ′(r)

and
d

dt

(
mr2θ̇

)
= 0,

and we obtain{(
1 + f ′(r)2

)
r̈ + f ′(r)f ′′(r)ṙ2 − rθ̇2 + gf ′(r) = 0

r2θ̈ + 2rṙθ̇ = 0
.
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(3) (a) Let (x, y) be the position of the dumbbells center of mass.
Then the positions of m1 and m2 are

(x1, y1) = (x, y) +
m2l

m1 +m2
(cos θ, sin θ),

(x2, y2) = (x, y)− m1l

m1 +m2
(cos θ, sin θ),

for some θ ∈ R, and the configuration space is R2×S1. Notice
that one has

(x, y) =
m1

m1 +m2
(x1, y1) +

m2

m1 +m2
(x2, y2)

and

(x1, y1)− (x2, y2) = l(cos θ, sin θ).

The velocity of the particle m1 is

(ẋ1, ẏ1) = (ẋ, ẏ) +
m2lθ̇

m1 +m2
(− sin θ, cos θ),

corresponding to the kinetic energy

K1 =
1

2
m1

(
ẋ2 + ẏ2 +

m2
2l2θ̇2

(m1 +m2)2
+

2m2lθ̇

m1 +m2
(−ẋ sin θ + ẏ cos θ)

)
.

Analogously, the particle m2 has kinetic energy

K2 =
1

2
m2

(
ẋ2 + ẏ2 +

m1
2l2θ̇2

(m1 +m2)2
− 2m1lθ̇

m1 +m2
(−ẋ sin θ + ẏ cos θ)

)
.

Therefore the dumbbell has total kinetic energy

K =
1

2
(m1 +m2)

(
ẋ2 + ẏ2

)
+

m1m2l
2

2(m1 +m2)
θ̇2,

corresponding to the map K : T (R2 × S1) → R given in local
coordinates by

K(x, y, θ, vx, vy, vθ) =
1

2
(m1+m2)

(
(vx)2 + (vy)2

)
+

m1m2l
2

2(m1 +m2)
(vθ)2.

The equations of motion are

ẍ = 0 ⇔ x = x0 + vx0 t,

ÿ = 0 ⇔ y = y0 + vy0t,

θ̈ = 0 ⇔ θ = θ0 + vθ0t,

where x0, y0, θ0, v
x
0 , v

y
0 , v

θ
0 are integration constants. In other

words, the dumbbell’s center of mass moves with constant ve-
locity, and the two masses rotate with constant angular veloc-
ity around it.
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(b) Again, let (x, y, z) be the position of the dumbbell’s center of
mass. Then the positions of m1 and m2 are

(x1, y1, z1) = (x, y, z) +
m2l

m1 +m2
(sin θ cosϕ, sin θ sinϕ, cos θ),

(x2, y2, z2) = (x, y, z)− m1l

m1 +m2
(sin θ cosϕ, sin θ sinϕ, cos θ),

for some (θ, ϕ) ∈ R2, and the configuration space is R3 × S2.
By a calculation analogous to (a) one arrives at the kinetic
energy map K : T (R3×S2) → R given in local coordinates by

K =
1

2
(m1+m2)

(
(vx)2 + (vy)2 + (vz)2

)
+

m1m2l
2

2(m1 +m2)

(
(vθ)2 + sin2 θ(vϕ)2

)
.

The motion equations are therefore

ẍ = 0,

ÿ = 0,

z̈ = 0,

θ̈ − sin θ cos θϕ̇2 = 0,

ϕ̈+ 2 cot θθ̇ϕ̇ = 0,

which are the equations for a geodesic in R3 × S2 (with the
standard metric). In other words, the dumbbell’s center of
mass moves with constant velocity, and the two masses rotate
around it on a fixed plane with constant angular velocity.

(4) (a) The position of the particle m1 is

(x1, y1) = l1(sin θ,− cos θ).

Its velocity is therefore

(ẋ1, ẏ1) = l1θ̇(cos θ, sin θ),

yielding the kinetic energy

K1 =
1

2
m1l1

2θ̇2.

Analogously, the position of the particle m2 is

(x2, y2) = l1(sin θ,− cos θ) + l2(sinϕ,− cosϕ),

and its velocity is

(ẋ2, ẏ2) = l1θ̇(cos θ, sin θ) + l2ϕ̇(cosϕ, sinϕ),

corresponding to the kinetic energy

K2 =
1

2
m2l1

2θ̇2 +
1

2
m2l2

2ϕ̇2 +m2l1l2 cos(θ − ϕ)θ̇ϕ̇.
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The kinetic energy map K : TN → R is then given in local
coordinates by

K =
1

2
(m1+m2)l1

2(vθ)2+
1

2
m2l2

2(vϕ)2+m2l1l2 cos(θ−ϕ)vθvϕ.

Since the potential energy is clearly

U = m1gy1 +m2gy2 = −(m1 +m2)gl1 cos θ −m2gl2 cosϕ,

the equations of motion are

(m1 +m2)l1
2θ̈ +m2l1l2 cos(θ − ϕ)ϕ̈+m2l1l2 sin(θ − ϕ)ϕ̇2

= −(m1 +m2)gl1 sin θ

and

m2l2
2ϕ̈+m2l1l2 cos(θ − ϕ)θ̈ −m2l1l2 sin(θ − ϕ)θ̇2

= −m2gl2 sinϕ.

(b) The linearized equations are

(m1 +m2)l1
2θ̈ +m2l1l2ϕ̈ = −(m1 +m2)gl1θ

and
m2l2

2ϕ̈+m2l1l2θ̈ = −m2gl2ϕ.

Solutions of these equations satisfying ϕ = kθ must simulta-
neously solve
(
m1l1

2 +m2l1
2 + km2l1l2

)
θ̈ = −(m1 +m2)gl1θ

and
(
km2l2

2 +m2l1l2
)
θ̈ = −km2gl2θ.

Therefore k must satisfy
∣∣∣∣
(m1 +m2)l1

2 + km2l1l2 (m1 +m2)gl1
km2l2

2 +m2l1l2 km2gl2

∣∣∣∣ = 0,

that is

k =
l2 − l1 ±

√
(l2 − l1)2 + 4µl1l2
2µl2

,

where

µ =
m2

m1 +m2
∈ (0, 1).

Notice that k has two possible values, one positive and one
negative, corresponding to the two pendulums oscillating in
phase or in opposition of phase.
From the first linearized equation of motion it is clear that the
period of the oscillations is

2π

√
l1 + kµl2

g
= 2π

√
l1 + l2 ±

√
(l2 − l1)2 + 4µl1l2
2g

.
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Notice that the period is longer when the two pendulums os-
cillate in phase, and shorter when they oscillate in opposition
of phase.

Section 3.

(1) Symmetry of 〈〈·, ·〉〉 clearly follows from symmetry of the Euclidean
inner product in R3. Moreover, since this inner product is positive
definite we know that

〈V ξ, V ξ〉 ≥ 0

for every V ∈ TSO(3) and ξ ∈ R3, and that 〈V ξ, V ξ〉 = 0 if and
only if V ξ = 0, that is, if and only if ξ ∈ kerV . Since the kernel
of V 6= 0 is contained on a line through the origin, the continuous
function 〈V ξ, V ξ〉 is positive on a set of positive measure, and then

〈〈V, V 〉〉 =
∫

R3

〈V ξ, V ξ〉 dm > 0

for every V 6= 0.
(2) (a) Let

Ξ :=

∫

R3

ξ dm, M := m(R3)

and consider the translation of m given by

m̃(A) := m

(
A+

Ξ

M

)

for any measurable set A. Then
∫

R3

ξ dm̃ =

∫

R3

(
ξ − Ξ

M
+

Ξ

M

)
dm̃ =

∫

R3

(
ξ − Ξ

M

)
dm

=

∫

R3

ξ dm− Ξ = 0.

(b) For the above choice of m we have

K(v, V ) =
1

2
〈〈〈(v, V ), (v, V )〉〉〉 = 1

2

∫

R3

〈v + V ξ, v + V ξ〉 dm

=
1

2

(∫

R3

〈v, v〉 dm+ 2

∫

R3

〈v, V ξ〉 dm+

∫

R3

〈V ξ, V ξ〉 dm
)

=
1

2
M〈v, v〉+ 1

2
〈〈V, V 〉〉,

since ∫

R3

〈v, V ξ〉 dm =

〈
v, V

∫

R3

ξ dm

〉
= 0.

(c) Similarly to what was done in (b) we have

〈〈〈(v, V ), (w,W )〉〉〉 =M〈v, w〉+ 〈〈V,W 〉〉,
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for every (v, V ), (w,W ) ∈ T(x,S)R
3 × SO(3) and (x, S) ∈ R3 ×

SO(3). Since for a motion c : I ⊂ R → R3 × SO(3) with
c(t) = (x(t), S(t)), we have

µ

(
Dċ

dt

)
(w,W ) = F(x, S, ẋ, Ṡ)(w,W ) =

∫

R3

〈F (x+ Sξ), w +Wξ〉 dm

=

∫

R3

〈F (x+ Sξ), w〉 dm+

∫

R3

〈F (x+ Sξ),Wξ〉 dm

and

µ

(
Dċ

dt

)
(w,W ) = 〈〈〈(ẍ,∇ṠṠ), (w,W )〉〉〉 =M〈ẍ, w〉+ 〈〈∇ṠṠ,W 〉〉

for every (w,W ) ∈ T(x,S)R
3×SO(3), we conclude, taking w =

0, that

〈〈∇ṠṠ,W 〉〉 =
∫

R3

〈F (x+ Sξ),Wξ〉 dm.

Moreover, since W is tangent to SO(3) at S(t), we know that
W = SB for some B ∈ so(3). Then, using Lemma 3.9, we
have∫

R3

〈F (x+ Sξ),Wξ〉 dm =

∫

R3

〈F (x+ Sξ), SBξ〉 dm

=

∫

R3

〈F (x+ Sξ), S(Ω(B)× ξ)〉 dm =

∫

R3

〈F (x+ Sξ), (SΩ(B))× (Sξ)〉 dm

=

∫

R3

〈SΩ(B), (Sξ)× F (x+ Sξ)〉 dm =

〈
SΩ(B),

∫

R3

(Sξ)× F (x+ Sξ) dm

〉
,

which vanishes by hypothesis. Since W is arbitrary, we con-
clude that S(t) is a geodesic of (SO(3), 〈〈·, ·〉〉).

(d) From (c) we know that the equations of motion are



M〈ẍ, w〉 =
∫

R3

〈F,w〉 dm = −g
∫

R3

〈ez, w〉 dm = −gM〈ez, w〉

〈〈∇ṠṠ,W 〉〉 =
∫

R3

〈F,Wξ〉 dm =

〈
−gez,W

∫

R3

ξ dm

〉
= 0

for every (w,W ) ∈ T(x,S)R
3 × SO(3). Hence the motion is

given by c : I → R3 × SO(3) with c(t) = (x(t), S(t)), where

ẍ(t) = −gez
and S(t) is a geodesic of SO(3). In other words, the center of
mass moves as a particle falling in the constant gravitational
field while the rigid body rotates freely about the center of
mass.

(3) Assume without loss of generality that m is supported in the plane
ξ3 = 0, and consider the measure

mε := m+ εδe3 + εδ−e3 .
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Since this measure is not supported on a plane, the covariant ac-
celeration ∇ε

Ṡ
Ṡ determined by the left-invariant metric

〈〈V,W 〉〉ε :=
∫

R3

〈V ξ,Wξ〉 dmε

satisfies

〈〈∇ε
Ṡ
Ṡ, V 〉〉ε =

∫

R3

〈S̈ξ, V ξ〉 dmε.

Now

〈〈V,W 〉〉ε =
∫

R3

〈V ξ,Wξ〉 dm+ 2ε〈V e3,We3〉

converges to the left-invariant metric

〈〈V,W 〉〉 =
∫

R3

〈V ξ,Wξ〉 dm

as ε→ 0, and therefore∇ε
Ṡ
Ṡ converges to the covariant acceleration

∇ṠṠ determined by 〈〈·, ·〉〉. Hence

〈〈∇ṠṠ, V 〉〉 = lim
ε→0

〈〈∇ε
Ṡ
Ṡ, V 〉〉ε = lim

ε→0

∫

R3

〈S̈ξ, V ξ〉 dmε

= lim
ε→0

(∫

R3

〈S̈ξ, V ξ〉 dm+ 2ε〈S̈e3, V e3〉
)

=

∫

R3

〈S̈ξ, V ξ〉 dm.

(4) Since so(3) = {A ∈ gl(3) | A+ At = 0} is the space of 3× 3 skew-
symmetric matrices, we can define the map Ω : so(3) → R3 that,
given

A =




0 −a3 a2
a3 0 −a1
−a2 a1 0


 ∈ so(3),

yields

Ω(A) = (a1, a2, a3).

The map Ω is clearly a linear isomorphism and it is easy to check
that the Lie bracket on so(3) is identified with the exterior product,
i.e.

Ω([A,B]) = Ω(AB −BA) = Ω(A)× Ω(B).

Moreover, given ξ ∈ R3, we have

Aξ =




0 −a3 a2
a3 0 −a1
−a2 a1 0






ξ1

ξ2

ξ3


 =




a2ξ
3 − a3ξ

2

a3ξ
1 − a1ξ

3

a1ξ
2 − a2ξ

1




= (a1, a2, a3)× ξ = Ω(A)× ξ.
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(5) Considering the orthonormal basis of R3 given by the principal axes
{e1, e2, e3} we have

Ii = 〈Iei, ei〉 =
∫

R3

〈ξ × (ei × ξ), ei〉 dm

=

∫

R3

(
‖ξ‖2 − 〈ξ, ei〉2

)
dm =

∫

R3

∑

l 6=i
〈ξ, el〉2 dm.

Hence, taking i, j, k ∈ {1, 2, 3} pairwise different, we get

Ii + Ij =

∫

R3

∑

l 6=k
〈ξ, el〉2 dm+ 2

∫

R3

〈ξ, ek〉2 dm

= Ik + 2

∫

R3

〈ξ, ek〉2 dm ≥ Ik.

If one of the principal moments of inertia is equal to the sum of the
other two, say Ik = Ii + Ij , then

∫

R3

〈ξ, ek〉2 dm = 0,

implying that the set where 〈ξ, ek〉2 6= 0 has zero measure, and so
the body is planar (the mass distribution is supported in the plane
through the origin generated by ei and ej).

(6) (a) Since the parallelepiped P is homogeneous we know that its
constant density ρ satisfies

M = ρvol(P ) = 8abcρ.

Then, using Proposition 3.13 to compute the coordinates Iij of
the matrix representation of the inertia tensor in the canonical
basis of R3 and noting that P is centered at the origin, we
obtain that the only nonzero values of Iij are

I11 =

∫

R3

(y2 + z2) dm = 8ρ

∫ a

0

∫ b

0

∫ c

0
(y2 + z2)dz dy dx =

M

3
(b2 + c2)

I22 =

∫

R3

(x2 + z2) dm = 8ρ

∫ a

0

∫ b

0

∫ c

0
(x2 + z2)dz dy dx =

M

3
(a2 + c2)

I33 =

∫

R3

(x2 + y2) dm = 8ρ

∫ a

0

∫ b

0

∫ c

0
(x2 + y2)dz dy dx =

M

3
(a2 + b2).

Hence the principal moments of inertia are

I1 =
M

3
(b2 + c2), I2 =

M

3
(a2 + c2) and I3 =

M

3
(a2 + b2)

and the corresponding principal axes are

e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1).
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(b) Considering D :=
{
(x, y, z) ∈ R3 |

(
x
a

)2
+
(y
b

)2
+
(
z
c

)2
= 1
}

we have

ρ =
M

vol(D)
=

3M

4πabc
.

Again using Proposition 3.13 and the fact that D is centered
at the origin, the only nonzero values of Iij are

I11 =

∫

R3

(y2+z2) dm, I22 =

∫

R3

(x2+z2) dm and I33 =

∫

R3

(x2+y2) dm.

Changing coordinates to (u, v, w), defined by

(x, y, z) = (au, bv, cw)

(so that the ellipsoid is the image of the unit ball), and then
again to spherical coordinates,

(u, v, w) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ),

with (r, θ, ϕ) ∈ (0, 1)× (0, π)× (0, 2π), we obtain

I11 =
3M

4πabc

∫ 2π

0

∫ π

0

∫ 1

0
abc r4 sin θ(b2 sin2 θ sin2 ϕ+ c2 cos2 θ) drdθdϕ

=
M

5
(b2 + c2).

By symmetry, the other two principal moments of inertia are

I22 =
M

5
(a2 + c2) and I33 =

M

5
(a2 + b2).

The corresponding principal axes are again

e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1).

(7) (a) We have

(SISt)v = S(I(Stv)) = S

∫

R3

[ξ × (Stv × ξ)]dm

=

∫

R3

S[ξ × (Stv × ξ)]dm =

∫

R3

[(Sξ)× (v × (Sξ))]dm

=

∫

R3

[ξ × (v × ξ))]dm = Iv,

where we used the fact that S preserves the mass distribution
to change variables.

(b) Let v be a nonzero vector orthogonal to the reflection plane.
Then Sv = −v. Moreover,

S(Iv) = SI(StS)v = (SISt)Sv = ISv = −Iv,
implying that Iv is parallel to v and so there exists a principal
axis with the direction of v.
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(c) Let v be a vector with the direction of the rotation axis. Then
Sv = Stv = v. Moreover,

St(Iv) = St(SISt)v = IStv = Iv,

implying that Iv is also fixed by St and consequently by S.
Hence Iv has the same direction as v and so the rotation axis
is principal.

(d) Let v be again a vector with the direction of the rotation axis.
Then, if w is a vector perpendicular to v, we know that Stw
is also perpendicular to v. Moreover, if w is an eigenvector of
I with eigenvalue α (i.e. if Iw = αw) we have

I(Stw) = (StS)IStw = St(SISt)w = StIw = αStw

and so Stw is also an eigenvector of I associated to α. Con-
sidering a basis {e1, e2, e3} of R3 formed by principal axes so
that e1 is parallel to v, we have that if S is not a rotation by π
then Ste2 is also an eigenvector for the eigenvalue I2, indepen-
dent of e2 and perpendicular to e1. Hence, the I2-eigenspace
contains span {e2, e3}. Consequently, every vector orthogonal
to v is an I2-eigenvector and so all axes orthogonal to the axis
of rotation are principal.

(8) (a) Considering the Euler equations in the basis of the principal

axes we get that Ω̇3 = 0. Hence, since ω = SΩ, we get

ω̇ = ṠΩ+ SΩ̇ = SAΩ+ SΩ̇ = S(Ω× Ω) + SΩ̇ = SΩ̇

= S(Ω̇1e1 + Ω̇2e2) =
1

I1
SI(Ω̇1e1 + Ω̇2e2) =

1

I1
SIΩ̇

=
1

I1
S((IΩ)× Ω) =

1

I1
S(P × Ω) =

1

I1
p× ω.

(b) If I1 = I2 = I3 then P = I1Ω, and so p = I1ω. Using (a) we
get

ω̇ = ω × ω = 0.

(c) From (a) we see that ω describes a curve ω(t) in R3 with
velocity ω̇ = 1

I1
p × ω. Therefore at each instant ω rotates

about the axis determined by p with angular velocity

ωpr =
1

I1
p.

(9) Since I1 < I2 < I3, the minimum of the function

2K =
(P 1)2

I1
+

(P 2)2

I2
+

(P 3)2

I3

on the sphere

(P 1)2 + (P 2)2 + (P 3) = ‖p‖2
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is obtained for P 1 = P 2 = 0 and P 3 = ±‖p‖. Therefore aster-
oids approach the rotation state corresponding to P = (0, 0,±‖p‖),
i.e. uniform rotation about the principal axis with the largest mo-
ment of inertia (the smaller axis).

(10) If I1 = I2 6= I3 the Euler equations become




Ω̇1 = −εΩ3Ω2

Ω̇2 = εΩ3Ω1

Ω̇3 = 0

where

ε =
I3 − I1
I1

≃ 1

306
.

It is clear from these equations that Ω3 is constant and (Ω1,Ω2)
rotates with period

T =
2π

ε|Ω3| .

Since the Earth’s rotation axis is very close to e3, we have |Ω3| ≫
|Ω1|, |Ω2|, and hence 2π

|Ω3| is approximately equal to the period of the

Earth’s rotation (i.e. 1 day). Therefore the period of the Chandler
precession is T ≃ 306 days (the real value is 433 days, the difference
being caused by the fact that the Earth is not perfectly rigid).

(11) (a) We have

d

dt
(Sξ) = Ṡξ + Sξ̇ = SAξ + Sξ̇ = S(Ω× ξ) + Sξ̇

and hence

d2

dt2
(Sξ) = Ṡ(Ω× ξ) + S(Ω̇× ξ +Ω× ξ̇) + Ṡξ̇ + Sξ̈

= SA(Ω× ξ) + S(Ω̇× ξ +Ω× ξ̇) + SAξ̇ + Sξ̈

= S(Ω× (Ω× ξ) + Ω̇× ξ + 2Ω× ξ̇ + ξ̈).

Substituting into the equation of motion yields the result.
(b) For a homogeneous sphere I1 = I2 = I3, and so the Euler equa-

tions imply that Ω is constant. Therefore the Euler force van-
ishes. In the Northern hemisphere (where Ω points upwards)
the Coriolis force on a moving shell points to the right, and
hence the gun must be aimed to the left of the target.

(12) If S(t)ξ(t) is a point of the inertia ellipsoid S(t)E tangent to a
plane orthogonal to p then ξ(t) is a point of the inertia ellipsoid E
tangent to a plane orthogonal to P (t). Since

grad〈Iξ, ξ〉 = 2Iξ,
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we have that Iξ(t) is orthogonal to E and hence parallel to P (t).
Therefore

Iξ(t) = λ(t)P (t) = λ(t)IΩ(t) ⇒ ξ(t) = λ(t)Ω(t)

for some λ(t) ∈ R, and so

1 = 〈Iξ(t), ξ(t)〉 = λ2(t)〈IΩ(t),Ω(t)〉 = 2Kλ2(t),

that is,

λ(t) = ± 1√
2K

.

Hence

ξ(t) = ± 1√
2K

Ω(t) ⇒ S(t)ξ(t) = ± 1√
2K

ω(t),

implying that

〈S(t)ξ(t), p〉 = 〈ξ(t), P (t)〉 = ± 1√
2K

〈Ω(t), P (t)〉 = ±
√
2K,

and so the planes orthogonal to p and tangent to the inertia ellipsoid
do not change with time. On the other hand, the points of tangency
S(t)ξ(t) are on the rotation axis, as S(t)ξ(t) is proportional to ω(t),
and so have zero velocity at that instant. Hence the ellipsoid rolls
without slipping.

(13) Since the kinetic energy will not depend on ϕ or ψ, we can assume
without loss of generality that ϕ = ψ = 0. For this choice, the
velocity of a curve on SO(3) is given in terms of the Euler angles
by

Ṡ = ϕ̇



0 −1 0
1 0 0
0 0 0





1 0 0
0 cos θ − sin θ
0 sin θ cos θ


+ θ̇



0 0 0
0 − sin θ − cos θ
0 cos θ − sin θ




+ ψ̇



1 0 0
0 cos θ − sin θ
0 sin θ cos θ





0 −1 0
1 0 0
0 0 0


 ,

and hence

A = S−1Ṡ = ϕ̇




0 − cos θ sin θ
cos θ 0 0
− sin θ 0 0


+θ̇



0 0 0
0 0 −1
0 1 0


+ψ̇



0 −1 0
1 0 0
0 0 0


 ,

corresponding to

Ω = ϕ̇(cos θe3+sin θe2)+θ̇e1+ψ̇e3 = θ̇e1+ϕ̇ sin θe2+(ϕ̇ cos θ+ψ̇)e3.

The kinetic energy is therefore

K =
1

2
〈IΩ,Ω〉 = I1

2

(
θ̇2 + ϕ̇2 sin2 θ

)
+
I3
2

(
ϕ̇ cos θ + ψ̇

)2
.
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(14) (a) Using U =Mgl cos θ one readily obtains the equations of mo-
tion:




d

dt

(
I1θ̇
)
− I1 sin θ cos θϕ̇

2 + I3 sin θϕ̇
(
ϕ̇ cos θ + ψ̇

)
=Mgl sin θ

d

dt

(
I1ϕ̇ sin2 θ + I3 cos θ

(
ϕ̇ cos θ + ψ̇

))
= 0

d

dt

(
I3

(
ϕ̇ cos θ + ψ̇

))
= 0

.

The equilibrium points are obtained by setting θ̇ ≡ ϕ̇ ≡ ψ̇ ≡ 0
in the equations, and are given by the condition sin θ = 0
(assuming l 6= 0). These correspond to the top being at rest
in a vertical position (possibly upside-down).

(b) It is easy to see that one can solve the equations of motion

by setting θ, ϕ̇ and ψ̇ constant, provided that these constants
satisfy

−I1 sin θ cos θϕ̇2 + I3 sin θϕ̇
(
ϕ̇ cos θ + ψ̇

)
=Mgl sin θ.

If |ϕ̇| ≪ |ψ̇|, these conditions can approximately be written as

I3 sin θϕ̇ψ̇ ≃Mgl sin θ ⇔ ϕ̇ ≃ Mgl

I3ψ̇
.

(15) (a) The equations of motion are




d

dt

(
I1θ̇
)
− I1 sin θ cos θϕ̇

2 + I3 sin θϕ̇
(
ϕ̇ cos θ + ψ̇

)
= −Ω2(I3 − I1) sin θ cos θ

d

dt

(
I1ϕ̇ sin2 θ + I3 cos θ

(
ϕ̇ cos θ + ψ̇

))
= 0

d

dt

(
I3

(
ϕ̇ cos θ + ψ̇

))
= 0.

.

The equilibrium points are obtained by setting θ̇ ≡ ϕ̇ ≡ ψ̇ ≡ 0
in the equations, and are given by the condition sin θ cos θ = 0.
These correspond to the Earth being at rest in a horizontal or
vertical position (possibly upside-down).

(b) It is easy to see that one can solve the equations of motion

by setting θ, ϕ̇ and ψ̇ constant, provided that these constants
satisfy

−I1 sin θ cos θϕ̇2+I3 sin θϕ̇
(
ϕ̇ cos θ + ψ̇

)
= −Ω2(I3−I1) sin θ cos θ.
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If |ϕ̇| ≪ |ψ̇|, these conditions can approximately be written as

I3 sin θϕ̇ψ̇ ≃ −Ω2(I3 − I1) sin θ cos θ ⇔ ϕ̇ ≃ −Ω2(I3 − I1) cos θ

I3ψ̇
.

The period of ϕ(t) is then approximately

T ≃ 2πI3ψ̇

Ω2(I3 − I1) cos θ
.

If we use days as our units of time then ψ̇ ≃ 2π. Noticing that
cos(23) ≃ 0.921, we have

T ≃ 1682 × 307

0.921
≃ 9, 410, 000 days,

or about 25, 800 years.
(16) (a) The geodesics of these metric are just straight lines in the

natural coordinates of GL(3) ⊂ M3×3
∼= R9. The metric is

incomplete: if A ∈ GL(3) then the curve S : (−∞, 0) → GL(3)
defined by S(t) = At is a geodesic which cannot be extended
past t = 0.

(b) Differentiating the identity S(t)S−1(t) = I we obtain

ṠS−1 + S
d

dt
(S−1) = 0 ⇔ d

dt
(S−1) = −S−1ṠS−1.

Consequently, we have

∂u

∂t
= S̈S−1x− ṠS−1ṠS−1x.

On the other hand,

(u · ∇)u = ṠS−1u = ṠS−1ṠS−1x,

and consequently

∂u

∂t
+ (u · ∇)u = S̈S−1x,

which vanishes for a geodesic (S̈ = 0). However,

∇ · u = tr(ṠS−1)

is in general not zero.
(c) The formula for the derivative of f is an immediate conse-

quence of the Laplace expansion formula

detS =
n∑

k=1

Sik cof(S)ik

(where i is fixed and cof(S)ik does not depend on Sij). There-
fore

df

dt
=

3∑

i,j=1

∂f

∂Sij
Ṡij =

3∑

i,j=1

cof(S)ijṠij .
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Since

(S−1)ij =
1

detS
cof(S)ji,

we have

df

dt
=

3∑

i,j=1

(detS)(S−1)jiṠij = (detS) tr(ṠS−1).

(d) The reaction force R will be perfect if and only if µ−1R is
orthogonal to SL(3) = f−1(1), i.e. if and only if µ−1R =
λ grad(f) for some λ : TSL(3) → R. Since we know that R
exists and is unique, then so does λ. If we set λ(t) := λ(Ṡ(t))
then the equation of motion will be

S̈ = λ(t) grad(f) ⇔ µ
(
S̈
)
= λ(t)df.

Since on SL(3)

df =
3∑

i,j=1

∂f

∂Sij
dSij =

3∑

i,j=1

cof(S)ijdSij =
3∑

i,j=1

(S−1)jidSij ,

we have for any T ∈ TSGL(3)

〈〈grad(f), T 〉〉 = df(T ) = tr(S−1T ) = tr
(
(S−1)tT t

)

= tr
(
(S−1)tJ−1JT t

)
=
〈〈
(S−1)tJ−1, T

〉〉
,

and hence

grad(f) = (S−1)tJ−1.

Consequently the equation of motion is

S̈ = λ(S−1)tJ−1.

(e) We have

∂u

∂t
+ (u · ∇)u = S̈S−1x = λ(S−1)tJ−1S−1x.

Since (S−1)tJ−1S−1 is a symmetric matrix, we can rewrite this
equation as

∂u

∂t
+ (u · ∇)u = − grad p,

with

p = −λ
2
xt(S−1)tJ−1S−1x.
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Section 4.

(1) Let Σ be a differentiable distribution. Then, for every p ∈M there
exists an open set U around p and vector fields X1, . . . , Xm ∈ X(U)
such that Σq = span{(X1)q, . . . , (Xm)q} for all q ∈ U . Possibly
reducing U , we can find vector fields Xm+1, . . . , Xn ∈ X(U) such
that

TqM = span{(X1)q, . . . , (Xm)q, (Xm+1)q, . . . , (Xn)q}
for each q ∈ U . Consider the dual coframe

{ω1, . . . , ωm, ωm+1, . . . , ωn} ⊂ Ω1(U).

Since (ωi)q ((Xj)q) = δij , any vector v =
∑n

j=1 aj (Xj)q ∈ TqM is

in ker(ωm+1)q ∩ · · · ∩ ker(ωn)q if and only if

0 = ωiq(v) = ai

for i = m+1, . . . , n, i.e. if and only if v ∈ Σq. The converse is proved
similarly, where we extend the sets of 1-forms {ω1, . . . , ωn−m} to
local coframes and we consider their dual frames.

(2) F is clearly a foliation and, since the property of being a foliation
is local, the family F ′ = {π(L)}L∈F is a foliation of T 2 (where
π : R2 → T 2 is the quotient map). However, a leaf L′ ∈ F ′ cannot
be an embedded submanifold, since it is dense in T 2. In fact, L′ is
the image of a set of the form

⋃

m,n∈Z
{(x, y) ∈ R2 | y =

√
2x+ α+m+

√
2n}

(for some fixed α ∈ R), which is dense in R2.
(3) Let Σ be an integrable distribution. Then for every p ∈ M there

exists an open set U around p and local coordinates (x1, . . . , xn) :
U → Rn such that the connected components of the intersection of
the leaves with U are the level sets of (xm+1, . . . , xn) : U → Rn−m.
Hence, if X,Y ∈ X(Σ) then

X =
m∑

i=1

Xi ∂

∂xi
, Y =

m∑

i=1

Y i ∂

∂xi

on U . Consequently,

[X,Y ] =
m∑

i=1

(X · Y i − Y ·Xi)
∂

∂xi

on U . Since U is arbitrary, we see that [X,Y ] ∈ X(U).
(4) Let Σ be an integrable distribution. For any local basis of vector

fields {X1, . . . , Xm} the vector fieldsX1, . . . , Xm are obviously com-
patible with Σ and so, by the Frobenius theorem, their commuta-
tors [Xi, Xj ] are also compatible with Σ, which implies that they are
themselves linear combinations of the vector fields {X1, . . . , Xm}.
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Conversely, let us assume that each local basis {X1, . . . , Xm}
satisfies

[Xi, Xj ] =
m∑

k=1

CkijXk

and consider X,Y ∈ X(Σ). Then, since Xp, Yp ∈ Σp for every
p ∈M , taking a local basis {X1, . . . , Xm} for Σ around p (i.e. such
that Σq = span{(X1)q, . . . , (Xm)q} for every q in a neighborhood
of p) we have that

X =
m∑

i=1

aiXi and Y =
m∑

i=1

bjXj

for locally defined functions ai, bj . Moreover,

[X,Y ] =
m∑

i=1

(X · bi − Y · ai)Xi +
m∑

i,j=1

aibj [Xi, Xj ]

=
m∑

i=1

(X · bi − Y · ai)Xi +
m∑

i,j,k=1

aibjC
k
ijXk,

implying that [X,Y ] ∈ X(Σ). By the Frobenius theorem we con-
clude that Σ is integrable.

(5) Locally it is always possible to complete {ω1, . . . , ωn−m} to a local
coframe {θ1, . . . , θm, ω1, . . . , ωn−m}. Let {X1, . . . , Xm, Y1, . . . , Yn−m}
be the dual local frame, so that Σ is locally given by {X1, . . . , Xm}.
We have

dωi(Xj , Xk) = Xj · ωi(Xk)−Xk · ωi(Xj)− ωi([Xj , Xk])

= −ωi([Xj , Xk]),

and therefore the distribution will be integrable if and only if

dωi(Xj , Xk) = 0

for all i = 1, . . . , n−m and j, k = 1, . . . ,m. Writing

dωi =
m∑

j,k=1

aijkθ
j ∧ θk +

m∑

j=1

n−m∑

k=1

bijkθ
j ∧ ωk +

n−m∑

j,k=1

cijkω
j ∧ ωk,

we have
dωi(Xj , Xk) = aijk,

and hence the integrability condition is equivalent to requiring that
the functions aijk vanish. Since

dωi ∧ ω1 ∧ · · · ∧ ωn−m =
m∑

j,k=1

aijkθ
j ∧ θk ∧ ω1 ∧ . . . ∧ ωn−m,

this is the same as requiring that

dωi ∧ ω1 ∧ · · · ∧ ωn−m = 0
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(assuming m ≥ 2; for m = 1 both this condition and the integra-
bility conditions are trivially satisfied).

(6) Let (x1, . . . , xn) be local coordinates on M , (x1, . . . , xn, v1, . . . , vn)
the corresponding local coordinates on TM and Γijk the Christoffel
symbols of ∇ in these coordinates. Parallel transport of vectors
yields curves on TM which, in these coordinates, satisfy

v̇i +
n∑

j,k=1

Γijkẋ
jvk = 0

(i = 1, . . . , n), that is, curves whose tangent vectors are in the
kernel of the 1-forms

ωi = dvi +
n∑

j,k=1

Γijkv
kdxj

(i = 1, . . . , n). Conversely, any curve on TM whose tangent vector
is in the kernel of these 1-forms corresponds to the parallel transport
of a vector along the curve’s projection on M . These forms locally
define a differentiable distribution Σ, which is globally well defined
because the notion of parallel transport does not depend on the
choice of coordinates. Finally, we have

dωi =
n∑

j,k=1

Γijkdv
k ∧ dxj +

n∑

j,k,l=1

∂Γijk
∂xl

vkdxl ∧ dxj

=

n∑

j,k=1

Γijk


ωk −

n∑

l,m=1

Γklmv
mdxl


 ∧ dxj +

n∑

j,k,l=1

∂Γijk
∂xl

vkdxl ∧ dxj ,

and so the integrability condition dωi ∧ ω1 ∧ · · · ∧ ωn = 0 becomes

n∑

j,k,l=1

(
∂Γijk
∂xl

−
n∑

m=1

ΓijmΓ
m
lk

)
vkdxl ∧ dxj = 0

for i = 1, . . . , n (notice that {dx1, . . . , dxn, ω1, . . . , ωn} is a coframe
on TM). Since dxl ∧ dxj = dxl ⊗ dxj − dxj ⊗ dxl and (v1, . . . , vn)
is arbitrary, this is equivalent to the vanishing of

∂Γijk
∂xl

− ∂Γilk
∂xj

+
n∑

m=1

ΓilmΓ
m
jk −

n∑

m=1

ΓijmΓ
m
lk = R i

ljk

(i, j, k, l = 1, . . . , n), which are precisely the components of the
curvature tensor of ∇.
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(7) We have

dE

dt
=

d

dt

(
1

2
〈ċ(t), ċ(t)〉+ U(c(t))

)
=

〈
Dċ

dt
(t), ċ(t)

〉
+ (dU)c(t)(ċ(t))

= µ

(
Dċ

dt

)
(ċ)−F(ċ)(ċ) = R(ċ)(ċ) = 0,

since for a perfect reaction force

R(ċ)(ċ) =
〈
µ−1(R(ċ)), ċ

〉
= 0.

(8) (a) Given two points p = (x0, y0, θ0) and q = (x1, y1, θ1) in R2×S1

consider the curve c : [0, 1] → R2 × S1 given by

c(t) :=





(x0, y0, 3(θL − θ0) t+ θ0) , if t ∈ [0, 13 ]

(x0 + (3t− 1)(x1 − x0), y0 + (3t− 1)(y1 − y0), θL) , if t ∈ [13 ,
2
3 ]

(x1, y1, (3t− 2)(θ1 − θL) + θL) , if t ∈ [23 , 1],

where

(cos θL, sin θL) =
(x1 − x0, y1 − y0)√

(x1 − x0)2 + (y1 − y0)2

if (x0, y0) 6= (x1, y1), and θL = θ0 otherwise. Clearly c is con-
tinuous, piecewise smooth, c(0) = p and c(1) = q. Moreover,

ċ(t) =





3(θL − θ0)Y, if t ∈ (0, 13)

3
√
(x1 − x0)2 + (y1 − y0)2X, if t ∈ (13 ,

2
3)

3(θ1 − θL)Y, if t ∈ (23 , 1)

with

X = cos θL
∂

∂x
+ sin θL

∂

∂y
and Y =

∂

∂θ
,

and so c is compatible with Σ. The set of points accessible
from p by a compatible curve is therefore R2 × S1, and so
Σ cannot be integrable (if Σ were integrable any compatible
curve would be restricted to an integral submanifold).

(b) Since the kinetic energy is given by

K =
M

2

(
(vx)2 + (vy)2

)
+
I

2
(vθ)2

we have

∂K

∂x
=
∂K

∂y
=
∂K

∂θ
= 0,

∂K

∂vx
=Mvx,

∂K

∂vy
=Mvy,

∂K

∂vθ
= Ivθ,
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and so

µ

(
Dċ

dt

)
=Mẍdx+Mÿdy + Iθ̈dθ.

Moreover, since the reaction force is perfect, we have

R = λω = −λ sin θdx+ λ cos θdy.

The motion of the ice skate is then given by a solution of the
equation of motion

µ

(
Dċ

dt

)
= R(ċ)

which also satisfies the constraint that (ẋ, ẏ) is proportional to
(cos θ, sin θ), i.e. it is a solution of the system of ODEs





Mẍ = −λ sin θ
Mÿ = λ cos θ

θ̈ = 0
ẏ cos θ − ẋ sin θ = 0.

Hence θ(t) = θ0 + kt for some constant k ∈ R.
If k 6= 0, differentiating ẏ cos θ − ẋ sin θ = 0 yields

ÿ = ẍ tan θ +
k

cos2 θ
ẋ⇔ λ

M
cos θ = ẍ tan θ +

k

cos2 θ
ẋ

⇔ −cos θ

sin θ
ẍ = ẍ tan θ +

k

cos2 θ
ẋ⇔ ẍ

ẋ
= −k tan θ.

Then log |ẋ| = log | cos θ|+ constant, yielding




x(t) = r sin(θ0 + kt) +A0

y(t) = −r cos(θ0 + kt) +B0

θ(t) = θ0 + kt

λ =Mk2r,

where r, A0, B0, θ0, k are integration constants. Notice that

(x(t)−A0)
2 + (y(t)−B0)

2 = r2

and so c(t) traces out a circle of center (A0, B0) ∈ R2 and
radius |r| with constant speed |kr|. The reaction force can
be interpreted as a friction force which does not allow the ice
skate to slide sideways, forcing its trajectory to curve.
If k = 0, differentiating ẏ cos θ − ẋ sin θ = 0 yields

ÿ cos θ0 − ẍ sin θ0 = 0 ⇔ λ

M
= 0,
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and so 



x(t) = l cos θ0 t+ x0

y(t) = l sin θ0 t+ y0

θ(t) = θ0

λ = 0,

where x0, y0, θ0, l are integration constants. Notice that in this
case c(t) traces out a straight line through (x0, y0) of slope
tan θ0 with constant speed |l|. Since the ice skate is sliding
along its length, the reaction force vanishes in this case.

(c) The equation of motion is now

µ

(
Dċ

dt

)
= −dU +R(ċ)

⇔Mẍdx+Mÿdy + Iθ̈dθ = −Mg sinαdx− λ sin θdx+ λ cos θdy.

The motion of the ice skate is then given by a solution of
this equation that also satisfies the constraint equation, i.e. a
solution of the system of ODEs





Mẍ = −Mg sinα− λ sin θ

Mÿ = λ cos θ

θ̈ = 0

ẏ cos θ − ẋ sin θ = 0.

Hence θ(t) = θ0 + kt for some constant k ∈ R. If k 6= 0,
differentiating ẏ cos θ − ẋ sin θ = 0 yields

ÿ = ẍ tan θ +
k

cos2 θ
ẋ⇔ λ

M
cos θ = ẍ tan θ +

k

cos2 θ
ẋ.

From the first equation of the system of ODEs we obtain

λ

M
= −g sinα

sin θ
− 1

sin θ
ẍ,

and so, substituting above,

−cos θ

sin θ
(g sinα+ ẍ) = ẍ tan θ +

k

cos2 θ
ẋ,

implying that

ẍ

cos θ
+ k

sin θ

cos2 θ
ẋ = −g sinα cos θ
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or, equivalently, that

d

dt

(
ẋ

cos θ

)
= −g sinα cos θ.

Hence

ẋ = −g
k
sinα sin θ cos θ + l cos θ

for some integration constant l ∈ R, and

ẏ = −g
k
sinα sin2 θ + l sin θ.

Differentiating this last equation yields

ÿ = (kl − 2g sinα sin θ) cos θ

and so

λ =M(kl − 2g sinα sin θ).

We then obtain



x(t) = g
4k2

sinα cos(2(θ0 + kt)) + l
k sin(θ0 + kt) +A0

y(t) = − g
2k sinα

(
t− 1

2k sin(2(θ + kt))
)
− l

k cos(θ0 + kt) +B0

θ(t) = θ0 + kt

λ =M (kl − 2g sinα sin(θ0 + kt)) ,

where θ0, k, l, A0, B0 are integration constants. It is interest-
ing to notice that unlike what one might expect x(t) remains
bounded, whereas y(t) grows linearly.
If k = 0 then, again differentiating ẏ cos θ − ẋ sin θ = 0, we
obtain



x(t) = −g
2 sinα cos2 θ0 t

2 + l cos θ0 t+ x0

y(t) = − g
2 sinα sin θ0 cos θ0 t

2 + l sin θ0t+ y0

θ(t) = θ0

λ = −Mg sinα sin θ0,

where θ0, l, x0, y0 are integration constants. As one would ex-
pect, the motion in this case is uniformly accelerated with
acceleration g sinα cos θ0.

(9) (a) We can parameterize any position of the wheel by the position
(x, y) of the contact point, the angle ψ between a fixed radius
of the wheel and the radius containing the contact point, and
the angle ϕ between the vertical plane containing the wheel
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and the plane y = 0. If the wheel rotates without slipping we
must require that

ẋ = R cosϕ ψ̇ and ẏ = R sinϕ ψ̇

(the wheel must be aligned with the path of the contact point).
This amounts to requiring that the motion is compatible with
the distribution defined on R2 × S1 × S1 by the vector fields

X = R cosϕ
∂

∂x
+R sinϕ

∂

∂y
+

∂

∂ψ
and Y =

∂

∂ϕ

or, equivalently, by the kernel of the 1-forms

ω1 = dx−R cosϕdψ and ω2 = dy −R sinϕdψ.

(b) Since the kinetic energy of the wheel is given by

K =
M

2

(
(vx)2 + (vy)2

)
+
I

2
(vψ)2 +

J

2
(vϕ)2

we have

∂K

∂x
=
∂K

∂y
=
∂K

∂ψ
=
∂K

∂ϕ
= 0,

∂K

∂vx
=Mvx,

∂K

∂vy
=Mvy,

∂K

∂vψ
= Ivψ,

∂K

∂vϕ
= Jvϕ,

and so

µ

(
Dċ

dt

)
=Mẍdx+Mÿdy + Iψ̈dψ + Jϕ̈dϕ.

Moreover, since the reaction force is perfect, the equation of
motion is

µ

(
Dċ

dt

)
= R(ċ)

⇔Mẍdx+Mÿdy + Iψ̈dψ + Jϕ̈dϕ = λ1ω
1 + λ2ω

2

= λ1 dx− λ1R cosϕdψ + λ2 dy − λ2R sinϕdψ.

The motion of the wheel is then given by a solution of this
equation which also satisfies the constraints, i.e. a solution of
the system of ODEs





Mẍ = λ1
Mÿ = λ2
Iψ̈ = −λ1R cosϕ− λ2R sinϕ
ϕ̈ = 0

ẋ = R cosϕ ψ̇

ẏ = R sinϕ ψ̇.
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Hence ϕ(t) = ϕ0 + kt for some constant k ∈ R. Moreover,
from the last two equations we see that

ẋ cosϕ+ ẏ sinϕ = Rψ̇,

ẏ cosϕ− ẋ sinϕ = 0.

Differentiating the first equation we have

ẍ cosϕ+ ÿ sinϕ+(ẏ cosϕ− ẋ sinϕ)k = −R
2

I
(λ1 cosϕ+λ2 sinϕ),

and so, using the second equation, we obtain

ẍ cosϕ+ ÿ sinϕ = −R
2

I
(λ1 cosϕ+ λ2 sinϕ)

⇔ λ1
M

cosϕ+
λ2
M

sinϕ = −R
2

I
(λ1 cosϕ+ λ2 sinϕ).

Hence(
1

M
+
R2

I

)
(λ1 cosϕ+ λ2 sinϕ) = 0

yielding ψ̈ = 0, and so

ψ(t) = ψ0 + lt.

for some constant l ∈ R. Consequently,

ẋ = Rl cosϕ and ẏ = Rl sinϕ.

If k 6= 0 then




x(t) = R l
k sinϕ+A0

y(t) = −R l
k cosϕ+B0

ψ(t) = ψ0 + l t

ϕ(t) = ϕ0 + k t

λ1 = −MR l k sinϕ

λ2 =MR l k cosϕ,

where A0, B0, k, l, ψ0, ϕ0 are integration constants. Note that
when l = 0 we have ẋ = ẏ = 0 and so





x(t) = A0

y(t) = B0

ψ(t) = ψ0

ϕ(t) = ϕ0 + kt
λ1 = λ2 = 0
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and the wheel pivots around the contact point (A0, B0) with
constant angular speed |k|. When l 6= 0 the wheel moves along
a circle of center (A0, B0) and radius R

∣∣ l
k

∣∣ with constant speed
R|l|. The reaction force can be interpreted as a friction force
which does not allow the wheel to slide sideways, forcing its
trajectory to curve.
If k = 0 then we obtain ẍ = ÿ = 0, which implies that λ1 =
λ2 = 0. Hence




x(t) = R l cosϕ0 t+ x0
y(t) = R l sinϕ0 t+ y0
ψ(t) = ψ0 + lt
ϕ(t) = ϕ0

λ1 = λ2 = 0,

where l, x0, y0, ψ0, ϕ0 are integration constants. Here the wheel
moves along a straight line of slope tanϕ0 with constant speed
R|l|. Since the wheel is rolling along a straight line, the reac-
tion force vanishes in this case.

(c) The equation of motion is now

µ

(
Dċ

dt

)
= −dU +R(ċ)

⇔Mẍdx+Mÿdy + Iψ̈dψ + Jϕ̈dϕ = −Mg sinαdx+ λ1ω
1 + λ2ω

2

= −Mg sinαdx+ λ1 dx− λ1R cosϕdψ + λ2 dy − λ2R sinϕdψ.

The motion of the wheel is then given by a solution of this
equation that also satisfies the constraint equations, i.e. a so-
lution of the system of ODEs





Mẍ = λ1 −Mg sinα
Mÿ = λ2
Iψ̈ = −λ1R cosϕ− λ2R sinϕ
ϕ̈ = 0

ẋ = R cosϕ ψ̇

ẏ = R sinϕ ψ̇.

Hence ϕ = ϕ0+ kt for some constant k ∈ R and, from the last
two equations, we obtain again

ẋ cosϕ+ ẏ sinϕ = Rψ̇,

ẏ cosϕ− ẋ sinϕ = 0.

Again differentiating the first equation and using the second
we obtain

ẍ cosϕ+ ÿ sinϕ = Rψ̈

⇔ (λ1 cosϕ+ λ2 sinϕ)

(
1

M
+
R2

I

)
= g sinα cosϕ.
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Hence

λ1 cosϕ+ λ2 sinϕ =
MI

I +MR2
g sinα cosϕ

and so

ψ̈ = −R
I
(λ1 cosϕ+ λ2 sinϕ) = − MR

I +MR2
g sinα cosϕ.

If k 6= 0 we then have

ψ̇ = − MR

k(I +MR2)
g sinα sinϕ+ l,

for some l ∈ R. Consequently,

ẋ = R cosϕ ψ̇ = − M R2

2k(I +MR2)
g sinα sin(2ϕ) +Rl cosϕ

ẏ = R sinϕ ψ̇ = − M R2

k(I +MR2)
g sinα sin2 ϕ+Rl sinϕ,

yielding





x(t) = MR2

4k2(I+MR2)
g sinα cos(2ϕ) + R l

k sinϕ+A0

y(t) = − MR2

4k2(I+MR2)
g sinα (2ϕ− sin(2ϕ))− R l

k cosϕ+B0

ψ(t) = MR
k2(I+MR2)

g sinα cosϕ+ l t+ C0

ϕ(t) = k t+ ϕ0

λ1 = − M2R2

I+MR2 g sinα cos(2ϕ)−MR l k sinϕ+Mg sinα

λ2 = − M2R2

I+MR2 g sinα sin(2ϕ) +MR l k cosϕ,

where A0, B0, C0, k, l, ϕ0 are integration constants. Again un-
like what one might expect, x(t) remains bounded, whereas
y(t) grows linearly.
When k = 0 we have

ψ̈ = − MR

I +MR2
g sinα cosϕ0,

yielding

ψ̇ = − MR

I +MR2
g sinα cosϕ0t+ l
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for some constant l ∈ R, and then

ẋ = R cosϕ0 ψ̇ = − M R2

I +MR2
g sinα cos2 ϕ0 t+ lR cosϕ0

ẏ = R sinϕ0 ψ̇ = − M R2

I +MR2
g sinα sinϕ0 cosϕ0 t+ lR sinϕ0.

Finally, we obtain




x(t) = − MR2

2(I+MR2)
g sinα cos2 ϕ0 t

2 + lR cosϕ0 t+ x0

y(t) = − MR2

4(I+MR2)
g sinα sin(2ϕ0) t

2 + lR sinϕ0 t+ y0

ψ(t) = − MR
2(I+MR2)

g sinα cosϕ0 t
2 + l t+ ψ0

ϕ(t) = ϕ0

λ1 = − M2R2

I+MR2 g sinα cos2 ϕ0 +Mg sinα

λ2 = − M2R2

2(I+MR2)
g sinα sin(2ϕ0),

where x0, y0, ψ0, l, ϕ0 are integration constants. Again as one
would expect, the motion in this case is uniformly accelerated

with acceleration MR2

I+MR2 g sinα cosϕ0.

(10) (a) The position of the contact point with respect to the center of
the sphere is obviously −Rez. Therefore the velocity of this
point with respect to the center of the sphere is

ω × (−Rez) = −R(ωxex + ωyey + ωzez)× ez = Rωxey −Rωyex

(cf. Remark 3.15). The plane is moving with respect to the
center of the sphere with velocity

−ẋex − ẏey.

The sphere will be rolling without slipping if these two veloc-
ities coincide, i.e. if

ẋ = Rωy, ẏ = −Rωx.
(b) This is immediate from Exercise 3.20.2(b), Proposition 3.11

and the fact that for spherically symmetric mass distributions
the moment of inertia tensor is proportional to the identity
matrix, implying that

〈IΩ,Ω〉 = I〈Ω,Ω〉 = I〈ω, ω〉
(where we have used I to represent both the moment of inertia
tensor and its unique eigenvalue).



462 SOLUTIONS TO EXERCISES

(c) We just have to check that the projection of Dċdt on TSO(3) is
given in these coordinates by ω̇. Now for spherically symmetric
mass distributions the matrix J is proportional to the identity
matrix, and hence

〈〈V S,WS〉〉 = tr[(V S)J(WS)t] = tr(V SJStW t)

= tr(V JSStW t) = tr(V JW t) = 〈〈V,W 〉〉

for all V,W ∈ TSO(3) and all S ∈ SO(3), implying that the
rigid body metric on SO(3) is bi-invariant.
Now let S : I ⊂ R → SO(3) be a curve, and write

Ṡ(t) = S(t)A(t)

with A : I → so(3). If {V1, V2, V3} is a basis for TISO(3) then

A(t) =

3∑

i=1

ai(t)Vi,

and so

Ṡ(t) =

3∑

i=1

ai(t)Xi,

where Xi := XVi is the left-invariant vector field determined
by Vi. Therefore

∇ṠṠ =

3∑

i=1

ȧi(t)Xi +

3∑

i,j=1

ai(t)aj(t)∇XiXj .

From Exercise 4.8.3 in Chapter 3 we know that

∇XiXj =
1

2
[Xi, Xj ]

is antisymmetric in Xi, Xj , and so

3∑

i,j=1

ai(t)aj(t)∇XiXj = −
3∑

i,j=1

ai(t)aj(t)∇XjXi = 0,

implying that

∇ṠṠ =

3∑

i=1

ȧi(t)Xi = SȦ.

This vector is written in the coordinates Ω = Ω(A) of the fibers

of TSO(3) as Ω̇, and in the coordinates ω = SΩ, obtained by
multiplication by S, as

SΩ̇ = SΩ̇ + S(Ω× Ω) = SΩ̇ + SAΩ = SΩ̇ + ṠΩ = ω̇.
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(d) To check that θx, θy determine the non-holonomic constraint
we just have compute

θx
(
ẋ
∂

∂x
+ ẏ

∂

∂y
+ ω

)
= ẋ−R〈ey, ω〉 = ẋ−Rωy

and

θy
(
ẋ
∂

∂x
+ ẏ

∂

∂y
+ ω

)
= ẏ +R〈ex, ω〉 = ẏ +Rωx.

We can show that this distribution is not integrable by show-
ing that any two points of R2 × SO(3) can be connected by
a piecewise smooth curve compatible with the distribution
(which on an integrable distribution would be confined to a
leaf). This is equivalent to showing that one can connect any
point (x, y, S) ∈ R2×SO(3) to (0, 0, I) by such a curve. To do
that, start by rotating the sphere on a fixed axis (while moving
it along a straight line) to a point of the form (x′, y′, I). Then
choose

x(t) = (1− t)x′, y(t) = (1− t)y′

and

ω =

(
y′

R
,−x

′

R
,ωz
)

with ωz ∈ R such that ‖ω‖ = 2nπ for some n ∈ N.
(e) Since there are no external forces, the equation of motion is

simply

µ

(
Dċ

dt

)
= R(ċ) = λxθ

x + λyθ
y

that is 



Mẍ = λx

Mÿ = λy

Iω̇ = −λxRey + λyRex

ẋ = Rωy

ẏ = −Rωx

.

These equations imply
{
λx =Mẍ =MRω̇y

λy =Mÿ = −MRω̇x

and hence

Iω̇ = −MR2(ω̇xex+ω̇
yey) ⇔ (I+MR2)(ω̇xex+ω̇

yey)+Iω̇
zez = 0.

Therefore we have

ω̇ = 0,
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i.e. the sphere moves with constant angular velocity. Moreover,

(ẋ, ẏ, 0) = R(ωy,−ωx, 0)

is constant and orthogonal to ω. Notice that λx = λy = 0,
i.e. the reaction force vanishes.

(f) In this case the equation of motion is

µ

(
Dċ

dt

)
= −dU +R(ċ) = −Mg sinαdx+ λxθ

x + λyθ
y

that is




Mẍ = λx −Mg sinα

Mÿ = λy

Iω̇ = −λxRey + λyRex

ẋ = Rωy

ẏ = −Rωx

.

These equations imply
{
λx =Mẍ+Mg sinα =MRω̇y +Mg sinα

λy =Mÿ = −MRω̇x

and hence

Iω̇ = −MR2(ω̇xex + ω̇yey)−MRg sinα ey

⇔ (I +MR2)(ω̇xex + ω̇yey) + Iω̇zez = −MRg sinα ey.

Therefore we have

ω̇x = ω̇z = 0

and

ω̇y = −MRg sinα

I +MR2
,

and hence
{
ẍ = −MR2g sinα

I+MR2

ÿ = 0
⇔
{
x = x0 + vx0 t− MR2g sinα

2(I+MR2)
t2

y = y0 + vy0t
.

Notice that in this case λy = 0 but

λx =
IMg sinα

I +MR2

does not vanish.
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(11) Let (r, θ, z) be cylindrical coordinates on R3 and consider the or-
thonormal frame

er = (cos θ, sin θ, 0) =
∂

∂r
,

eθ = (− sin θ, cos θ, 0) =
1

r

∂

∂θ
,

ez = (0, 0, 1) =
∂

∂z
.

Since the center of the sphere moves on the cylinder r = a, its
velocity is

v = θ̇
∂

∂θ
+ ż

∂

∂z
= aθ̇eθ + żez.

The position of the contact point with respect to the center of the
sphere is obviously Rer. Therefore the velocity of this point with
respect to the center of the sphere is

ω × (Rer) = R(ωrer + ωθeθ + ωzez)× er = −Rωθez +Rωzeθ.

The cylinder is moving with respect to the center of the sphere with
velocity −v. The rolling without slipping condition is that these
two velocities coincide, i.e.

{
aθ̇ = −Rωz
ż = Rωθ

.

As in the previous exercise, we can use ω as coordinates on the
fibers of TSO(3) to obtain

K =
M

2

(
a2θ̇2 + ż2

)
+
I

2
〈ω, ω〉

(where 〈·, ·〉 is the Euclidean inner product), and consequently

Dċ

dt
= θ̈

∂

∂θ
+ z̈

∂

∂z
+ ω̇.

Under the identification of the fibers of T ∗SO(3) with R3 given by
the Euclidean inner product, the non-holonomic constraint yielding
the condition of rolling without slipping is the distribution deter-
mined by the kernels of the 1-forms

θθ := adθ +Rez, θz := dz −Reθ

(and can be seen to be non-integrable). Choosing the usual gravi-
tational potential energy U =Mgz, the equation of motion is then
written

µ

(
Dċ

dt

)
= −dU +R(ċ)

⇔Ma2θ̈dθ +Mz̈dz + Iω̇ = −Mgdz + λθ(adθ +Rez) + λz(dz −Reθ).
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Since ėr = θ̇eθ and ėθ = −θ̇er, we have

ω̇ =
(
ω̇r − θ̇ωθ

)
er +

(
ω̇θ + θ̇ωr

)
eθ + ω̇zez.

Therefore the equation of motion is equivalent to the system of
ODEs 




Ma2θ̈ = λθa

Mz̈ = −Mg + λz

I
(
ω̇r − θ̇ωθ

)
= 0

I
(
ω̇θ + θ̇ωr

)
= −λzR

Iω̇z = λθR

to which we must add the constraint equations. Differentiating the
first constraint equation gives

θ̈ = −R
a
ω̇z = −R

2

Ia
λθ,

which together with the first equation of motion yields
(
1 +

MR2

I

)
λθ = 0 ⇔ λθ = 0.

The last equation of motion then implies ωz = ω0 for some constant
ω0 ∈ R, which in turn, when substituted in the first constraint
equation, originates

θ = −Rω0

a
t+ θ0

for some constant θ0 ∈ R. This shows that the center of the sphere
moves with constant angular velocity with respect to the axis of the
cylinder (which is also obvious from the first equation of motion).
The third equation of motion together with the second constraint
equation now give

ω̇r = θ̇ωθ = −Rω0

a

ż

R
⇔ ωr = ̟0 −

ω0

a
z

for some constant ̟0 ∈ R. Finally, the second equation of motion
(with λz given by the fourth equation of motion, ωr as given above
and ω̇θ obtained by differentiating the second constraint equation)
is

z̈ = −g − I

MR

(
ω̇θ + θ̇ωr

)
= −g − I

MR2
z̈ +

I

MR

Rω0

a

(
̟0 −

ω0

a
z
)

or equivalently
(
1 +

I

MR2

)
z̈ = −Iω0

2

Ma2

(
z − a̟0

ω0
+
Ma2g

Iω0
2

)
.
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This is the equation for a harmonic oscillator (cf. Exercise 1.16.3)
in the variable

ζ = z − a̟0

ω0
+
Ma2g

Iω0
2

with squared angular frequency

Iω0
2

Ma2

(
1 +

I

MR2

)−1

=
IR2ω0

2

a2
(
I +MR2

)−1
=

Iθ̇2

I +MR2
.

Therefore z oscillates about

z0 =
a̟0

ω0
− Ma2g

Iω0
2

with a frequency which is
√

I
I+MR2 times the frequency of the an-

gular motion.

Section 5.

(1) If c ∈ C is a critical point of the action, (U, x1, . . . , xn) is a local
chart and t ∈ (a, b) is such that c(t) ∈ U then we can find ε > 0
such that c([t−ε, t+ε]) ⊂ U . Considering variations which coincide
with c outside [t − ε, t + ε], we conclude that c must satisfy the
Euler-Lagrange equations on this local chart in the time interval
(t− ε, t+ ε). Hence any critical point of the action must satisfy the
Euler-Lagrange equations on the local chart (U, x1, . . . , xn) for all
t ∈ (a, b) such that c(t) ∈ U .

Conversely, suppose that c ∈ C satisfies the Euler-Lagrange
equations on any local chart. We introduce an auxiliary Riemann-
ian metric on M and consider normal balls with center at the
points of c([a, b]). Because c([a, b]) is compact, we can choose
such balls such that the infimum of their radii is positive (con-
sider an open cover of c([a, b]) by totally normal neighborhoods).
Using the fact that the length of c is necessarily finite, we can
choose a finite number of these balls (which are coordinate charts
for the normal coordinates), B1, . . . , BN , and points t1, . . . , tN−1,
with a < t1 < · · · < tN−1 < b, such that c(a) ∈ B1, c(b) ∈ BN and

c(ti) ∈ Bi ∩Bi+1 (i = 1, . . . , N − 1).

For an arbitrary variation γ given by γ̃ : (−ε, ε) × [a, b] → M , we
have, repeating the calculation in the proof of Theorem 5.3,

d

ds |s=0

∫ ti

ti−1

L(γ(s))dt = (FL)ċ(ti)

(
∂γ̃

∂s
(0, ti)

)
−(FL)ċ(ti−1)

(
∂γ̃

∂s
(0, ti−1)

)

for i = 2, . . . , N − 1, where we used the fact that c satisfies the
Euler-Lagrange equations on Bi. Analogously,

d

ds |s=0

∫ t1

a
L(γ(s))dt = (FL)ċ(t1)

(
∂γ̃

∂s
(0, t1)

)
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and

d

ds |s=0

∫ b

tN−1

L(γ(s))dt = −(FL)ċ(tN−1)

(
∂γ̃

∂s
(0, tN−1)

)
.

Adding these formulae we finally obtain

d

ds |s=0

∫ b

a
L(γ(s))dt = 0.

(2) Consider the kinetic energy Lagrangian K : TM → R, given by

K(v) =
1

2
〈v, v〉.

We know from Proposition 1.14 that

d

dt

(
∂K

∂vi
(x(t), ẋ(t))

)
− ∂K

∂xi
(x(t), ẋ(t))

=
n∑

j=1

gij


ẍj(t) +

n∑

k,l=1

Γjkl(x(t))ẋ
k(t)ẋl(t)


 .

Since the arclength Lagrangian is

L = (2K)
1
2

we have

∂L

∂vi
=

1

L

∂K

∂vi
and

∂L

∂xi
=

1

L

∂K

∂xi
,

and hence

d

dt

(
∂L

∂vi
(x(t), ẋ(t))

)
− ∂L

∂xi
(x(t), ẋ(t)) = 0

⇔
n∑

j=1

gij


ẍj(t) +

n∑

k,l=1

Γjkl(x(t))ẋ
k(t)ẋl(t)




+ L (x(t), ẋ(t))
d

dt

(
1

L (x(t), ẋ(t))

)
∂K

∂vi
(x(t), ẋ(t)) = 0.

Since
∂K

∂vi
=

n∑

j=1

gijv
j ,

we see that the Euler-Lagrange equations for the arclength La-
grangian are

ẍj(t) +
n∑

k,l=1

Γjkl(x(t))ẋ
k(t)ẋl(t) =

d

dt
(logL (x(t), ẋ(t))) ẋj ,

which, by Lemma 1.13, are the equations for a reparameterized
geodesic.
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(3) (a) A simple application of conservation of energy (cf. Theorem 1.9)
gives us

E = K + U = 0,

where, for speed v,

K =
1

2
mv2

is the kinetic energy, and U = mgy is the gravitational poten-
tial energy. Indeed, the initial energy is zero since the particle
is set free at the origin with zero velocity. Hence,

1

2
mv2 = −mgy

and so v =
√−2gy. The travel time between the origin and

the point (d, 0) is then given by

S =

∫ sF

0

dt

ds
ds =

∫ sF

0

1

v
ds,

where sF is the total length of the curve. (Here we used the
fact that v = ds

dt ). We have

ds

dx
= v

dt

dx
=
√
ẋ2 + ẏ2

dt

dx
= ẋ

√
1 + (y′)2

dt

dx
=
√
1 + (y′)2 ,

where y′ = dy
dx . Hence, changing variables we obtain

S = (2g)−
1
2

∫ d

0
(1 + (y′)2)

1
2 (−y)− 1

2 dx.

(b) To minimize S (travel time) we have to determine the critical
points of

∫ d

0
(1 + (y′)2)

1
2 (−y)− 1

2 dx.

By Theorem 5.3 we know that a curve c is a critical point of S
if and only if it satisfies the Euler-Lagrange equation obtained
from the Lagrangian L : R2 → R given by

L(y, v) = (1 + v2)
1
2 (−y)− 1

2 ,

that is,

d

dx

(
∂L

∂v
(y, y′)

)
− ∂L

∂y
(y, y′) = 0.

Instead of writing out this equation directly, we notice that we
have the conserved Hamiltonian function

H(y, v) = v
∂L

∂v
(y, v)− L(y, v).

Since
∂L

∂v
= v(1 + v2)−

1
2 (−y)− 1

2 ,
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we get

H(y, v) = v2(1 + v2)−
1
2 (−y)− 1

2 − (1 + v2)
1
2 (−y)− 1

2

= −(1 + v2)−
1
2 (−y)− 1

2 ,

and so along the solutions (y, y′) of the Euler-Lagrange equa-
tion we have

d

dx

[(
1 + (y′)2

)− 1
2 (−y)− 1

2

]
= 0 ⇔ d

dx

[(
1 + (y′)2

)
y
]
= 0.

(c) From the above equation we conclude that

(1 + (y′)2)y = k,

for some negative constant k ∈ R−, and so

y′ = ±
√
k − y

y
,

implying

x = ±
∫ (

y

k − y

) 1
2

dy.

Changing variables so that y = k sin2(θ/2) we have

dy

dθ
= k sin(θ/2) cos(θ/2),

and then

x = ±
∫
k sin2(θ/2) dθ = ±

(
k

2
θ − k

2
sin θ

)
+ l

for some integration constant l ∈ R. Since x = 0 corresponds
to y = 0 and hence to θ = 0, we conclude that l = 0. Moreover,
since we want x > 0 we get

{
x = −k

2 (θ − sin θ)

y = k sin2(θ/2) = k
2 (1− cos θ)

.

Making R = −k/2 we obtain
{
x = R (θ − sin θ)

y = R (cos θ − 1)
.

Moreover, since x = d corresponds to y = 0, and hence to
θ = 2π, we conclude that 2πR = d.

(4) (a) Since

∂L

∂vi
= mvi + eAi and

∂L

∂xi
= e

3∑

j=1

∂Aj

∂xi
vj − e

∂Φ

∂xi



CHAPTER 5 471

we have

d

dt

(
∂L

∂vi
(x, ẋ)

)
= mẍi + e

3∑

j=1

∂Ai

∂xj
ẋj

and so the Euler-Lagrange equations are

mẍi + e
3∑

j=1

(
∂Ai

∂xj
− ∂Aj

∂xi

)
ẋj + e

∂Φ

∂xi
= 0

for i = 1, 2, 3, or, equivalently,

mẍ = −e gradΦ + e ẋ× curlA,

where we used

(ẋ× curlA)i =
3∑

j,k=1

εijkẋ
j




3∑

l,m=1

εklm
∂Am

∂xl




=
3∑

j,l,m=1

(δilδjm − δimδjl)ẋ
j ∂A

m

∂xl
=

3∑

j=1

(
∂Aj

∂xi
− ∂Ai

∂xj

)
.

Here εijk = +1, −1 or 0 according to whether (i, j, k) is an
even, an odd or not a permutation of (1, 2, 3), and satisfies

3∑

k=1

εijkεklm = δilδjm − δimδjl

(in fact this is equivalent to the vector identity u× (v × w) =
〈u,w〉v − 〈u, v〉w for u, v, w ∈ R3).

(b) The associated Hamiltonian function is given by

H(x, v) =
3∑

j=1

vi
∂L

∂vi
(x, v)− L(x, v)

=
3∑

i=1

vi(mvi + eAi)− 1

2
m

3∑

i=1

(vi)2 − e
3∑

i=1

Aivi + eΦ

=
1

2
m

3∑

i=1

(vi)2 + eΦ.

Hence,

H(x, ẋ) =
1

2
m〈ẋ, ẋ〉+ eΦ

and so

d

dt
(H(x, ẋ)) = m〈ẍ, ẋ〉+ e 〈gradΦ, ẋ〉

= 〈−e gradΦ + e ẋ× (curlA), ẋ〉+ e 〈gradΦ, ẋ〉 = 0.
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(5) (a) If we identify R2 with the z = 0 plane in R3 then the rotat-
ing frame’s angular velocity is Ω = ez. According to Exer-
cise 3.20.11, the third particle’s equations of motion are

m(ẍ, ÿ, z̈) = (Fx, Fy, Fz)−mΩ× (Ω× (x, y, z))

− 2mΩ× (ẋ, ẏ, ż)−mΩ̇× (x, y, z)

= (Fx, Fy, Fz) +m(x, y, 0)− 2m(−ẏ, ẋ, 0).
The first two components of this equation are precisely





ẍ =
Fx
m

+ x+ 2ẏ

ÿ =
Fy
m

+ y − 2ẋ

.

(The third component is mz̈ = Fz, and thus requires Fz = 0
for a particle moving in the orbital plane).

(b) First note that

r1 =
(
(x− 1 + µ)2 + y2

) 1
2 and r2 =

(
(x+ µ)2 + y2

) 1
2 .

Hence,

∂L

∂x
= vy + x− µ

r13
(x− 1 + µ)− 1− µ

r23
(x+ µ) and

∂L

∂y
= −vx + y − µ

r13
y − 1− µ

r23
y.

Moreover,

∂L

∂vx
= vx − y and

∂L

∂vy
= vy + x,

and so

d

dt

(
∂L

∂vx
(x, y, ẋ, ẏ)

)
= ẍ− ẏ and

d

dt

(
∂L

∂vy
(x, y, ẋ, ẏ)

)
= ÿ + ẋ.

Hence the Euler-Lagrange equations are




ẍ− 2ẏ = x− µ

r13
(x− 1 + µ)− 1− µ

r23
(x+ µ)

ÿ + 2ẋ = y − µ

r13
y − 1− µ

r23
y

,

which are exactly the equations of motion in the rotating
frame.
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(c) The Hamiltonian function is

H = vx
∂L

∂vx
+ vy

∂L

∂vy
− L

=
1

2

(
(vx)2 + (vy)2

)
− 1

2
(x2 + y2)− µ

r1
− 1− µ

r2
.

(d) Let us now find the equilibrium points, i.e. constant solutions
of the equations of motion. Since in this case we have

ẋ = ẍ = ẏ = ÿ = 0,

we obtain



x− µ

r13
(x− 1 + µ)− 1− µ

r23
(x+ µ) = 0

y

(
1− µ

r13
− 1− µ

r23

)
= 0

.

If y 6= 0 we obtain from the second equation that

1− µ

r13
− 1− µ

r23
= 0.

Rewriting the first equation as

x

(
1− µ

r13
− 1− µ

r23

)
+ µ(1− µ)

(
1

r13
− 1

r23

)
= 0

and using the second equation we get that r1 = r2 = 1 at the
equilibrium point, which in turn satisfies the first equation.

Hence we have an equilibrium point (12 − µ,
√
3
2 ) with y > 0

and another equilibrium point (12 − µ,−
√
3
2 ) with y < 0. Note

that these two points are equidistant from the two massive
particles.
If y = 0 then the equilibrium points are given by the critical
points of the function

U(x) =
1

2
x2 +

µ

|x+ 1− µ| +
1− µ

|x+ µ| .

Since

U ′′(x) = 1 +
2µ

|x+ 1− µ|3 +
2(1− µ)

|x+ µ|3 > 0,

and

lim
x→±∞

U(x) = lim
x→µ

U(x) = lim
x→µ−1

U(x) = +∞,

we see that U has exactly three critical points, which are lo-
cal minima, one in each interval (−∞, 1 − µ), (1 − µ, µ) and
(µ,+∞).
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(e) To linearize the system we make the substitution
{
x = 1

2 − µ+ ξ

y = ±
√
3
2 + η

and notice that at the equilibrium points

∂r1
∂x

=
x− 1 + µ

r1
= −1

2
;

∂r1
∂y

=
y

r1
= ±

√
3

2
;

∂r2
∂x

=
x+ µ

r2
=

1

2
;

∂r2
∂y

=
y

r2
= ±

√
3

2
,

so that

1

r13
= 1 +

3

2
ξ ∓ 3

√
3

2
η + · · ·

and
1

r23
= 1− 3

2
ξ ∓ 3

√
3

2
η + · · · .

Substituting on the equations of motion yields the linearized
system




ξ̈ − 2η̇ = −µ
(
3

2
ξ ∓ 3

√
3

2
η

)(
−1

2

)
− (1− µ)

(
−3

2
ξ ∓ 3

√
3

2
η

)(
1

2

)

η̈ + 2ξ̇ = −µ
(
3

2
ξ ∓ 3

√
3

2
η

)(
±
√
3

2

)
− (1− µ)

(
−3

2
ξ ∓ 3

√
3

2
η

)(
±
√
3

2

)

or, equivalently,



ξ̈ − 2η̇ =
3

4
ξ ± 3

√
3

4
(1− 2µ)η

η̈ + 2ξ̇ = ±3
√
3

4
(1− 2µ)ξ +

9

4
η

.

The matrix of corresponding linear first-order system is

A =




0 0 1 0
0 0 0 1
3
4 ±3

√
3

4 (1− 2µ) 0 2

±3
√
3

4 (1− 2µ) 9
4 −2 0


 ,

and has characteristic polynomial

det(A− λI) = λ4 + λ2 +
27

4
µ(1− µ).

The roots of this polynomial satisfy

λ2 =
−1±

√
1− 27µ(1− µ)

2
,
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and so at least one will have a positive real part unless they
are all pure imaginary. So the equilibrium point is unstable
exactly when

1− 27µ(1− µ) < 0 ⇔ 1−
√
69
9

2
< µ <

1 +
√
69
9

2
.

(6) (a) The Lagrangian in Example 5.13 is clearly also R3-invariant,
where the action of R3 on R3k is defined through

v · (x1, . . . , xk) = (x1 + v, . . . , xk + v).

The infinitesimal action of w ∈ R3 is the vector field

Xw
(x1,...,xk)

:= (w, . . . , w).

Since

(FL)(v1,...,vk)(w1, . . . , wk) =
k∑

i=1

mi〈vi, wi〉,

The Noether theorem guarantees that the quantity

Jw =
k∑

i=1

mi〈ẋi, w〉 =
〈

k∑

i=1

miẋi, w

〉

is conserved along the motion of the system for any w ∈ R3.
In other words, the system’s total linear momentum

P :=

k∑

i=1

miẋi

is conserved.
(b) This is immediate from

Ẋ =
P

∑k
i=1mi

.

(7) The motions of the mechanical system consisting of k particles with
masses m1, . . . ,mk moving in a Riemannian manifold (M, 〈·, ·〉) un-
der a potential energy U : Mk → R which depends only on the
distances between them are the solutions of the Euler-Lagrange
equations obtained from the Lagrangian L : TMk → R given by

L(v1, . . . , vk) :=
1

2

k∑

i=1

mi〈vi, vi〉 − U.

This Lagrangian is clearly invariant under the isometry group G of
(M, 〈·, ·〉), where the action of G on Mk is defined through

g · (p1, . . . , pk) = (g · p1, . . . , g · pk).



476 SOLUTIONS TO EXERCISES

The infinitesimal action of V ∈ g is the vector field

XV
(p1,...,pk)

= (Xp1 , . . . , Xpk),

where X is the Killing vector field corresponding to V ,

Xp =
d

dt |t=0

exp(tV ) · p.

Since

(FL)(v1,...,vk)(w1, . . . , wk) =
k∑

i=1

mi〈vi, wi〉,

The Noether theorem guarantees that the quantity

JV =
k∑

i=1

mi〈ċi(t), Xci(t)〉 = JX

is conserved along the motion (c1, . . . , ck) of the system for any
V ∈ g, i.e. for any Killing vector field X.

Alternatively, one could directly compute

dJX

dt
=

k∑

i=1

mi〈∇ċi ċi, X〉+mi〈ċi,∇ċiX〉.

The second terms are zero because of the Killing equation (cf. Ex-
ercise 3.3.8 in Chapter 3). The first terms add up to

µ

(
Dċ

dt

)
(Xc1 , . . . , Xck) = −(dU)(c1,...,ck)(Xc1 , . . . , Xck)

= − d

ds |s=0

U(exp(sV ) · c1, . . . , exp(sV ) · ck) = 0

since U depends only on the distances between the particles.
(8) (a) Given S ∈ SO(3) we have

d

dt |t=0

exp(tB)S = BS = (dRS)I B =
(
XB
)
S

where XB is the right-invariant vector field determined by B.
(b) The Lagrangian for the free rigid body is

L(V ) =
1

2
〈〈V, V 〉〉

and is clearly SO(3)-invariant (because 〈〈·, ·〉〉 is). Since
(FL)V (W ) = 〈〈V,W 〉〉,

The Noether theorem guarantees that the quantity

JB = (FL)Ṡ(X
B) = 〈〈Ṡ, BS〉〉 = 〈〈SA,BS〉〉
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is conserved along the motions of the system for any B ∈ so(3),

where as usual we have written Ṡ = SA. Setting Ω = Ω(A)
and Σ = Ω(B), we have

JB =

∫

R3

〈SAξ,BSξ〉 dm =

∫

R3

〈S(Ω× ξ),Σ× (Sξ)〉 dm

=

∫

R3

〈Ω× ξ, (StΣ)× ξ〉 dm =

∫

R3

〈(StΣ), ξ × (Ω× ξ)〉 dm

=

〈
StΣ,

∫

R3

[ξ × (Ω× ξ)] dm

〉
= 〈StΣ, P 〉 = 〈Σ, SP 〉.

Since B, and thus Σ, is arbitrary, we conclude that the vector
p = SP is conserved.

(9) (a) Let m be the measure which describes the satellite with locked
rotor on the reference position, and let R ⊂ R3 be the set of
points on the rotor. Then at time t a point ξ ∈ R will be at
position

S(t)R(t)ξ

where S : R → SO(3) describes the orientation of the satellite
and R : R → S1 is a rotation about e. On the other hand, a
point ξ 6∈ R will simply be at position S(t)ξ. Therefore the
total kinetic energy of the satellite will be

K =
1

2

∫

R

〈
(ṠR+ SṘ)ξ, (ṠR+ SṘ)ξ

〉
dm+

1

2

∫

R3\R

〈
Ṡξ, Ṡξ

〉
dm.

Now since the rotor spins with angular velocity ̟ around the
axis e on the satellite’s frame, we have

Ṙξ = ̟e× (Rξ).

Using this and the fact that m is invariant under R(t), we get

K =
1

2

∫

R3

〈
Ṡξ, Ṡξ

〉
dm+

1

2
̟2

∫

R
〈e× ξ, e× ξ〉 dm

+̟

∫

R

〈
ṠRξ, S(e×Rξ)

〉
dm.

Since Ṡξ = S(Ω× ξ), we finally obtain

K =
1

2

∫

R3

〈Ω× ξ,Ω× ξ〉 dm+
1

2
̟2

∫

R
〈e× ξ, e× ξ〉 dm

+̟

∫

R
〈Ω× ξ, e× ξ〉 dm

=
1

2
〈IΩ,Ω〉+ 1

2
̟2 〈Je, e〉+̟ 〈Ω, Je〉

=
1

2
〈IΩ,Ω〉+ 1

2
J̟2 + J̟ 〈Ω, e〉 ,
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where we used J for both the inertia tensor of the cylinder and
its eigenvalue along e.

(b) We regard (Ω, ̟) as coordinates on the fibers of T (SO(3)×S1).
The Lagrangian K for the motion of the free satellite with
unlocked rotor is obviously invariant under the action of S1

corresponding to rotating the rotor. The associated infinites-
imal action for v ∈ s1 ∼= R is simply the vector field given by
Xv := (0, v) in these coordinates, and the Noether theorem
then guarantees the conservation of

(FK)(Ω,̟)(X
v) = J̟v + J 〈Ω, e〉 v = lv,

which is equivalent to l being conserved. Moreover, K is also
invariant under the action of SO(3) corresponding to rotating
the whole satellite. The associated infinitesimal action for B ∈
so(3) is of the form XB = (Y B, 0), where Y B is the right-
invariant vector field associated to B (cf. Exercise 5.14.8). Now
if Σ ∈ R3 is such that

Bξ = Σ× ξ

for all ξ ∈ R3, we have

StBSξ = St(Σ× (Sξ)) = (StΣ)× ξ.

Therefore Y B = BS = SA(S), where A(S) ∈ so(3) corre-
sponds to StΣ. In the coordinates (Ω, ̟) we can therefore
write

XB = (StΣ, 0).

The Noether theorem then guarantees the conservation of

(FK)(Ω,̟)(X
B) =

〈
IΩ, StΣ

〉
+ J̟

〈
StΣ, e

〉

= 〈S(IΩ+ J̟e),Σ〉 = 〈p,Σ〉

for all Σ ∈ R3, which is equivalent to p being conserved.

Section 6.

(1) Let us consider the canonical symplectic form on T ∗M given in
local coordinates (x1, . . . , xn, p1, . . . , pn) by

ω =
n∑

j=1

dpj ∧ dxj .

This form is clearly closed. To show that it is nondegenerate at α ∈
T ∗M let us consider a vector v ∈ Tα(T

∗M) such that ω(v, w) = 0
for every w ∈ Tα(T

∗M). Then, writing

v =
n∑

j=1

aj
∂

∂xj
+ bj

∂

∂pj
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and setting w := ∂
∂pi

for i ∈ {1, . . . , n}, we obtain

0 = ω(v, w) =
n∑

j=1

(dpj ⊗ dxj − dxj ⊗ dpj)

(
v,

∂

∂pi

)
= −ai.

If, instead, we use w := ∂
∂xi

for i ∈ {1, . . . , n}, we get

0 = ω(v, w) =
n∑

j=1

(dpj ⊗ dxj − dxj ⊗ dpj)

(
v,

∂

∂xi

)
= bi.

We conclude that v = 0, and hence ω is nondegenerate. Finally,
the form

ωn = ω ∧ · · · ∧ ω =




n∑

j=1

dpj ∧ dxj

 ∧ · · · ∧




n∑

j=1

dpj ∧ dxj



= n! dp1 ∧ dx1 ∧ · · · ∧ dpn ∧ dxn =

= n! (−1)
n(n−1)

2 dp1 ∧ · · · ∧ dpn ∧ dx1 ∧ · · · ∧ dxn 6= 0

is a volume form on T ∗M .
(2) (a) In local coordinates we have

L(x1, . . . , xn, v1, . . . , vn) =
1

2

n∑

i,j=1

gij(x
1, . . . , xn)vivj

+

n∑

i=1

αi(x
1, . . . , xn)vi − U(x1, . . . , xn) = K + C − U

where α =
∑n

i=1 αidx
i and C =

∑n
i=1 αiv

i. Now we know that

µ

(
Dċ

dt
(t)

)
+ (dU)c(t)

is given in local coordinates by
n∑

i=1

[
d

dt

(
∂K

∂vi
(x(t), ẋ(t))

)
− ∂K

∂xi
(x(t), ẋ(t))

]
dxi+

n∑

i=1

∂U

∂xi
(x(t))dxi.

Moreover,
n∑

i=1

[
d

dt

(
∂C

∂vi
(x(t), ẋ(t))

)
− ∂C

∂xi
(x(t), ẋ(t))

]
dxi

=
n∑

i=1


 d
dt

(αi(x(t)))−
n∑

j=1

∂αj
∂xi

(x(t))ẋj(t)


 dxi

=
n∑

i=1




n∑

j=1

(
∂αi
∂xj

(x(t))− ∂αj
∂xi

(x(t))

)
ẋj(t)


 dxi,
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and so ι(ċ(t))dα is given in local coordinates by
n∑

i=1

[
d

dt

(
∂C

∂vi
(x(t), ẋ(t))

)
− ∂C

∂xi
(x(t), ẋ(t))

]
dxi.

Then the Euler-Lagrange equations are equivalent to
n∑

i=1

[
d

dt

(
∂L

∂vi
(x(t), ẋ(t))

)
− ∂L

∂xi
(x(t), ẋ(t))

]
dxi = 0

⇔
n∑

i=1

[
d

dt

(
∂(K + C)

∂vi
(x(t), ẋ(t))

)

−∂(K + C)

∂xi
(x(t), ẋ(t)) +

∂U

∂xi
(x(t))

]
dxi = 0

⇔ µ

(
Dċ

dt
(t)

)
+ ι(ċ(t)) + dα(dU)c(t) = 0,

and the result follows.
(b) We have

dE

dt
(t) =

d

dt

(
1

2
〈ċ(t), ċ(t)〉+ U(c(t))

)
=

〈
Dċ

dt
(t), ċ(t)

〉
+ (dU)c(t)(ċ(t))

= µ

(
Dċ

dt

)
(ċ) + dU(ċ) = −ι(ċ)dα(ċ) = −dα(ċ, ċ) = 0.

(c) In local coordinates, the Legendre transformation is given by

pi =
∂L

∂vi
=

n∑

j=1

gijv
j + αi (i = 1, . . . , n),

and can be readily inverted:

vi =
n∑

j=1

gij(pj − αj) (i = 1, . . . , n).

This shows that the Lagrangian is hyper-regular.
(d) As a function on the tangent bundle, the Hamiltonian is

H =
n∑

i=1

vi
∂L

∂vi
−L =

n∑

i,j=1

gijv
ivj+

n∑

i=1

αiv
i−L =

1

2

n∑

i,j=1

gijv
ivj+U.

Therefore, as a function on the cotangent bundle, it is given
by

H =
1

2

n∑

i,j,k,l=1

gijg
ikgjl(pk − αk)(pl − αl) + U

=
1

2

n∑

i,j=1

gij(pi − αi)(pj − αj) + U,
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and the Hamilton equations are




ẋi =
n∑

j=1

gij(pj − αj)

ṗi = −1

2

n∑

k,l=1

∂gkl

∂xi
(pk − αk)(pl − αl) +

n∑

k,l=1

gkl
∂αk
∂xi

(pl − αl)−
∂U

∂xi

.

(3) (a) The Legendre transformation is given by

pi =
∂L

∂vi
=

mvi√
1− ‖v‖2

c2

.

If p ∈ Rn is the vector with components pi, we have

p =
mv√

1− ‖v‖2
c2

,

and so

‖p‖2 = m2‖v‖2

1− ‖v‖2
c2

⇔ ‖v‖ =
c‖p‖√

‖p‖2 +m2c2
,

yielding

v =
cp√

‖p‖2 +m2c2
.

Hence the Legendre transformation is invertible, and L is hyper-
regular. Notice that the Legendre transformation maps U onto
T ∗Rn.

(b) As a function on the tangent bundle, the Hamiltonian is

H = 〈p, v〉 − L =
m‖v‖2√
1− ‖v‖2

c2

+mc2
√
1− ‖v‖2

c2
=

mc2√
1− ‖v‖2

c2

(where 〈·, ·〉 is the Euclidean inner product). Therefore, as a
function on the cotangent bundle, it is given by

H =
mc2√

1− ‖p‖2
‖p‖2+m2c2

= c
√
‖p‖2 +m2c2,

and the Hamilton equations are




ẋi =
cpi√

‖p‖2 +m2c2

ṗi = 0

.
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Notice that even if v = p = 0 we still have H = mc2. This
is the so-called rest energy of the particle, given by Einstein’s
famous formula E = mc2.

(4) If the set of points p ∈ U such that ψt(p) ∈ U for some t ≥ T were
not dense in U then there would exist an open set V ⊂ U such that
ψt(V )∩U = ∅ for all t ≥ T . But the Poincaré recurrence theorem
applied to V would guarantee the existence of a point p ∈ V such
that ψt(p) ∈ V ⊂ U for some t ≥ T , and hence ψt(p) ∈ ψt(V ) ∩ U .

(5) The geodesic flow corresponds to the Hamiltonian given in local
coordinates by

H(x1, . . . , xn, p1, . . . , pn) =
1

2

n∑

i,j=1

gij(x1, . . . , xn)pipj .

It is easily seen that the (conserved) value of H is just 1
2‖ċ(t)‖2 for

each geodesic c : R → M given by the flow. Since M is compact,
the set K = H−1([12 , 2]) is also compact, as it is diffeomorphic to

{v ∈ TM | 1 ≤ ‖v‖ ≤ 2} .

Consider the open set

U =

{
α ∈ T ∗M | 1

2
< H(α) < 2 and π(α) ∈ B

}
⊂ K.

By the Poincaré recurrence theorem there exists α ∈ U such that
ψt1(α) ∈ U for t1 ≥ T . Now the projection of ψt(α) on M is
a geodesic γ(t) such that γ(0) ∈ B and γ(t1) ∈ B. Moreover,
‖γ̇(t)‖ = k for some 1 < k < 2. Therefore c(t) := γ(t/k) is a
geodesic with ‖ċ(t)‖ = 1 which satisfies c(0) ∈ B and c(kt1) ∈ B,
i.e. c(t) ∈ B for some t > T .

(6) Since we know that Xxi is the unique vector field in X(T ∗M) for
which

ι(Xxi)ω = −dxi,

we can easily see that Xxi = − ∂
∂pi

, as

(
ι

(
− ∂

∂pi

)
ω

)
(Y ) =

n∑

j=1

(dpj⊗dxj−dxj⊗dpj)
(
− ∂

∂pi
, Y

)
= −dxi(Y )

for every vector field Y ∈ X(T ∗M). Similarly, we conclude that
Xpi =

∂
∂xi

, since

(
ι

(
∂

∂xi

)
ω

)
(Y ) =

n∑

j=1

(dpj ⊗ dxj − dxj ⊗ dpj)

(
∂

∂xi
, Y

)
= −dpi(Y )
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for every vector field Y ∈ X(T ∗M). Then

{xi, xj} = Xxi · xj = −∂x
j

∂pi
= 0,

{pi, pj} = Xpi · pj =
∂pj
∂xi

= 0,

{pi, xj} = Xpi · xj =
∂xj

∂xi
= δij .

(7) We have

{F,GH} = XF ·(GH) = (XF ·G)H+GXF ·H = {F,G}H+{F,H}G.

Section 7.

(1) If F and G are first integrals of the Hamiltonian function H then
{H,F} = {H,G} = 0. By Proposition 6.14, we have

{H, {F,G}} = −{F, {G,H}} − {G, {H,F}} = 0,

and so {F,G} is also a first integral of H.
(2) Let F1, . . . , Fm ∈ C∞(T ∗M) be in involution and independent at

some point α ∈ T ∗M and let XF1 , . . . , XFm be the correspond-
ing Hamiltonian vector fields. Then, at α, the vectors (XFi)α ∈
Tα(T

∗M) are linearly independent. Indeed, if
m∑

i=1

ai (XFi)α = 0

for some a1, . . . , am ∈ R, then

0 = ι

(
m∑

i=1

ai (XFi)α

)
ωα =

m∑

i=1

ai ι ((XFi)α)ωα = −
m∑

i=1

ai (dFi)α

and so a1 = · · · = am = 0 since (dF1)α, . . . , (dFm)α are linearly
independent. On the other hand, we have

(32) ωα
(
(XFi)α, (XFj )α

)
= {Fi, Fj}(α) = 0.

Let us take them-dimensional spaceW = span{(XF1)α, . . . , (XFm)α}
and its symplectic orthogonal

Wω = {w ∈ Tα(T
∗M) | ωα(v, w) = 0 for all v ∈W}.

Then

2n = dimTα(T
∗M) = dimW + dimWω.

Indeed, if we consider the map

Φ : Tα(T
∗M) →W ∗

v 7→ (ι(v)ωα)|W

we can easily see that kerΦ = Wω and imΦ = W ∗ (since any
element in W ∗ can be extended to an element in T ∗

α(T
∗M) and
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the map v 7→ ι(v)ωα is an isomorphism between Tα(T
∗M) and

T ∗
α(T

∗M)). Hence,

2n = dimTα(T
∗M) = dimWω + dimW ∗ = dimWω + dimW.

Since, on the other hand, we clearly have W ⊂ Wω by (32), we
conclude that

2n = dimWω + dimW ≥ 2 dimW = 2m

and so n ≥ m.
(3) (a) We know that the geodesics of M are the critical points of the

action determined by L = 1
2〈v, v〉, where 〈·, ·〉 is the metric

induced in M by the Euclidean metric of R3. If i :M → R3 is
the standard inclusion, we have

i∗g = i∗(dx⊗ dx+ dy ⊗ dy + dz ⊗ dz)

= (f(z))2dθ ⊗ dθ + ((f ′(z))2 + 1)dz ⊗ dz,

since

x = f(z) cos θ and y = f(z) sin θ,

and so

i∗dx = d(f(z) cos θ) = −f(z) sin θdθ + f ′(z) cos θdz

and

i∗dy = d(f(z) sin θ) = f(z) cos θdθ + f ′(z) sin θdz.

Therefore the Lagrangian for the geodesics of M , given by the
kinetic energy, is

L(θ, z, vθ, vz) =
1

2

(
(f(z))2(vθ)2 +

(
(f ′(z))2 + 1

)
(vz)2

)
.

(b) Since

∂L

∂vθ
= (f(z))2vθ,

∂L

∂vz
= ((f ′(z))2 + 1)vz,

∂L

∂θ
= 0,

∂L

∂z
= f(z)f ′(z)(vθ)2 + f ′(z)f ′′(z)(vz)2,

the Euler-Lagrange equations are




f(z)θ̈ + 2f ′(z)θ̇ż = 0

((f ′(z))2 + 1)z̈ + f ′(z)f ′′(z)ż2 − f(z)f ′(z)θ̇2 = 0.

If θ̇ = 0 then the first Euler-Lagrange equation is trivially
satisfied. Moreover, the second equation becomes

z̈

ż
+

f ′(z)f ′′(z)
(f ′(z))2 + 1

ż = 0



CHAPTER 5 485

and then

d

dt

(
log ż +

1

2
log((f ′(z))2 + 1)

)
= 0.

Hence,

((f ′(z))2 + 1)1/2ż = k

for some positive integration constant k and so

d

dt

(∫ z

z0

((f ′(s))2 + 1)1/2 ds

)
= k.

Noting that

G(z) =

∫ z

z0

((f ′(s))2 + 1)1/2 ds

is an increasing function of z (since ((f ′(s))2+1)1/2 is positive),
and hence injective, we obtain the trajectory given in local
coordinates by





θ(t) = θ0,

z(t) = G−1(kt)

for some constant θ0 ∈ R.
On the other hand if the trajectory satisfies f ′(z(t)) = 0 the
Euler-Lagrange equations become

θ̈ = 0 and z̈ = 0.

Hence, θ = θ0 + kt and z(t) = z0 + lt for some integration
constants k, l. Since we need f ′(z(t)) = 0, if f is not a constant
function we get l = 0 and z(t) = z0, where z0 is a critical point
of f , and we obtain trajectories

θ = θ0 + kt and z(t) = z0.

If f is a constant function (that is if S is a cylinder) then any
trajectory satisfying θ = θ0+kt and z(t) = z0+lt is a solution.

(c) The Legendre transformation is given in these coordinates by





pθ =
∂L

∂vθ
= (f(z))2 vθ

pz =
∂L

∂vz
= ((f ′(z))2 + 1) vz

⇔





vθ =
pθ

(f(z))2

vz =
pz

(f ′(z))2 + 1
.
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Since it is clearly invertible, L is hyper-regular. The Hamil-
tonian function is then

H(θ, z, pθ, pz) = pθv
θ + pzv

z − L =
pθ

2

(f(z))2
+

pz
2

(f ′(z))2 + 1
− L

=
pθ

2

2(f(z))2
+

pz
2

2((f ′(z))2 + 1)
.

(d) By the Hamilton equations,

ṗθ = −∂H
∂θ

= 0

and hence pθ is a first integral. Now

dH =
pθ

(f(z))2
dpθ +

pz
(f ′(z))2 + 1

dpz

−
[
f ′(z)pθ2

(f(z))3
+

f ′(z)f ′′(z)pz2

((f ′(z))2 + 1)2

]
dz

and hence dH and dpθ are linearly independent on the dense
open set of T ∗M formed by the points whose coordinates (z, θ)
are well defined and do not satisfy

pz = f ′(z)

[
pθ

2

(f(z))3
+

f ′′(z)pz2

((f ′(z))2 + 1)2

]
= 0.

Thus they are independent for instance whenever pz 6= 0,
i.e. outside a 3-dimensional submanifold, and so H and pθ
are independent on a dense open set.

(e) The equations for this level set are pθ = l and

H = E ⇔ l2

(f(z))2
+

p2z
(f ′(z))2 + 1

= 2E

⇔ p2z
(f ′(z))2 + 1

= 2E − l2

(f(z))2
.

These can be solved for pz on the set of points for which the
right-hand side is nonnegative, i.e. for

f(z) ≥ l√
2E

.

If f has a strict local maximum at z = z0 then the projec-
tions of invariant level sets L(E,l) close to the geodesic with
image z = z0 will be sets of the form zmin ≤ z ≤ zmax, with
zmin, zmax close to z0 and satisfying zmin < z0 < zmax. Thus
geodesics with initial condition close to a vector tangent to
z = z0 will remain close to z = z0, meaning that this geodesic
is stable.
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(4) (a) From the Hamilton equations we have

ṙ =
∂H

∂pr
=
pr
m
.

Therefore, to have r(t) = r0 (hence ṙ(t) = 0) we must have
pr(t) = 0 and so ṗr(t) = 0. Hence, again from the Hamilton
equations we have

0 = ṗr = −∂H
∂r

⇔ u′(r0)−
p2θ
mr03

= 0.

Therefore to have circular orbits of radius r0 we must have

p2θ = u′(r0)mr
3
0

and hence u′(r0) ≥ 0. On the other hand, if u′(r0) ≥ 0 one
can always solve this equation to obtain a constant pθ. The
remaining Hamilton equations,

θ̇ =
∂H

∂pθ
=

pθ
mr02

and ṗθ = −∂H
∂θ

= 0,

are readily solved for this constant value of pθ, and we have a
circular orbit (here we are interpreting a constant solution as
a circular orbit with infinite period).

(b) This is obvious from the expression

dH =

(
− pθ

2

mr3
+ u′(r)

)
dr +

pr
m
dpr +

pθ
mr2

dpθ.

(c) The equations for this level set are pθ = l and

H = E ⇔ p2r
2m

+
l2

2mr2
+ u(r) = E

⇔ p2r
2m

= E − l2

2mr2
− u(r).

This can be solved for pr on the set of points for which

u(r) +
l2

2mr2
≤ E.

(d) Consider the function

f(r) := u(r) +
l2

2mr2

with l2 = u′(r0)mr30. Then

f ′(r0) = u′(r0)−
l2

mr30
= 0

and

f ′′(r0) = u′′(r0) +
3l2

mr04
= u′′(r0) +

3u′(r0)
r0

.
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Hence, if u′′(r0) +
3u′(r0)
r0

> 0, the function f has a strict local
minimum at r = r0. In this case, trajectories on L(E,l) for
values of E slightly bigger than f(r0) (but the same value
of l) will project to curves close to the circular orbit r = r0.
Indeed, these trajectories will satisfy f(r0) ≤ f(r(t)) ≤ E, and
so r(t) will stay close to r0. The same is true for trajectories
on invariant sets corresponding to slightly different values of l,
since the (new) function f will still have a minimum near r0.
We conclude then that the circular orbits r = r0 are stable.

(5) (a) The Legendre transformation is given by




pu =
∂H

∂vu
= −

(
1− 2M

r

)
vu

pr =
∂H

∂vr
=

(
1− 2M

r

)−1

vr

pθ =
∂H

∂vθ
= r2vθ

⇔





vu = −
(
1− 2M

r

)−1

pu

vr =

(
1− 2M

r

)
pr

vθ =
pθ
r2

.

Since it is invertible, L is hyper-regular. The Hamiltonian
function is

H(u, r, θ, pu, pr, pθ) = puv
u + prv

r + pθ v
θ − L

= −
(
1− 2M

r

)−1

pu
2 +

(
1− 2M

r

)
pr

2 +
pθ

2

r2
− L

= −1

2

(
1− 2M

r

)−1

pu
2 +

1

2

(
1− 2M

r

)
pr

2 +
pθ

2

2r2
.

(b) By the Hamilton equations

ṗu = −∂H
∂u

= 0 and ṗθ = −∂H
∂θ

= 0,

and so pu and pθ are first integrals. Moreover, they are in
involution:

{pu, pθ} = Xpu · pθ =
∂

∂u
· pθ = 0.

Since {H, pu} = {H, pθ} = 0, the functions H, pu and pθ form
a set of three first integrals in involution. Now

dH =

[
M

r2

(
1− 2M

r

)−2

pu
2 +

M

r2
pr

2 − pθ
2

r3

]
dr

−
(
1− 2M

r

)−1

pudpu +

(
1− 2M

r

)
prdpr +

pθ
r2
dpθ,
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and so dH, dpu and dpθ are linearly independent whenever
pr 6= 0, i.e. outside a 5-dimensional submanifold. Thus H, pu
and pθ are independent on a dense open set.

(c) From the Hamilton equations we have

ṙ =
∂H

∂pr
=

(
1− 2M

r

)
pr.

Therefore to have r(t) = r0 (hence ṙ(t) = 0) we must have
pr(t) = 0. We already saw that ṗu = ṗθ = 0, which means
that

u̇ =
∂H

∂pu
= −

(
1− 2M

r0

)−1

pu

and

θ̇ =
∂H

∂pθ
=

pθ
r02

will be constant. Finally, we must have

0 = ṗr = −∂H
∂r

= −M

r02

(
1− 2M

r0

)−2

pu
2 +

pθ
2

r03
.

Therefore we will have circular orbits of radius r0 as long as
the constants pu and pθ satisfy

pθ
2 =Mr0

(
1− 2M

r0

)−2

pu
2,

which can be arranged for any r0 > 2M (here we exclude
the trivial case pu = pθ = 0, which does not correspond to a
particle motion). Notice that for these orbits

H =− 1

2

(
1− 2M

r0

)−1

pu
2 +

pθ
2

2r02

= −1

2

(
1− 2M

r0

)−1

pu
2 +

M

2r0

(
1− 2M

r0

)−2

pu
2

= −1

2

(
1− 2M

r0

)−2(
1− 3M

r0

)
pu

2,

and hence H < 0 for r0 > 3M , H = 0 for r0 = 3M and H > 0
for r0 < 3M .

(d) The 1-forms dpu and dpθ are linearly independent at each
point α ∈ T ∗M , since they can be extended to the basis
{du, dr, dθ, dpu, dpr, dpθ} of T ∗

α(T
∗M). The 1-form dH is a

linear combination of dpu and dpθ at all points α ∈ T ∗M
where[
M

r2

(
1− 2M

r

)−2

pu
2 +

M

r2
pr

2 − pθ
2

r3

]
dr+

(
1− 2M

r

)
prdpr = 0.
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But these are exactly the points where

pr = 0 and pθ
2 =Mr

(
1− 2M

r

)−2

pu
2,

which for pu 6= 0 give exactly the circular orbits.
(e) The equations for the invariant cylinder are pu = k, pθ = l and

H = E ⇔ −1

2

(
1− 2M

r

)−1

k2 +
1

2

(
1− 2M

r

)
pr

2 +
l2

2r2
= E

⇔
(
1− 2M

r

)
pr

2 = 2E +

(
1− 2M

r

)−1

k2 − l2

r2
.

This can be solved for pr on the set of points for which the
right-hand side is nonnegative, i.e. for

2E +

(
1− 2M

r

)−1

k2 − l2

r2
≥ 0.

(f) For a circular orbit of radius r0 on the invariant cylinder we
have



E = −1

2

(
1− 2M

r0

)−2(
1− 3M

r0

)
k2

l2 =Mr0

(
1− 2M

r0

)−2

k2

(with k 6= 0). Consider the function

f(r) =
l2

r2
−
(
1− 2M

r

)−1

k2

for this value of l2. Then it is easy to check that

f(r0) = 2E

for the value of E above. Moreover, we have

f ′(r0) = −2l2

r03
+

2M

r02

(
1− 2M

r0

)−2

k2 = 0

and

f ′′(r0) =
6l2

r04
− 4M

r03

(
1− 2M

r0

)−3

k2

=
2M

r03

(
1− 2M

r0

)−3(
1− 6M

r0

)
k2.

Hence r0 is a strict local minimum of f for r0 > 6M . This
means that trajectories on L(E,k,l) for values of E slightly big-
ger than f(r0) (but the same values of k and l) will project
to curves close to the circular orbit r = r0. Indeed, these



CHAPTER 5 491

trajectories will satisfy f(r0) ≤ f(r(t)) ≤ E, and so r(t) will
stay close to r0. The same is true for trajectories on invariant
sets corresponding to slightly different values of k and l, since
the (new) function f will still have a minimum near r0. We
conclude then that the circular orbits r = r0 are stable.

(6) (a) The Legendre transformation is given by




pθ =
∂L

∂vθ
= I1v

θ

pϕ =
∂L

∂vϕ
= I1 sin

2 θ vϕ + I3 cos θ
(
vψ + vϕ cos θ

)

pψ =
∂L

∂vψ
= I3

(
vψ + vϕ cos θ

)

and can readily be inverted:




vθ =
pθ
I1

vϕ =
pϕ − pψ cos θ

I1 sin
2 θ

vψ =
pψ
I3

+
pψ cos

2 θ − pϕ cos θ

I1 sin
2 θ

Hence L is hyper-regular. The Hamiltonian function is

H(θ, ϕ, ψ, pθ, pϕ, pψ) = pθ v
θ + pϕ v

ϕ + pψ v
ψ − L

=
pθ

2

2I1
+

(pϕ − pψ cos θ)
2

2I1 sin
2 θ

+
pψ

2

2I3
+Mgl cos θ.

(b) By the Hamilton equations

ṗϕ = −∂H
∂ϕ

= 0 and ṗψ = −∂H
∂ψ

= 0,

and so pϕ and pψ are first integrals. Moreover, they are in
involution:

{pϕ, pψ} = Xpϕ · pψ =
∂

∂ϕ
· pψ = 0.

Since {H, pϕ} = {H, pψ} = 0, the functions H, pϕ and pψ form
a set of three first integrals in involution. Now

dH =

[
pψ (pϕ − pψ cos θ)

I1 sin θ
− cos θ (pϕ − pψ cos θ)

2

I1 sin
3 θ

−Mgl sin θ

]
dθ

+
pθ
I1
dpθ +

pϕ − pψ cos θ

I1 sin
2 θ

dpϕ +

[
pψ
I3

− cos θ (pϕ − pψ cos θ)

I1 sin
2 θ

]
dpψ
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and hence dH, dpϕ and dpψ are linearly independent whenever
pθ 6= 0, i.e. outside a 5-dimensional submanifold. Thus H, pϕ
and pψ are independent on a dense open set.

(c) For solutions with θ(t) = θ0 we have θ̇(t) = pθ(t) = 0. Since
these solutions must satisfy H = E, pϕ = j and pψ = k for
some constants E, j, k ∈ R, we will have

f(θ0) :=
(j − k cos θ0)

2

2I1 sin
2 θ0

+
k2

2I3
+Mgl cos θ0 = E.

Moreover, from the Hamilton equations we must have

ṗθ(t) = −∂H
∂θ

(θ0, ϕ(t), ψ(t), 0, j, k) = 0,

which is equivalent to

f ′(θ0) =
k (j − k cos θ0)

I1 sin θ0
− cos θ0 (j − k cos θ0)

2

I1 sin
3 θ0

−Mgl sin θ0 = 0.

In addition,

f ′′(θ0) =
k2

I1
− k cos θ0 (j − k cos θ0)

I1 sin
2 θ0

+
(j − k cos θ0)

2

I1 sin
2 θ0

− 2k cos θ0 (j − k cos θ0)

I1 sin
2 θ0

+
3 cos2 θ0 (j − k cos θ0)

2

I1 sin
4 θ0

−Mgl cos θ0.

The condition |ϕ̇| ≪ |ψ̇| is equivalent to |pϕ−pψ cos θ| ≪ |pψ|,
that is, to |j − k cos θ0| ≪ |k|. Therefore in this case

f ′′(θ0) ≃
k2

I1
−Mgl cos θ0,

and if |k| (or equivalently |ψ̇|) is large enough then f has a
strict local minimum at θ0. This means that trajectories on
L(E,j,k) for values of E slightly bigger than f(θ0) (but the
same values of j and k) will project to curves close to the
solution with θ = θ0. Indeed, these trajectories will satisfy
f(θ0) ≤ f(θ(t)) ≤ E, and so θ(t) will stay close to θ0. The
same is true for trajectories on invariant sets corresponding to
slightly different values of j and k, since the (new) function f
will still have a minimum near r0. We conclude then that the
solutions with θ = θ0 are stable.

(7) We begin by noticing that the components (P 1, P 2, P 3) of the an-
gular momentum P in the top’s frame are linear coordinates on
the fibers of TSO(3), and hence on the fibers of T ∗SO(3) (the Le-
gendre transformation is a linear isomorphism between fibers). The
Hamiltonian of the Euler top is just the kinetic energy,

H = K =

(
P 1
)2

2I1
+

(
P 2
)2

2I2
+

(
P 3
)2

2I3
.
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Since the angular momentum p = SP (which can be seen as a
function on T ∗SO(3)) is conserved along any motion, we have the
two first integrals

F = ‖p‖2 = ‖P‖2 =
(
P 1
)2

+
(
P 2
)2

+
(
P 3
)2

and

G = p1.

Now F is also the Hamiltonian for an Euler top, with moments
of inertia I1 = I2 = I3 = 1

2 , and so p is also constant along the
Hamiltonian flow of F . Therefore {F,G} = 0.

It remains to be seen that F,G,H are independent on a dense
open set. We have

dF = 2P 1dP 1 + 2P 2dP 2 + 2P 3dP 3

and

dH =
P 1

I1
dP 1 +

P 2

I2
dP 2 +

P 3

I3
dP 3.

Since I1 < I2 < I3, we see that dF and dH are linearly independent
unless P i = P j = 0 for some i 6= j. Moreover, we have

p1 =
3∑

k=1

S1kP
k

at any point in T ∗
SSO(3) with fiber coordinates (P 1, P 2, P 3). There-

fore

dG =
3∑

k=1

(
P kdS1k + S1kdP

k
)
,

and so dG is not a linear combination of dF and dH away from
the zero section of T ∗SO(3). We conclude that dF , dG and dH
are linearly independent on the dense open subset of T ∗SO(3) de-
fined by P 1 6= 0 and P 2 6= 0 (say), implying that the Euler top is
completely integrable.

(8) (a) Using the formula for the sum of the terms of a geometric
progression, we have

lim
n→+∞

1

n+ 1

n∑

k=0

e2πiνk = lim
n→+∞

1

n+ 1

n∑

k=0

(
e2πiν

)k

= lim
n→+∞

1

n+ 1
· 1−

(
e2πiν

)n+1

1− e2πiν
= 0,

as
∣∣∣
(
e2πiν

)n+1
∣∣∣ = 1. Notice that the denominator does not

vanish since ν ∈ R \Q.
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(b) Periodic differentiable functions on R can be expanded as uni-
formly convergent Fourier series. Therefore it suffices to show
that the theorem holds for f(x) = e2πimx with m ∈ Z. If
m = 0 then both sides of the equality are 1, and the theorem
holds. If m 6= 0, the right-hand side of the equality is zero,
whereas the left-hand side is

lim
n→+∞

1

n+ 1

n∑

k=0

e2πim(x+νk) = lim
n→+∞

e2πimx

n+ 1

n∑

k=0

e2πimνk = 0

(where we used the fact that mν ∈ R \Q for ν ∈ R \Q).
(c) If log 2 were a rational multiple of log 10 then there would exist

m,n ∈ N such that

log 2 =
m

n
log 10 ⇔ 2n = 10m.

But this is impossible because the prime factors in these two
integers do not match.

(d) By analogy with the linear flow in the torus, we define a dis-
crete linear flow in T 1 = R/Z as the projection of the discrete
flow ψn : R → R given by

ψn(x) = x+ nν

for n ∈ Z, where ν ∈ R is the frequency. If ν ∈ R \ Q then
{ψn(x)}+∞

n=0 is dense in T 1: if that were not the case then
choosing an open set U ⊂ T 1 not intersecting {ψn(x)}+∞

n=0 and
a smooth nonnegative function with support contained in U
and positive integral one would violate the discrete version of
the Birkhoff theorem.
Now the first digit of 2n will be 7 if and only if

7× 10m ≤ 2n < 8× 10m

for some m ∈ N, that is, if and only if

log 7

log 10
+m ≤ n

log 2

log 10
<

log 8

log 10
+m.

Because ν = log 2
log 10 is irrational and

[
log 7
log 10 ,

log 8
log 10

)
contains an

open set, we know that this will happen (indeed an infinite
number of times).

Section 8.

(1) Let ω be the symplectic form on S2 determined by the usual volume
form

ω = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy,
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For (x, y, z) 6= (0, 0,±1) we can use cylindrical coordinates (r, ϕ, z)
given by x = r cosϕ and y = r sinϕ. Denoting by f(r, ϕ, z) =
(x, y, z) this change of coordinates, we have

f∗ω = r2dϕ ∧ dz + zrdr ∧ dϕ.
Then

i∗ω = dϕ ∧ dz,
where i : S2 → R3 is the standard inclusion, since r2 + z2 = 1 on
S2 (and hence rdr = −zdz) . Denoting i∗ω again by ω we easily
obtain that XH = − ∂

∂ϕ , as

ι

(
∂

∂ϕ

)
ω = dz = dH.

The flow of XH is then given in cylindrical coordinates by

ψt(ϕ, z) = (ϕ− t, z).

We conclude that the Hamiltonian flow generated by the function
H is just rotation around the z-axis.

(2) (a) If ω =
∑n

i=1 dpi ∧ dxi then we saw in Exercise 6.15.6 that
{xi, xj} = {pi, pj} = 0 and {pi, xj} = δij for i, j = 1, . . . , n.
On the other hand, if this latter condition holds then

Xxi =
n∑

i=1

(
{xi, xj} ∂

∂xj
+ {xi, pj}

∂

∂pj

)
= − ∂

∂pi

and

Xpi =
n∑

i=1

(
{pi, xj}

∂

∂xj
+ {pi, pj}

∂

∂pj

)
=

∂

∂xi
,

implying that

ω

(
∂

∂xi
,
∂

∂xj

)
= ω(Xpi , Xpj ) = {pi, pj} = 0;

ω

(
∂

∂pi
,
∂

∂pj

)
= ω(Xxi , Xxj ) = {xi, xj} = 0;

ω

(
∂

∂pi
,
∂

∂xj

)
= −ω(Xxi , Xpj ) = −{xi, pj} = δij ,

and so ω =
∑n

i=1 dpi ∧ dxi.
(b) It is immediate from the Darboux theorem and Exercise 6.15.1

that ωn = ω ∧ · · · ∧ ω is a volume form on S.
(c) Assume that S is compact. If ω = dθ then ωn = d(θ∧ω∧· · ·∧ω)

(as dω = 0), and so by the Stokes theorem we have
∫

S
ωn =

∫

S
d(θ ∧ ω ∧ · · · ∧ ω) = 0,

which is a contradiction.
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(3) (a) The 2-form ω̃ is clearly closed, as

dω̃ = dω + d(π∗dα) = π∗d2α = 0.

In local coordinates (x1, . . . , xn, p1, . . . , pn), writing α =
∑n

i=1 αidx
i,

we have

ω̃ =
n∑

i=1

dpi ∧ dxi +
n∑

i,j=1

∂αj
∂xi

dxi ∧ dxj

=

n∑

i=1

dpi ⊗ dxi −
n∑

i=1

dxi ⊗ dpi +

n∑

i,j=1

(
∂αj
∂xi

− ∂αi
∂xj

)
dxi ⊗ dxj .

The matrix of the components of ω̃ in the corresponding co-
ordinate basis is therefore




∗ | −In×n
−−− + −−−
In×n | 0


 ,

whose determinant is 1. This shows that ω̃ is nondegenerate,
and hence a symplectic form on T ∗M .

(b) The Hamilton equations are

ι

(
n∑

i=1

ẋi
∂

∂xi
+ ṗi

∂

∂pi

)
ω̃ = ι(X

H̃
)ω̃ = −dH̃.

Since

ι

(
n∑

i=1

ẋi
∂

∂xi
+ ṗi

∂

∂pi

)
ω̃

=
n∑

i=1

ṗidx
i −

n∑

i=1

ẋidpi +
n∑

i,j=1

(
∂αj
∂xi

− ∂αi
∂xj

)
ẋidxj

we obtain




ẋi =
∂H̃

∂pi

ṗi +
n∑

j=1

(
∂αi
∂xj

− ∂αj
∂xi

)
ẋj = −∂H̃

∂xi

.

(c) Since in local coordinates

H̃ =
1

2

n∑

i,j=1

gijpipj + U
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we obtain the Hamilton equations




ẋi =
n∑

j=1

gijpj

ṗi = −1

2

n∑

k,l=1

∂gkl

∂xi
pkpl −

∂U

∂xi
+

n∑

j=1

(
∂αj
∂xi

− ∂αi
∂xj

)
ẋj

which can also be written as



ẋi =
n∑

j=1

gijpj

ṗi = −1

2

n∑

k,l=1

∂gkl

∂xi
pkpl −

∂U

∂xi
+

n∑

k,l=1

gkl
(
∂αk
∂xi

− ∂αi
∂xk

)
pl

.

On the other hand, if we set

qi := pi − αi

in the Hamilton equations of Exercise 6.15.2, we obtain




ẋi =
n∑

j=1

gijqj

q̇i +
n∑

j=1

∂αi
∂xj

ẋj = −1

2

n∑

k,l=1

∂gkl

∂xi
qkql +

n∑

k,l=1

gkl
∂αk
∂xi

ql −
∂U

∂xi

.

Using the first equation to replace ẋj in the second equation

yields the Hamilton equations for the Hamiltonian H̃ with
respect to the symplectic form ω̃. Thus F carries the first flow
into the second. Notice that since F is fiber-preserving the
projections of the flows on M (i.e. the motions) are the same.

(4) (a) We have

Bij = B(dxi, dxj) = {xi, xj}
for i, j = 1, . . . , n.

(b) If F,G ∈ C∞(M) then

XF ·G = {F,G} = B(dF, dG) =
n∑

i,j=1

Bij ∂F

∂xi
∂G

∂xj

=




n∑

i,j=1

Bij ∂F

∂xi
∂

∂xj


 ·G.
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(c) From the Jacobi identity we have

{xi, {xj , xk}}+ {xj , {xk, xi}}+ {xk, {xi, xj}} = 0

⇔ {xi, Bjk}+ {xj , Bki}+ {xk, Bij} = 0

⇔ Xxi ·Bjk +Xxj ·Bki +Xxk ·Bij = 0

for i, j, k = 1, . . . , n. Noticing that

Xxi =
n∑

l=1

Bil ∂

∂xl

we obtain
n∑

l=1

(
Bil ∂B

jk

∂xl
+Bjl ∂B

ki

∂xl
+Bkl ∂B

ij

∂xl

)
= 0.

(d) The definition of the Hamiltonian vector field XF on a sym-
plectic manifold (M,ω) can be written in local coordinates as

ι(XF )ω = −dF ⇔
n∑

i,j=1

Xi
Fωijdx

i ⊗ dxj = −
n∑

i=1

∂F

∂xi
dxi.

Using the antisymmetry of (ωij) we then have

n∑

j=1

ωijX
j
F =

∂F

∂xi
⇔ Xi

F =

n∑

j=1

ωij
∂F

∂xj

where (ωij) := (ωij)−1. Since by (b)

Xi
F =

n∑

j=1

Bji ∂F

∂xj
= −

n∑

j=1

Bij ∂F

∂xj

we must have (Bij) = −(ωij) = −(ωij)
−1.

(e) If B is nondegenerate then we can define a linear isomorphism
Φ : T ∗

pM → TpM for each p ∈M through

Φ(ω)(η) = B(ω, η)

for all ω, η ∈ T ∗
pM . In local coordinates, we have

Φ(ω)(η) =
n∑

i,j=1

Bijωiηj =
n∑

i,j=1

Bijωi
∂

∂xj
(η),

that is,

Φ(ω) =
n∑

i,j=1

Bijωi
∂

∂xj
.

We can then define a 2-form ω ∈ Ω2(M) through

ω(v, w) = B(Φ−1(v),Φ−1(w))
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for all v, w ∈ TpM . Setting (Bij) := (Bij)−1, we can write ω
in local coordinates as

ω(v, w) =
n∑

i,j,k,l=1

Bij(−Bikvk)(−Bjlvl)

=
n∑

k,l=1

Blkv
kvl = −

n∑

i,j=1

Bijv
ivj ,

that is, (ωij) = −(Bij)
−1. This shows that ω determines the

same Poisson bracket as B and is nondegenerate. To show
that it is closed we notice that

n∑

i,j,k,l=1

BpiBqjBrkB
il ∂B

jk

∂xl
= −

n∑

j,k=1

Bqj
∂Bjk

∂xp
Bkr =

∂Bqr
∂xp

for p, q, r = 1, . . . , n, and so, multiplying the formula in (c) by
BpiBqjBrk and summing over i, j, k we have

∂Bqr
∂xp

+
∂Brp
∂xq

+
∂Bpq
∂xr

= 0.

This is equivalent to

n∑

i,j,k=1

(
∂ωjk
∂xi

+
∂ωki
∂xj

+
∂ωij
∂xk

)
dxi ⊗ dxj ⊗ dxk = 0,

or, noticing that the expression in brackets is antisymmetric
in each pair of indices, to

n∑

i,j,k=1

∂ωjk
∂xi

dxi ∧ dxj ∧ dxk = 0 ⇔ dω = 0.

(5) (a) Since {Fi, Fj} = 0 by definition, we just have to check that

{Fi, xj} = XFi · xj =
n∑

k=1

aik
∂

∂xk
· xj = aij .

The formula for the components of the symplectic form ω is
then immediate from Exercise 4.

(b) If J = J(F ) are new coordinates then

dJi =
n∑

j=1

∂Ji
∂Fj

dFj

and so

XJi =

n∑

j=1

∂Ji
∂Fj

XFj =

n∑

j,k=1

∂Ji
∂Fj

ajk
∂

∂xk
.
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We will have

XJi =
∂

∂xi

if and only if

dJ = A−1,

where

dJ =

(
∂Ji
∂Fj

)

is the Jacobian matrix of J = J(F ). This condition can be
rewritten as

dJi =

n∑

j=1

αijdFj ,

where A−1 = (αij). Now from (a)

ω = −
n∑

i,j=1

αijdx
i ∧ dFj +

n∑

i,j=1

βijdFi ∧ dFj ,

where βij is Z
n-periodic on x. Using dω = 0 we then obtain

n∑

i,j,k=1

(
∂αij
∂Fk

− ∂βjk
∂xi

)
dxi ∧ dFj ∧ dFk = 0,

implying that βij is an affine function of x, and so does not
depend on x. We conclude that

d




n∑

j=1

αijdFj


 = 0,

and so by the Poincaré lemma we can locally solve the equation
for Ji.

(c) We have

∂

∂xk
{xi, xj} = XJk · {xi, xj} = {Jk, {xi, xj}}

= {{Jk, xi}, xj}+ {xi, {Jk, xj}}
= {δki, xj}+ {xi, δkj} = 0

(as constant functions are Casimir functions).
(d) It is clear that

{Ji, yj} = XJi · yj =
∂

∂xi
· yj = δij .

On the other hand, since

dzi =
n∑

j=1

∂zi

∂Jj
dJj
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we have

Xzi =

n∑

j=1

∂zi

∂Jj
XJj =

n∑

j=1

∂zi

∂Jj

∂

∂xj
,

and so

{zi, zj} = 0 and {zi, xj} =
∂zi

∂Jj
.

Consequently,

{yi, yj} = {xi + zi, xj + zj} = {xi, xj}+ ∂zi

∂Jj
− ∂zj

∂Ji
.

Since

d

(
n∑

i=1

zidJi

)
=

n∑

i,j=1

∂zi

∂Jj
dJj ∧dJi

n∑

i,j=1

(
∂zi

∂Jj
− ∂zj

∂Ji

)
dJj⊗dJi,

the Poncaré lemma implies that we can locally solve the equa-
tion {yi, yj} = 0 for z = z(J) if and only

d




n∑

i,j=1

{xi, xj} dJi ∧ dJj


 = 0.

Now in the coordinates (x, J) we have

(B) =




P | −I
−−− + −−−
I | 0


 ,

where P = ({xi, xj}), and so

(ω) =




0 | −I
−−− + −−−
I | −P


 .

We conclude that

ω =
n∑

i=1

dJi ∧ dxi −
1

2

n∑

i,j=1

{xi, xj} dJi ∧ dJj ,

and so dω = 0 implies the result.
(e) We have in a neighborhood of T0

ω =
n∑

i=1

dJi ∧ dyi = d

(
n∑

i=1

Jidy
i

)
=: dθ.

Since ∮

γi

dyj = δij ,
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we obtain
∮

γi

θ =

∮

γi

n∑

j=1

Jjdy
j = Ji.

(6) (a) Since U is an open set containing the identity and G is a Lie
group then

U−1 := {g−1 | g ∈ U}
is also an open set containing the identity, and consequently
so is V := U ∩ U−1. Consider the set

K :=
+∞⋃

n=1

V n.

Since
V n =

⋃

g∈V n−1

g · V

is a union of open sets (hence open), we see thatK is also open.
On the other hand, K is clearly invariant by multiplication by
elements of V = V −1, and therefore so is G \K. We conclude
that if g ∈ G \ K then g · V ⊂ G \ K, and so G \ K is also
an open set. Since G is connected and K 6= ∅ (because it
contains the identity) then K = G, and so

G =
+∞⋃

n=1

V n ⊂
+∞⋃

n=1

Un.

(b) If the action is Hamiltonian then all elements in the image
of the exponential map exp : g → G act by Poisson maps.
Since the exponential map is a local diffeomorphism at the
origin, exp(g) contains a neighborhood of the identity. As the
composition of Poisson maps is Poisson we conclude that if G
is connected then all elements in G act by Poisson maps.

(7) If p ∈ M/G is a fixed point of π∗XH then XH is tangent to the
orbit π−1(p) of G. Since the action is Hamiltonian, tangent space
to π−1(p) at each point is spanned by XJ(V1), . . . , XJ(Vm), where
J :M → g∗ is the momentum map and V1, . . . , Vm is a basis for g.
Therefore on π−1(p) we have

XH = f1XJ(V1) + . . .+ fmXJ(Vm)

for some smooth functions f1, . . . , fm : π−1(p) → R. Now

0 = [XH , XH ] =

m∑

a=1

(XH · fa)XJ(Va) + fa[XH , XJ(Va)]

=
m∑

a=1

(XH · fa)XJ(Va) + faX{H,J(Va)} =
m∑

a=1

(XH · fa)XJ(Va),
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and so f1, . . . , fm are constant along the flow of XH . We conclude
that on each integral we have XH = XJ(V ), with V =

∑m
a=1 f

aVa,

and so the flow of XH on π−1(p) is the orbit of exp(tV ).
(8) (a) If V ∈ so(2) ∼= R then

d

dt |t=0

eitV · (r, θ) = d

dt |t=0

(r, θ + tV ) = (0, V ),

that is,

XV = V
∂

∂θ
.

(b) From Example 8.19, the momentum map for the lift of the
action to T ∗M is the map J : T ∗M → so(2)∗ given by

J(prdr + pθdθ)(V ) = (prdr + pθdθ)(X
V ) = pθV

for all V ∈ so(2) ∼= R.
(c) If F,G ∈ C∞(T ∗M) then

{F,G} = XF ·G =
∂F

∂pr

∂G

∂r
+
∂F

∂pθ

∂G

∂θ
− ∂F

∂r

∂G

∂pr
− ∂F

∂θ

∂G

∂pθ
= B(dF, dG),

implying that

B =
∂

∂pr
⊗ ∂

∂r
+

∂

∂pθ
⊗ ∂

∂θ
− ∂

∂r
⊗ ∂

∂pr
− ∂

∂θ
⊗ ∂

∂pθ
.

(d) Again by Example 8.19, the lift of the action to T ∗M is given
in local coordinates by

eiϕ · (r, θ) = (r, θ + ϕ, pr, pθ),

and so the quotient manifold Q is obtained by identifying all
points with the same values of the coordinates (r, pr, pθ) (which
are therefore coordinates on Q). Restricting {·, ·} to SO(2)-
invariant functions (that is, function which do not depend on
θ) we obtain the Poisson bivector

BQ =
∂

∂pr
⊗ ∂

∂r
− ∂

∂r
⊗ ∂

∂pr

on the quotient. The symplectic leaves are obviously the sub-
manifolds of constant pθ with the standard symplectic form
dpr ∧ dr. A nonconstant Casimir function is, for instance, the
function C(r, pr, pθ) = pθ.

(e) The Hamiltonian H is clearly SO(2)-invariant, as it does not
depend on the coordinate θ. To find its Hamiltonian flow on
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the reduced Poisson manifold Q we notice that on Q

XH = ι(dH)BQ =
∂H

∂pr

∂

∂r
− ∂H

∂r

∂

∂pr

= pr
∂

∂r
+

(
pθ

2

r3
− u′(r)

)
∂

∂pr
,

and so the flow of XH on Q is given by the equations




ṙ = pr

ṗr =
pθ

2

r3
− u′(r)

ṗθ = 0

.

(f) By the Noether theorem the momentum map (that is, pθ) is
conserved along the Hamiltonian flow of the SO(2)-invariant
function H.

(9) (a) From the expression of the group operation it is clear that

(x, y)−1 =

(
−x
y
,
1

y

)
,

and so

L(a,b)−1(x, y) =
(x
b
− a

b
,
y

b

)
.

Therefore, by Example 8.19, the lift of the action of H on itself
to T ∗H is given by

(a, b) · (pxdx+ pydy) =
(
L(a,b)−1

)∗
(pxdx+ pydy)

=
px
b
dx+

py
b
dy,

which can be written in local coordinates as

(a, b) · (x, y, px, py) =
(
bx+ a, by,

px
b
,
py
b

)
.

Since

K
(
bx+ a, by,

px
b
,
py
b

)
=
b2y2

2

(
px

2

b2
+
p2y
b2

)
= K(x, y, px, py),

we see that K is H-invariant.
(b) The functions F and G are H-invariant as

F
(
bx+ a, by,

px
b
,
py
b

)
= by

px
b

= ypx = F (x, y, px, py)

and

G
(
bx+ a, by,

px
b
,
py
b

)
= by

py
b

= ypy = G(x, y, px, py).
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These functions are coordinates on the quotient manifold T ∗H/H
(they are the components on a left-invariant basis), and so the
Poisson structure of the quotient is determined by

{F,G} = XF ·G =
∂F

∂px

∂G

∂x
+
∂F

∂py

∂G

∂y
− ∂F

∂x

∂G

∂px
− ∂F

∂y

∂G

∂py
= −pxy = −F.

The Poisson bivector on the quotient is therefore

B = {F,G} ∂

∂F
⊗ ∂

∂G
+ {G,F} ∂

∂G
⊗ ∂

∂F

= −F ∂

∂F
⊗ ∂

∂G
+ F

∂

∂G
⊗ ∂

∂F
.

Since B vanishes for F = 0, the quotient T ∗H/H is not a
symplectic manifold.

(c) Differentiating the expression

L(a,b)(x, y) = (bx+ a, by)

along a curve (a(t), b(t)) through the identity e = (0, 1), it is
readily seen that the infinitesimal action of V = α ∂

∂x+β
∂
∂y ∈ h

is

XV = (α+ βx)
∂

∂x
+ βy

∂

∂y
.

From Example 8.19, the momentum map for the action of H
on T ∗H is the map J : T ∗H → h∗ given by

J(pxdx+ pydy)(V ) = (pxdx+ pydy)(X
V ) = (α+ βx)px + βypy.

Since K is H-invariant, J is constant along the Hamiltonian
flow of K, and so, choosing α = 0 and β = 1, we obtain the
nontrivial first integral

I(x, y, px, py) = xpx + ypy

for the Hamiltonian flow of K (in addition to the obvious first
integrals K and px). A geodesic for which K = E, px = l and
I = m then satisfies

y2
(
px

2 + p2y
)
= 2E ⇔ y2l2 + (m− xl)2 = 2E,

which for l 6= 0 is the equation of a circle centered on the
x-axis.

(10) (a) The Legendre transformation is given by

〈P,Σ〉 = (FL)Ω(Σ) =
1

2

d

dt |t=0

〈I(Ω + tΣ),Ω+ tΣ〉

=
1

2
〈IΣ,Ω〉+ 1

2
〈IΩ,Σ〉 = 〈IΩ,Σ〉

for Σ ∈ R3 ∼= TSSO(3), and so P = IΩ.
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(b) Since the Lagrangian is just the kinetic energy, the Hamilton-
ian is also just the kinetic energy,

H =
1

2
〈P, I−1P 〉.

Therefore H is SO(3)-invariant, and its flow projects to the
reduced Poisson manifold T ∗SO(3)/SO(3) ∼= R3. From Ex-
ample 8.12 we have

XH = P × gradH = P × (I−1P ),

and so the Hamilton equations on T ∗SO(3)/SO(3) ∼= R3 are
just the Euler equations,

Ṗ = P × (I−1P ).

Moreover, ‖P‖2 is a nonconstant Casimir function (thus con-
served along any Hamiltonian flow), and its level sets (spheres)
are the symplectic leaves.

(c) Let B ∈ so(3) and Σ = Ω(B). Given S ∈ SO(3) we have

d

dt |t=0

exp(tB)S = BS = S(StBS),

and so the infinitesimal action XB of B satisfies

Ω((XB)S)× ξ = StBSξ = St(Σ× (Sξ)) = (StΣ)× ξ,

for any ξ ∈ R3, that is, Ω((XB)S) = StΣ. Therefore in our
coordinates

J(Σ) = 〈P,Ω(XB)〉 = 〈P, StΣ〉 = 〈SP,Σ〉,
that is,

J = SP = p.

(11) (a) From Example 8.22 we have

{P i, P j} = 〈P,∇P i ×∇P j〉 = 〈P, ei × ej〉

=

〈
P,

3∑

k=1

εijkek

〉
=

3∑

k=1

εijkP
k.

(b) If (x1, x2, x3, p1, p2, p3) are the usual local coordinates on T
∗SO(3)

determined by local coordinates (x1, x2, x3) on SO(3) then it
is clear that Γ is a function of (x1, x2, x3) only. Therefore

XΓi = −
3∑

k=1

∂Γi

∂xk
∂

∂pk
,

and so

{Γi,Γj} = XΓi · Γj = 0.
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(c) Since the Euler top Hamiltonian is

H =
(P 1)2

2I1
+

(P 2)2

2I2
+

(P 3)2

2I3
,

we see that (P i)2

2 is the limit of the Euler top Hamiltonian
when Ii = 1 and Ij → +∞ for j 6= i. On a motion of the Euler
top we have

0 = γ̇ = ṠΓ + SΓ̇ = S(Ω× Γ + Γ̇),

where Ω is the angular velocity in the Euler top’s frame, or,
equivalently,

Γ̇ = Γ× (I−1P ).

If we set Ii = 1 and take the limit as Ij → +∞ for j 6= i, we
obtain

Γ̇ = Γ× (P iei) ⇔ Γ̇j =
3∑

k=1

εjkiΓ
kP i.

Since this derivative is taken along the Hamiltonian flow of
(P i)2

2 , we have

{
(P i)2

2
,Γj
}

=
3∑

k=1

εijkΓ
kP i,

and, since
{
(P i)2

2
,Γj
}

= −XΓj ·
(P i)2

2
= −P iXΓj · P i = P i{P i,Γj},

we finally obtain

{P i,Γj} =
3∑

k=1

εijkΓ
k

(for P i 6= 0; on the submanifold P i = 0 the result follows by
continuity).

(12) (a) The kinetic energy is clearly S1-invariant (it is left-invariant).
To check the invariance of the potential energy we just have
to notice that

〈γ, (eiθ · S)L〉 = 〈γ,RθSL〉 = 〈R(−θ)γ, SL〉 = 〈γ, SL〉.

(b) The infinitesimal action of V ∈ s1 ∼= R is given by

d

dt |t=0

exp(itV ) · S =
d

dt |t=0

RtV · S = BS = S(StBS),
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where

B :=




0 −V 0
V 0 0
0 0 0


 .

Since Ω(B) = V e3, the infinitesimal action XV of V satisfies

Ω((XV )S)× ξ = StBSξ = St(V e3 × (Sξ)) = (V Ste3)× ξ,

for any ξ ∈ R3, that is, Ω((XB)S) = V Ste3. Therefore in our
coordinates

J(V ) = 〈P,Ω(XV )〉 = 〈P, V Ste3〉 = V 〈SP, e3〉 = V 〈p, e3〉 = V p3.

(c) We already know that P is left-invariant, and so S1-invariant.
Since Γ = Stγ and

(eiθ · S)tγ = (Rθ · S)tγ = StR(−θ)γ = Stγ = Γ,

we see that Γ is also S1-invariant. Since any function on the
quotient manifold S2 ×R3 is a function of (Γ, P ), the Poisson
brackets of these functions determine the Poisson bracket on
S2 × R3.

(d) Notice that the Hamiltonian can be written as

H =
1

2
〈P, I−1P 〉+M〈Γ, L〉,

and so

Ṗ i = {H,P i} =





3∑

j=1

(
(P j)2

2Ij
+MΓjLj

)
, P i





=
3∑

j=1

(
P j

Ij
{P j , P i}+MLj{Γj , P i}

)

=
3∑

j,k=1

(
P j

Ij
εjikP

k +MLjεjikΓ
k

)

and

Γ̇i = {H,Γi} =





3∑

j=1

(
(P j)2

2Ij
+MΓjLj

)
,Γi





=
3∑

j=1

P j

Ij
{P j ,Γi} =

3∑

j,k=1

P j

Ij
εjikΓ

k,

that is,

Ṗ = P × (I−1P ) +MΓ× L

and
Γ̇ = Γ× (I−1P ).
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Since the momentum map, and hence p3, is conserved for any
Hamiltonian flow on the quotient, the function

〈p, γ〉 = 〈P,Γ〉 =
3∑

i=1

P iΓi

must be a nonconstant Casimir function.

Chapter 6

Section 1.

(1) The solution becomes trivial when one represents the transatlantic
ships’ motions as curves in a 2-dimensional Galileo spacetime (cf. Fig-
ure 8). Thus, each transatlantic ship would meet 13 others when at
sea, at midnight and at noon of every day of its voyage. Allowing
one day at the arrival port for unloading, refueling and reloading,
it would be possible to run this service with 15 transatlantic ships.

t

x

Le Havre New York

Figure 8. Spacetime diagram for the Lucas Problem.
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(2) Since the motion c(s) = (t(s), x(s), y(s), z(s)) of a free particle on
an inertial frame traverses a straight line, we have

ċ(s) = (ṫ(s), ẋ(s), ẏ(s), ż(s)) = f(s)(v0, v1, v2, v3),

where (v0, v1, v2, v3) is a constant vector with v0 6= 0 and f(s) 6= 0.
Consequently,

(
dx

dt
,
dy

dt
,
dz

dt

)
=

(
v1

v0
,
v2

v0
,
v3

v0

)

is a constant vector.
(3) By composing with an appropriate translation we can assume with-

out loss of generality that f maps the origin to the origin. Therefore
we just have to prove that f is linear.

We start by noticing that f maps 2-planes to 2-planes bijec-
tively. Indeed, take any 2-plane Π ⊂ Rn and consider 3 straight
lines on Π which intersect pairwise. Then their images must also be
straight lines which intersect pairwise, and hence define a 2-plane
Π′. Any straight line contained on Π intersects at least 2 of the 3
pairwise intersecting lines, and hence so does its image, which is
therefore contained in Π′. We conclude that f(Π) ⊂ Π′. The same
argument shows that f−1(Π′) ⊂ Π, and hence f is a surjection of
Π onto Π′. Since it must be injective, it is a bijection.

Consider the restriction of f to a 2-plane Π. Since it is bijec-
tive, it must take parallel lines to parallel lines. Therefore it takes
parallelograms to parallelograms. Since f maps the origin to the
origin, we see that f(v + w) = f(v) + f(w) for any two vectors
v, w ∈ Rn.

Finally, consider two parallel lines on Π and draw the parallel
line which is equidistant from both. Any parallelogram with two
sides on the two initial lines will have diagonals which intersect on
a point of the third line. Because f is a bijection and preserves
parallel lines, the same will be true for the image. We conclude
that f maps equidistant parallel lines to equidistant parallel lines.
We can easily use this fact to show that f is continuous on each
2-plane. Since it is additive, it must be linear.

(4) By definition t = t′. Since we want any linear map T ∈ Gal(4) to
be an orientation-preserving isometry of the simultaneity hypersur-
faces {t = 0} ≡ {t′ = 0} = R3, we must have

{
t′ = t
x′ = Rx+ vt

where now R is a linear isometry of R3, that is R ∈ SO(3), and
v ∈ R3. Hence, Gal(4) is the subgroup of GL(4,R) formed by
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matrices of the form (
1 0
v R

)
.

Consider the map

Gal(4)
Φ→ Iso+(R3)

(
1 0
v R

)
7→ f,

where f : R3 → R3 is given by

f(x) = Rx+ v

for all x ∈ R3. We have

Φ

((
1 0
v1 R1

)(
1 0
v2 R2

))
= Φ

((
1 0

v1 +R1v2 R1R2

))
= f,

where f(x) = R1R2x+ (v1 +R1v2), and

Φ

((
1 0
v1 R1

))
◦ Φ

((
1 0
v2 R2

))
= f1 ◦ f2

with f1(x) = R1x+ v1 and f2(x) = R2x+ v2. Since

(f1 ◦ f2)(x) = R1R2x+ (R1v2 + v1) = f(x)

and Φ is bijective, it is a group isomorphism.
(5) The map ι : Gal(2) → Gal(4) given by

ι

((
1 0
v 1

))
:=

(
1 0
ṽ I3×3

)
,

where v ∈ R, ṽ = (v, 0, 0) ∈ R3 and I3×3 is the identity matrix, is
a group homomorphism. Indeed,

ι

((
1 0
v1 1

)(
1 0
v2 1

))
= ι

((
1 0

v1 + v2 1

))
=

(
1 0

ṽ1 + ṽ2 I3×3

)

and

ι

((
1 0
v1 1

))
ι

((
1 0
v2 1

))
=

(
1 0
ṽ1 I3×3

)(
1 0
ṽ2 I3×3

)

=

(
1 0

ṽ1 + ṽ2 I3×3

)
.

Section 2.

(1) Since 〈·, ·〉 is non-degenerate there exist vectors v, w ∈ V such that
〈v, w〉 6= 0. Moreover, there is a vector ṽ ∈ V such that 〈ṽ, ṽ〉 6= 0.
Indeed, even if 〈v, v〉 = 〈w,w〉 = 0 we can take ṽ := v+w and then

〈v + w, v + w〉 = 2〈v, w〉 6= 0.
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We will now show the existence of an orthonormal basis by
induction in n, the dimension of V . If n = 1 we take w ∈ V such
that 〈w,w〉 6= 0 and define

v1 :=
w

|w| ,

where |w| := |〈w,w〉| 12 . Clearly 〈v1, v1〉 = ±1 and {v1} is the
required orthonormal basis.

If n > 1 we again take w ∈ V such that 〈w,w〉 6= 0 and let

v1 :=
w

|w| .

If W is the orthogonal complement in V of the space spanned by
v1 then dimW = n − 1, v1 6∈ W and the restriction of 〈·, ·〉 to
W is symmetric and nondegenerate. We can apply the induction
hypothesis and obtain a basis {v2, . . . , vn} ofW such that 〈vi, vj〉 =
0 if i 6= j and 〈vi, vi〉 = ±1 for i = 2, . . . , n. Therefore {v1, . . . , vn}
is the desired basis of V .

To show that the signature of 〈·, ·〉 does not depend on the choice
of orthonormal basis we note that it can be invariantly defined as
the dimension of a maximal subspace of V where 〈·, ·〉 is positive
definite minus the dimension of a maximal subspace of V where
〈·, ·〉 is negative definite.

(2) Fix inertial coordinates (x0, x1, x2, x3). Then

v =
3∑

i=0

vi
∂

∂xi
and w =

3∑

i=0

wi
∂

∂xi
.

(a) (i) Since v is timelike and future-pointing we have

〈v, v〉 = −(v0)2 +

3∑

i=1

(vi)2 < 0 and v0 > 0.

Similarly, since w is timelike or null and future-pointing
we have

〈w,w〉 = −(w0)2 +
3∑

i=1

(wi)2 ≤ 0 and w0 > 0.

Then by the Cauchy-Schwarz inequality

〈v, w〉 = −v0w0 +
3∑

i=1

viwi

≤ −v0w0 +

(
3∑

i=1

(vi)2

) 1
2
(

3∑

i=1

(wi)2

) 1
2

< −v0w0 + |v0||w0| = 0.
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(ii) Since

〈v + w, v + w〉 = 〈v, v〉+ 2〈v, w〉+ 〈w,w〉
and 〈v, v〉 < 0, 〈w,w〉 ≤ 0 and 〈v, w〉 < 0 (from (i)), we
conclude that 〈v + w, v + w〉 < 0. Moreover,

(v + w)0 = v0 + w0 > 0

and so v + w is also future-pointing.
(iii) From (i) we conclude that if 〈v, w〉 = 0 then w cannot

be timelike nor null (except for the zero vector).
(b) (i) Since v is null and future-pointing we have (v0)2 =∑3

i=1(v
i)2 and v0 > 0. Moreover, since w is timelike

or null and future-pointing, we have (
∑3

i=1(w
i)2)

1
2 ≤ w0

and w0 > 0. Then by the Cauchy-Schwarz inequality

〈v, w〉 = −v0w0 +
3∑

i=1

viwi

≤ −v0w0 +

(
3∑

i=1

(vi)2

) 1
2
(

3∑

i=1

(wi)2

) 1
2

≤ −v0w0 + |v0||w0| = 0.

Moreover, equality holds if and only if

3∑

i=1

viwi =

(
3∑

i=1

(vi)2

) 1
2
(

3∑

i=1

(wi)2

) 1
2

and
(

3∑

i=1

(wi)2

) 1
2

= w0.

Hence equality holds if and only if wi = λvi with λ > 0
and

w0 = λ

(
3∑

i=1

(vi)2

) 1
2

= λv0.

(ii) Since

〈v + w, v + w〉 = 2〈v, w〉+ 〈w,w〉
and 〈w,w〉 ≤ 0 and 〈v, w〉 ≤ 0 (from (i)), we conclude
that 〈v+w, v+w〉 ≤ 0. Moreover, equality holds if and
only if 〈v, w〉 = 〈w,w〉 = 0, that is, if and only if w = λv
with λ > 0. Clearly in all cases v+w is future-pointing.

(iii) From (i) we conclude that if 〈v, w〉 = 0 then w cannot
be timelike, and if w is null then it is a multiple of v.
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(c) Since v is spacelike we must have A :=
∑3

i=1(v
i)2 > (v0)2 ≥ 0.

Then the vector w := (A, v0v1, v0v2, v0v3) is timelike and is
such that 〈v, w〉 = 0. Moreover, one of v1, v2, v3 must be
different from zero. Assuming, without loss of generality, that
v1 6= 0, the vector w̃ = (0,−v2, v1, 0) is spacelike and satisfies
〈v, w̃〉 = 0. Moreover, 〈w, w̃〉 = 0, and so

〈aw + bw̃, aw + bw̃〉 = a2〈w,w〉+ b2〈w̃, w̃〉.
Since w is timelike w̃ is spacelike, this can be made to vanish
for nonzero a and b.

(3) Since 〈 ∂∂t , ∂∂t〉 = −1, 〈 ∂∂t , ∂∂x〉 = 0 and 〈 ∂∂x , ∂∂x〉 = 1, we must have
〈
∂

∂t′
,
∂

∂t′

〉
= −(a00)

2 + (a10)
2 = −1

〈
∂

∂x′
,
∂

∂x′

〉
= −(a01)

2 + (a11)
2 = 1,

where a00, a
1
0, a

0
1, a

1
1 are such that

∂

∂t′
= a00

∂

∂t
+ a10

∂

∂x

and
∂

∂x′
= a01

∂

∂t
+ a11

∂

∂x
.

We conclude that there exist u, v ∈ R such that a00 = coshu, a10 =
sinhu, a01 = sinh v and a11 = ± cosh v (where a00 > 0 because we
want T to preserve time orientation). Since

〈
∂

∂t′
,
∂

∂x′

〉
= −a00a01 + a10a

1
1 = 0,

we must have tanhu = ± tanh v and so u = ±v. Therefore the
change of basis matrix must be of the form

S =

(
coshu ± sinhu
sinhu ± coshu

)

(where the ± signs are both + or both −). Since we want T to
be orientation-preserving, that is, detS > 0, we must select the +
sign.

(4) (a) Let us use years and light-years as our time and length units.
On the Earth’s frame, the motion of the Earth is the timelike
line x = 0, whereas the motion of Planet X is the timelike line
x = 8. If we choose t = 0 so that the departure of Bob is the
event (0, 0), then Bob’s arrival at Planet X is the event (10, 8),
and the reunion of the twins the event (20, 0). The motion of
Bob is the broken line connecting these events, and hence the
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time measured by Bob between his departure and his return
is

|(10, 8)− (0, 0)|+ |(20, 0)− (10, 8)| = |(10, 8)|+ |(10,−8)|
=
√
102 − 82 +

√
102 − (−8)2 = 6 + 6 = 12.

Therefore Bob is 20 + 12 = 32 years old when he meets Alice
again.

(b) Although Bob can indeed claim that in his frame it is Alice
who is moving, his frame is not an inertial frame, as he must
accelerate at event (10, 8) to reverse his velocity. Therefore
one cannot use the Minkowski geometry in Bob’s frame.

(c) At event (10, 8), Bob is receiving light that left the Earth at t =
2. Therefore, in the 6 years it takes him to get to Planet X, Bob
sees only 2 years of Alice’s life (cf. Figure 9). Consequently, he
sees Alice moving in slow motion, 3 slower than normal. In the
6 years of the return trip, Bob will see the remaining 18 years
experienced by Alice until they meet again, and hence he will
see her moving in fast motion, 3 times faster than normal.
On the other hand, light emitted at event (10, 8) doesn’t reach
Alice until t = 18 (cf. Figure 9). Therefore she spends 18
years seeing the 6 years of Bob’s trip towards Planet X, and
hence sees him moving in slow motion, 3 times slower than
normal. In the remaining 2 years, Alice will see the 6 years of
the return trip, and will thus see Bob moving in fast motion,
3 times faster than normal.

(5) (a) According to the length contraction formula, the car measures

l =
l′

coshu
= l′

√
1− v2 = 5

√
1− 0.82 = 5× 0.6 = 3 meters

in the garage’s frame. Therefore the car can fit inside the
garage.

(b) Again using the length contraction formula, the garage mea-
sures

l =
l′

coshu
= l′

√
1− v2 = 4

√
1− 0.82 = 4× 0.6 = 2.4 meters

in the car’s frame, so there’s no way the car can fit inside the
garage. The solution of the paradox is in what is meant by the
car being inside the garage: it means that at some instant the
rear of the car has passed the front door whereas the the front
of the car has not yet passed the back door. Since simultaneity
is relative, the fact that the car was inside the garage in the
garage’s frame in no way forces the car to have been inside the
garage in the car’s frame.
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tt

xx(0, 0) (0, 0)

(10, 8)(10, 8)

(20, 0)(20, 0)

Earth Earth Planet XPlanet X

Figure 9. Twin paradox.

(6) We have

w :=
dx

dt
=
dx

dt′
dt′

dt
=
dx

dt′

/
dt

dt′
.

Since

dx

dt′
=

d

dt′
(t′ sinhu+ x′ coshu) = sinhu+ w′ coshu

and

dt

dt′
=

d

dt′
(t′ coshu+ x′ sinhu) = coshu+ w′ sinhu

we have

w =
tanhu+ w′

1 + w′ tanhu
=

v + w′

1 + w′v
.

If w′ = ±1 then

w =
v ± 1

1± v
= ±1,

as it should be: if the particle is moving at the speed of light in one
frame, it must be moving at the speed of light in all frames.

(7) (a) (i) The map ϕ : R → SO0(1, 1) given by

ϕ(u) =

(
coshu sinhu
sinhu coshu

)
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is a parametrization of SO0(1, 1). Since ϕ(0) = I and

ϕ′(0) =

(
0 1
1 0

)
,

we have

so(1, 1) = span

{(
0 1
1 0

)}
=

{(
0 u
u 0

)
| u ∈ R

}
.

(ii) Let

A =

(
0 u
u 0

)
.

Then

expA = eA =
∞∑

k=0

Ak

k!
.

Since

A2k =

(
u2k 0
0 u2k

)
and A2k+1 =

(
0 u2k+1

u2k+1 0

)

we conclude that

expA =

( ∑∞
k=0

u2k

(2k)!

∑∞
k=0

u2k+1

(2k+1)!∑∞
k=0

u2k+1

(2k+1)!

∑∞
k=0

u2k

(2k)!

)

=

(
coshu sinhu
sinhu coshu

)
= S(u).

(iii) This is immediate from (ii).
(b) (i) We can assume without loss of generality that u > 0

(otherwise we just have to interchange v and w). The
curve formed by all unit timelike vectors between v and
w is given by

c(s) = S(s)v with 0 ≤ s ≤ u.

Then the length of this curve is given by

l =

∫ u

0
|ċ(s)|ds =

∫ u

0
1 ds = u = |u|,

since

|ċ(s)| =
∣∣∣∣
(

sinh s cosh s
cosh s sinh s

)
v

∣∣∣∣

= | − (v0 sinh s+ v1 cosh s)2 + (v0 cosh s+ v1 sinh s)2| 12

= |(v0)2 − (v1)2| 12 = |v| = 1.
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(ii) Again we assume without loss of generality that u > 0.
The map

ψ(s, α) := αS(s)v,

with 0 < s < u and 0 < α < 1, is a parameterization for
this region. Its area is then given by

A =

∫ u

0

∫ 1

0
| det(dψ)| dα ds.

Since

det(dψ) =

∣∣∣∣
α(v0 sinh s+ v1 cosh s) v0 cosh s+ v1 sinh s
α(v0 cosh s+ v1 sinh s) v0 sinh s+ v1 cosh s

∣∣∣∣ = −α,

we have

A =

∫ u

0

∫ 1

0
αdα ds =

u

2
=

|u|
2
.

(iii) Let w1 = S(u1)v and w2 = S(u2)w1. Then

w2 = S(u2)S(u1)v = S(u1 + u2)v.

(iv) The velocity v of the inertial frame (t′, x′) with respect
to the inertial frame (t, x) is v = tanhu, where u is
the hyperbolic angle between ∂

∂t and
∂
∂t′ . Similarly, the

velocity w of a particle in the inertial frame (t, x) is w =
tanhω, where ω is the hyperbolic angle between ∂

∂t and
the unit tangent vector ċ to the particle’s trajectory.
The velocity w′ of the same particle in the inertial frame
(t′, x′) is w′ = tanhω′, where ω′ is the hyperbolic angle
between ∂

∂t′ and ċ. Since hyperbolic angles are additive,
we have ω = u+ ω′, and hence

w = tanh(ω) = tanh(u+ ω′)

=
tanhu+ tanhω′

1 + tanhu tanhω′ =
v + v′

1 + vw′ .

(8) Let us assume without loss of generality that the timelike vector
v = q − p is vertical and future-pointing. Then v = k ∂

∂t for some
constant k > 0 and the timelike straight line connecting p to q is
parameterized by c(s) = p + sv with s ∈ [0, 1]. The proper time
between the two points measured along this line is given by

τ(c) =

∫ 1

0
k ds = k = q0 − p0.

If c̃(s) := (x0(s), x1(s), x2(s), x3(s)) is another future-pointing time-
like curve connecting the two points, the proper time measured
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along this curve is given by

τ(c̃) :=

∫ 1

0
| ˙̃c| ds =

∫ 1

0

(
(ẋ0)2 −

3∑

i=1

(ẋi)2

) 1
2

≤
∫ 1

0
|ẋ0|ds

=

∫ 1

0
ẋ0ds = x0(1)− x0(0) = q0 − p0 = τ(c).

To prove the reversed triangle inequality, we take p = 0 and q =
v + w. If c is the straight line from 0 to q and c̃ is the broken line
formed by two straight lines, one from 0 to v and the other from v
to q, we have

|v + w| = τ(c) ≥ τ(c̃) = |v|+ |w|.

(9) The diagram represents two light signals emitted by an observer at
rest at x = 0 with a time difference T . These signals are detected by
an observer moving with velocity v, who measures a time difference
T ′ between them. Now if the first signal is emitted at t = t0, its
motion is the line t = t0 + x. Consequently, the moving observer
detects the signal at the event with coordinates

{
t = t0 + x

x = vt
⇔





t =
t0

1− v

x =
vt0
1− v

.

Similarly, the second light signal is emitted at t = t0+T , its motion
is the line t = t0+T +x, and it is detected by the moving observer
at the event with coordinates





t =
t0 + T

1− v

x =
v(t0 + T )

1− v

.

Therefore the time difference between the signals as measured by
the moving observer is

T ′ =

√(
t0 + T

1− v
− t0

1− v

)2

−
(
v(t0 + T )

1− v
− vt0

1− v

)2

=

√
T 2

(1− v)2
− v2T 2

(1− v)2
= T

√
1− v2

(1− v)2
= T

√
1 + v

1− v
.

(10) Assuming that the star Sirius is in the xy-plane, the motion of
the light emitted by the star reaching the first inertial observer is
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tangent to the null vector

v =
∂

∂t
− cos θ

∂

∂x
− sin θ

∂

∂y
.

The orthonormal frame representing the second observer satisfies




∂
∂t′ = coshu ∂

∂t + sinhu ∂
∂x

∂
∂x′ = sinhu ∂

∂t + coshu ∂
∂x

∂
∂y′ =

∂
∂y

⇔





∂
∂t = coshu ∂

∂t′ − sinhu ∂
∂x′

∂
∂x = − sinhu ∂

∂t′ + coshu ∂
∂x′

∂
∂y = ∂

∂y′

and hence

v = (coshu+sinhu cos θ)
∂

∂t′
−(coshu cos θ+sinhu)

∂

∂x′
−sin θ

∂

∂y′
.

Since v must be proportional to

v′ =
∂

∂t′
− cos θ′

∂

∂x′
− sin θ′

∂

∂y′
,

we conclude that

tan θ′ =
sin θ

coshu cos θ + sinhu
.

(11) (a) This is immediate from the definition of τ .
(b) The first condition guarantees that ṫ 6= 0 along c, and hence

we can use the time coordinate t as a parameter. The second
condition yields

−ṫ2 + ẋ2 + ẏ2 + ż2 > 0 ⇔
(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

> 1,

which is the condition for the particle to be supersonic. Con-
versely, if a particle is supersonic then, using the time coor-
dinate t as the parameter, it is easy to check that the two
conditions hold.

(c) Using the time coordinate t as the parameter for the curve c,
we have that

d

dt
(τ ◦ c) = dτ(ċ)

vanishes whenever ċ is tangent to a surface τ = constant. This
means that the rate at which the observer at rest hears the
sound produced by the supersonic particle becomes infinite,
thus originating a sonic boom. If c is a straight line then
previous to the boom the observer at rest does not hear the
supersonic particle at all (because c does not intersect any
cone τ = constant for smaller values of τ). After the boom,
the observer at rest hears the events on c before the boom (in
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reverse order) and the events in c after the boom (in the correct
order) superimposed, as c intersects each cone τ = constant
twice for larger values of τ .

(12) (a) If the parameter is the proper time then

τ − τ0 =

∫ τ

τ0

|ċ(s)|ds,

implying that |ċ| = 1. Since c must be timelike, we have

〈ċ, ċ〉 = −1.

Differentiating this equation with respect to τ yields

〈c̈, ċ〉+ 〈ċ, c̈〉 = 0 ⇔ 〈c̈, ċ〉 = 0.

In the instantaneous rest frame we have

ċ = (1, 0, 0, 0),

and so

c̈ = (0, ẍ, ÿ, z̈)

(as c̈ must be orthogonal to ċ). Since ṫ = 1 and ẗ = 0 in this
frame, we have

c̈ =

(
0,
d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
.

(b) Since 〈ċ, ċ〉 = −1, we must have

ċ(τ) = (cosh(u(τ)), sinh(u(τ)))

for some function u : R → R (we ignore the y and z coordinates
as the motion is one-dimensional). Thus

c̈ = (sinh(u)u̇, cosh(u)u̇) ⇒ |c̈| = |u̇| ⇔ |u̇| = a.

For c to be differentiable u̇ cannot change sign, and we can
assume without loss of generality that

u̇(τ) = a⇒ u(τ) = aτ

(where we have set τ = 0 to be the instant at which the particle
is at rest). Therefore

ċ(τ) = (cosh(aτ), sinh(aτ)).

If we choose the (t, x) coordinates so that c(0) = (0, 0) then
the particle’s motion is given by

c(τ) =

(
1

a
sinh(aτ),

1

a
(cosh(aτ)− 1)

)
.
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(c) The proper time τ measured aboard the spaceship satisfies

x(τ) = 30, 000 ⇔ cosh(τ)− 1 = 30, 000 ⇔ cosh(τ) = 30, 001,

and hence

t(τ) = sinh(τ) =
√
30, 0012 − 1 ≃ 30, 001.

Consequently,

τ = log(cosh(τ) + sinh(τ)) ≃ log(60, 002) ≃ 11.

Therefore, the proper time measured aboard the spaceship is
only about 11 years, although an observer on the Earth would
measure approximately 30, 001 years.

(13) (a) According to its crew, the Enterprise’s trip lasts

|(13, 12)| =
√

132 − 122 =
√
25 = 5 years.

(b) The Enterprise’s frame moves with velocity v = 12
13 with re-

spect to the Earth. Consequently,
√
1− v2 = 5

13 , and hence
{
t′ =

(
1− v2

)− 1
2 t− v

(
1− v2

)− 1
2 x = 13

5 t− 12
5 x

x′ =
(
1− v2

)− 1
2 x− v

(
1− v2

)− 1
2 t = 13

5 x− 12
5 t

.

Therefore in the Enterprise’s frame the radio signal is sent at
event (0, 0), the missile is launched at event (28.6,−26.4), the
Earth is destroyed at event (2.4, 2.4) and the Enterprise arrives
at the Earth’s ruins at event (5, 0) (as it had to be).

(c) Figure 10 shows a plot of these events on the Enterprise’s
frame. The sequence of events is surreal: the Earth explodes
without any reason at t′ = 2.4; the faster-than-light missile
jumps intact from the explosion and travels backwards in the
direction of the Klingon planet, where an exact replica is being
built; the two missiles vanish simultaneously at t′ = 28.6, in
the event that should be the cause of the Earth’s destruction,
much after the Enterprise has arrived at the Earth’s ruins.
This illustrates the absurdities that one can get if faster-than-
light speeds are allowed.

Section 3.

(1) Let c : I → R4 be a curve in Galileo spacetime. The geodesic
equations for c(s) = (x0(s), x1(s), x2(s), x3(s)) are

ẍ0 = 0

ẍi + Γi00(ẋ
0)2 = 0

(i = 1, 2, 3). Therefore x0 = C1s+ C2 and

d2xi

ds2
= − ∂Φ

∂xi
(C1)

2
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t′

x′

Earth

Earth’s destruction

Earth’s ruins

Klingon planet
Enterprise arrives

missile launched

radio warning sent

Figure 10. Sequence of events on the Enterprise’s frame.

(i = 1, 2, 3) for some constants C1, C2 ∈ R. If C1 6= 0 then t = x0

is an affine parameter and the geodesic equations can be rewritten
as

d2xi

dt2
= − ∂Φ

∂xi

(i = 1, 2, 3), which are the equations of motion for a free-falling
particle. If C1 = 0 then t is constant and the geodesic equations
become

d2xi

ds2
= 0

(i = 1, 2, 3). These are the equations for a straight line on a hyper-
surface {t = constant}, which can be interpreted as the motion of
a particle moving with infinite speed.

(2) From the expression Ωµν =
∑

α<β R
µ

αβν ω
α ∧ ωβ of the curvature

forms we conclude that the only nonvanishing components of the
Riemann tensor are

R i
j00 = −R i

0j0 =
∂2Φ

∂xj∂xi

(i, j = 1, 2, 3). Therefore the only non-zero coefficient of the Ricci
curvature tensor is

R00 =
3∑

i=1

R i
i00 =

3∑

i=1

∂2Φ

∂(xi)2
.
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(3) (a) From Exercise 2.6.3 in Chapter 3 we have

(∇Xdt)(Y ) = X · (dt(Y ))− dt(∇XY )

for all X,Y ∈ X(R4). Now

X · (dt(Y )) = X · Y 0

and

∇XY =
3∑

µ=0


X · Y µ +

3∑

α,β=0

ΓµαβX
αY β


 ∂

∂xµ

=
3∑

µ=0

(X · Y µ)
∂

∂xµ
+

3∑

i=1

Γi00X
0Y 0 ∂

∂xi
,

implying that

dt(∇XY ) = X · Y 0.

We conclude that ∇Xdt(Y ) = 0 for all X,Y ∈ X(R4).
(b) We start by noticing that if E is parallel along some curve

c : I → R then

d

ds
(dt (E(s))) = ċ · (dt(E)) = (∇ċdt)(E) + dt (∇ċE) = 0.

Therefore, if E is initially tangent to a simultaneity hyper-
surface (i.e. if dt(E(0)) = 0), then it will be tangent to these
surfaces for all s ∈ I.
If E is parallel along c and tangent to the simultaneity hyper-
surfaces then it satisfies E0 = 0, and so

dEi

ds
+ Γi00ṫE

0 = 0 ⇔ dEi

ds
= 0

(i = 1, 2, 3). If F is also parallel along c and tangent to the
simultaneity hypersurfaces then

d

ds
〈E(s), F (s)〉 = d

ds

(
3∑

i=1

EiF i

)
=

3∑

i=1

(
dEi

ds
F i + Ei

dF i

ds

)
= 0.

(4) The only nonvanishing components of the Riemann tensor for the
Cartan connection are

R i
j00 = −R i

0j0 =
∂2Φ

∂xi∂xj

(i, j = 1, 2, 3). If the Cartan connection were the Levi-Civita con-
nection for a pseudo-Riemannian metric on R4, then the only non-
vanishing components of the curvature tensor would be

Rj00µ = −R0j0µ =
3∑

i=1

gµi
∂2Φ

∂xi∂xj
,
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with (gµν) the matrix of the metric. In particular, we would have
Rj0i0 = 0. But then the symmetry property Rj00µ = −Rj0µ0, which
still holds for pseudo-Riemannian metrics, would imply R0j0µ = 0,
meaning that the curvature tensor, and so the Riemann tensor,
would vanish. Therefore, if the curvature of the Cartan connection
is not zero then it cannot be the Levi-Civita connection of any
pseudo-Riemannian metric.

Section 4.

(1) Let p be a point in Mn. The signature of gp is the signature of the
quadratic form Qp(v) = gp(v, v) defined on TpM . This quadratic
form is represented in local coordinates x : V ⊂ M → Rn by a
matrix A(x) = (gij(x)). The entries of this matrix are continuous
functions of x, implying that its eigenvalues are also continuous
functions of x. Indeed, they are the roots of the characteristic
polynomial of A(x), whose coefficients are continuous functions of
the entries of A(x). Since the eigenvalues of A(x) can never be zero
(as g is nondegenerate, implying that A(x) is invertible) and M is
connected, their signs cannot change and so the result follows.

(2) (a) In any given coordinate system we have

Ric− S

2
g = 8πE ⇔ Rµν −

S

2
gµν = 8πEµν

(µ, ν = 0, 1, 2, 3). Multiplying by the inverse of the metric
matrix, gµν , and summing over µ and ν yields

S − S

2
· 4 = 8π

3∑

µ,ν=0

gµνEµν ⇔ S = −8π

3∑

µ,ν=0

gµνEµν .

Therefore Einstein’s field equation can be written as

Ric = 8πE − 4π




3∑

µ,ν=0

gµνEµν


 g = 8πT.

(b) We just have to notice that, since ν is timelike and unit,

3∑

µ,ν=0

gµνEµν = ρ 〈ν, ν〉 = −ρ.

(3) Let (M, g) be the Minkowski space R4 and consider the immersion
f : R3 → R4 given by f(x1, x2, x3) = (x1, x1, x2, x3). Then, for any
p ∈ R3 and v = (v1, v2, v3), w = (w1, w2, w3) ∈ TpR

3, f∗g is given
by

(f∗g)p(v, w) = gf(p)((df)pv, (df)pw)

= gf(p)
(
(v1, v1, v2, v3), (w1, w1, w2, w3)

)

= v2w2 + v3w3,
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which is not a pseudo-Riemannian metric on R3. Indeed, taking
v = (1, 0, 0) ∈ TpR3, we have (f∗g)p(v, w) = 0 for every w ∈ TpR3.

(4) The same argument as in Exercise 3.3.6 in Chapter 3 shows that the
covariant derivative in N is the orthogonal projection onto TN of
the covariant derivative in the Minkowski space Rn+1. Therefore,
the geodesics through p in the direction of the unit vector v ∈
TpN = {p}⊥ can be parameterized by the arclength as

cv(s) = p cosh s+ v sinh s

(it is easy to check that c(0) = p, ċ(0) = v and |ċ| = 1, implying
〈c̈, ċ〉 = 1

2
d
dτ 〈ċ, ċ〉 = 0). In particular, N is geodesically complete.

Setting v(α) := v cosα + w sinα ∈ TpN , with w orthogonal to
v and |w| = 1, we can define the Jacobi vector field

Y (s) =
∂

∂α
expp(sv(α))|α=0

(cf. Exercise 4.8.6 in Chapter 3). Then

Y (s) =
∂

∂α
cv(α)(s)|α=0

=
∂

∂α
(p cosh s+ (v cosα+ w sinα) sinh s)|α=0

= w sinh s.

Hence Y satisfies the differential equation

d2Y

ds2
= Y.

Since, on the other hand, Y is a solution of the Jacobi equation

D2Y

ds2
= R(ċ, Y )ċ

(cf. Exercise 4.8.6 in Chapter 3), we have

R(ċ, Y )ċ = Y.

Consequently, the sectional curvature is given by

K := − Rp(ċ, Y, ċ, Y )

|ċ|2|Y |2 − 〈ċ, Y 〉2 = −〈R(ċ, Y )ċ, Y 〉
|Y |2 = −〈Y, Y 〉

|Y |2 = −1

(as |ċ| = 1, 〈ċ, Y 〉 = 0 and 〈Y, Y 〉 > 0). Since p, v and w are
arbitrary (with v, w unitary and orthogonal), we conclude that N
is the hyperbolic n-space.

(5) (a) On one hand we have

DU

dτ
=
dU

dτ
= c̈,

while on the other hand

〈U,A〉U − 〈U,U〉A = 〈ċ, c̈〉ċ− 〈ċ, ċ〉c̈ = c̈.
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Here we used the fact that 〈ċ, ċ〉 = −1 implies

〈c̈, ċ〉 = 1

2

d

dτ
〈ċ, ċ〉 = 0.

(b) Assume V andW are Fermi-Walker transported along c. Then

d

dτ
〈V,W 〉 =

〈
DV

dτ
,W

〉
+

〈
V,
DW

dτ

〉

= 〈〈V,A〉U − 〈V, U〉A,W 〉+ 〈V, 〈W,A〉U − 〈W,U〉A〉
= 〈V,A〉〈U,W 〉 − 〈V, U〉〈A,W 〉+ 〈W,A〉〈V, U〉 − 〈W,U〉〈V,A〉 = 0.

(c) If 〈V, U〉 = 0 then V is Fermi-Walker transported if and only
if

∇UV = 〈V,A〉U.
On the other hand, V is parallel transported along U in N if
and only if (∇UV )⊤ = 0, i.e. if and only if ∇UV is perpendic-
ular to N at U . Since TUN = {U}⊥, we conclude that V is
parallel transported along U in N if and only if ∇UV = kU is
a multiple of U . Hence, if V is Fermi-Walker transported then
it is parallel transported along U in N . Conversely, if V is
parallel transported along U in N then ∇UV = kU and, since
we are assuming 〈V, U〉 = 0, we have

0 =
d

dτ
〈V, U〉 = 〈∇UV, U〉+ 〈V,A〉 = −k + 〈V,A〉

and so ∇UV = kU = 〈V,A〉U . Again using 〈V, U〉 = 0, we
conclude that V is Fermi-Walker transported.

(d) A circular motion in the plane {z = 0} with center in the
origin, radius r and constant speed v is given by

c(τ) :=
(
γτ, r cos

(γv
r
τ
)
, r sin

(γv
r
τ
)
, 0
)
,

with γ := 1√
1−v2 and τ ∈

(
0, 2πrγv

)
. In fact, with this choice

we have
(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

= v2

(note that dt
dτ = γ), and

U(τ) = ċ(τ) =
(
γ,−γv sin

(γv
r
τ
)
, γv cos

(γv
r
τ
)
, 0
)

is a unit vector field. Therefore U(τ) traverses a closed curve
in

Z := N ∩ {z = 0} = H2.

Since V is tangent to Z at U and 〈V, U〉 = 0, then by (c) V
is parallel transported along U in Z. From Exercise 2.8.7 in
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Chapter 4, we know that when V returns to the initial point
it makes an angle ∆α with the initial vector given by

∆α =

∫

D
K = −

∫

D
1 = −area(D)

where D is the region in Z homeomorphic to a disc bounded
by the image of U . Taking hyperbolic coordinates on Z





t = coshu

x = sinhu cos θ

y = sinhu sin θ

with u ∈ R and θ ∈ (0, 2π), we have that g in these coordinates
is given by g = du⊗ du+ sinh2 u dθ ⊗ dθ, and so

∆α = −area(D) = −
∫

D
sinhu du ∧ dθ

= −
∫ 2π

0

∫ sinh−1(vγ)

0
sinhu du dθ = −2π(γ − 1),

since cosh(sinh−1(vγ)) =
√
1 + v2γ2 = γ.

(6) (a) If we assume that Bob’s departure is the event (0, 0, 0, 0) then
his arrival is the event (10, 8, 0, 0), which is identified by the
isometry with the event (10, 0, 0, 0). The time measured by
Alice on the Earth is

√
102 − 02 = 10 years,

whereas the time measured by Bob is
√
102 − 82 =

√
36 = 6 years.

Therefore when the twins meet again Alice is 30 years old,
whereas Bob is only 26 years old.

(b) The asymmetry comes from the fact that we are not dealing
with Minkowski spacetime anymore, but with a quotient. The
choice of the particular isometry used to take the quotient
breaks the symmetry between the twins’ roles. Notice that
the twins’ motions are two different timelike geodesics, with
different lengths, connecting the same events.

(7) (a) This is immediate from the fact that the expression of the
Euclidean metric dx ⊗ dx + dy ⊗ dy + dz ⊗ dz in cylindrical
coordinates (r, θ, z) is dr ⊗ dr + r2dθ ⊗ dθ + dz ⊗ dz.

(b) We just have to notice that

dθ ⊗ dθ = (dθ′ + ωdt)⊗ (dθ′ + ωdt)

= dθ′ ⊗ dθ′ + ω2dt⊗ dt+ ωdt⊗ dθ′ + ωdθ′ ⊗ dt.
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(c) For r < 1
ω one has (in the new coordinate system (t, r, θ′, z))
〈
∂

∂t
,
∂

∂t

〉
= −1 + ω2r2 < 0,

and so the curves of constant (r, θ′, z) are timelike curves.
Since along these curves r and z are constant but θ = θ′ + ωt,
with θ′ constant, it is clear that they correspond to observers
who are rotating rigidly with angular velocity ω relative to the
inertial observers of constant (r, θ, z).

(d) If we use local coordinates (t, r, θ′, z) on U and (r, θ′, z) on
Σ then the projection map is locally represented by the map
π̂(t, r, θ′, z) = (r, θ′, z). Therefore if

u = ur
∂

∂r
+ uθ

′ ∂

∂θ′
+ uz

∂

∂z

then

u† = u0
∂

∂t
+ ur

∂

∂r
+ uθ

′ ∂

∂θ′
+ uz

∂

∂z

for some u0 ∈ R. Now
〈
∂

∂t
, u†
〉

= −(1− ω2r2)u0 + ωr2uθ
′
,

and so we must have

u0 =
ωr2

1− ω2r2
uθ

′
.

Consequently

〈v†, w†〉 = −(1− ω2r2)v0w0 + ωr2
(
v0wθ

′
+ vθ

′
w0
)

+ vrwr + r2vθ
′
wθ

′
+ vzwz

= vrwr +
r2

1− ω2r2
vθ

′
wθ

′
+ vzwz.

Notice that this does not depend on the choice of the vectors
v† and w† projecting to v and w.

(e) As it was shown in (d), the condition for a vector w to be
orthogonal to ∂

∂t is

w0 =
ωr2

1− ω2r2
wθ

′ ⇔ dt(w) =
ωr2

1− ω2r2
dθ′(w) ⇔ α(w) = 0.

Therefore the curve c consists of simultaneous events if and
only if α(ċ) = 0. If γ : [0, 1] → Σ is a closed curve, and
c : [0, 1] → U is a curve consisting of simultaneous events such
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that π ◦ c = γ, then

t(c(1))− t(c(0)) =

∫ 1

0
dt(ċ) =

∫ 1

0

ωr2

1− ω2r2
dθ′(ċ)

=

∫ 1

0

ωr2

1− ω2r2
dθ′(γ̇).

Since

d

(
ωr2

1− ω2r2
dθ′
)

=
2ωr

(1− ω2r2)2
dr ∧ dθ′ 6= 0,

we see that in general t(c(1)) 6= t(c(0)). Therefore, if the
rotating observers synchronize clocks around a closed path,
they will conclude that the initial clock is not synchronized
with itself.

(8) (a) If (x1, x2, x3) are local coordinates on U ⊂ Σ such that

h =

3∑

i,j=1

hijdx
i ⊗ dxj

on U then (t, x1, x2, x3) are local coordinates on R × U ⊂ M
and we have

g = −e2Φdt⊗ dt+
3∑

i,j=1

hijdx
i ⊗ dxj

on R× U . The inverse of the matrix of the metric is

(gµν) = (gµν)
−1 =

(
−e−2Φ 0

0 hij

)

where (hij) = (hij)
−1. Using Theorem 3.2 in Chapter 3 one

easily finds that the nonvanishing Christoffel symbols Γ̃αµν for

the Levi-Civita connection ∇̃ of g in these coordinates are

Γ̃0
0i = Γ̃0

i0 =
∂Φ

∂xi
;

Γ̃i00 = e2Φ
3∑

j=1

hij
∂Φ

∂xj
;

Γ̃ijk = Γijk

(i, j, k = 1, 2, 3), where Γijk are the Christoffel symbols for
the Levi-Civita connection ∇ of h. If c is a timelike geodesic
parameterized by the proper time then t(τ) = t(c(τ)) and
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xi(τ) = xi(c(τ)) = xi(γ(τ)) must satisfy




ẍi + e2Φṫ2
3∑

j=1

hij
∂Φ

∂xj
+

3∑

j,k=1

Γijkẋ
j ẋk = 0

−e2Φṫ2 +
3∑

i,j=1

hij ẋ
iẋj = −1

(where we used the fact that 〈ċ, ċ〉 = −1), which imply

ẍi +

3∑

j,k=1

Γijkẋ
j ẋk = −


1 +

3∑

j,k=1

hjkẋ
j ẋk




3∑

j=1

hij
∂Φ

∂xj
.

Since for v ∈ TΣ
〈

3∑

i,j=1

hij
∂Φ

∂xj
∂

∂xi
, v

〉
=

〈
3∑

i,j=1

hij
∂Φ

∂xj
∂

∂xi
,

3∑

k=1

vk
∂

∂xk

〉

=
3∑

i,j,k=1

hikh
ij ∂Φ

∂xj
vk =

3∑

k=1

∂Φ

∂xk
vk = dΦ(v),

we see that this is the expression in local coordinates of the
equation

Dγ̇

dτ
= −(1 + h(γ̇, γ̇)) gradΦ.

This equation implies that

d(E2)

dτ
=

d

dτ

(
(1 + h(γ̇, γ̇))e2Φ

)

= 2h

(
Dγ̇

dτ
, γ̇

)
e2Φ + 2(1 + h(γ̇, γ̇))e2ΦdΦ(γ̇)

= −2(1 + h(γ̇, γ̇))h (gradΦ, γ̇) e2Φ + 2(1 + h(γ̇, γ̇))e2ΦdΦ(γ̇) = 0.

(b) From (a) it is easily seen that for null geodesics we have




Dγ̇

dτ
= −h(γ̇, γ̇) gradΦ

e2Φṫ2 = h(γ̇, γ̇)

h(γ̇, γ̇)e2Φ = constant

where again γ = π ◦ c. By an appropriate choice of the affine
parameter τ we can set the constant equal to 1, yielding

ṫ = h(γ̇, γ̇) = e−2Φ.
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Setting ′ = d
dt , we have

γ̇ = γ̃′ṫ = γ̃′e−2Φ,

and so we can write the equation for γ as

e−2ΦD

dt
(γ̃′e−2Φ) = −e−4Φh(γ̃′, γ̃′) gradΦ,

which is equivalent to

Dγ̃′

dt
− 2dΦ(γ̃′)γ̃′ + h(γ̃′, γ̃′) gradΦ = 0.

From Lemma 1.12 in Chapter 5 one readily sees that this is
the geodesic equation for the metric l = e−2Φh.

(c) We saw that the nonvanishing Christoffel symbols for ∇̃ are

Γ̃0
0i = Γ̃0

i0 =
∂Φ

∂xi
;

Γ̃i00 = −e2ΦGi;
Γ̃ijk = Γijk

(i, j, k = 1, 2, 3). From these we can compute the nonvanish-

ing components R̃ β
µνα of the Riemann tensor of ∇̃ which are

necessary to find the components of the Ricci tensor:

R̃ j
i00 = −e2Φ

(
∂Gj

∂xi
+

3∑

k=1

ΓjikG
k +Gj

∂Φ

∂xi

)
;

R̃ 0
0ij = − ∂2Φ

∂xi∂xj
+

3∑

k=1

Γkij
∂Φ

∂xk
− ∂Φ

∂xi
∂Φ

∂xj
;

R̃ l
ijk = R l

ijk ,

where R l
ijk are the components of the Riemann tensor of ∇.

We conclude that the nonvanishing components R̃µν of the

Ricci tensor of ∇̃ are

R̃00 = −e2Φ
3∑

i=1

(
∂Gi

∂xi
+

3∑

k=1

ΓiikG
k +Gi

∂Φ

∂xi

)
;

R̃ij = − ∂2Φ

∂xi∂xj
+

3∑

k=1

Γkij
∂Φ

∂xk
− ∂Φ

∂xi
∂Φ

∂xj
+Rij ,

where Rij are the components of the Ricci tensor of ∇. From
Exercise 3.3.9 in Chapter 3 we see that divG is the contraction
of the (1, 1)-tensor field T given by T (X,ω) = ω(∇XG) for all
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X ∈ X(Σ) and ω ∈ Ω1(Σ). Since T has components

T ij = dxi
(
∇ ∂

∂xj
G
)
=
∂Gi

∂xj
+

3∑

k=1

ΓijkG
k,

we have

divG =
3∑

i=1

(
∂Gi

∂xi
+

3∑

k=1

ΓiikG
k

)
.

Then, since

3∑

i=1

Gi
∂Φ

∂xi
= dΦ(G) = h(gradΦ, G) = −h(G,G),

we see that the equation R̃00 = 0 is equivalent to

divG− h(G,G) = 0.

On the other hand, from Exercise 2.6.3 in Chapter 3 we see
that ∇dΦ has components

(∇dΦ)
(
∂

∂xi
,
∂

∂xj

)
=

∂2Φ

∂xi∂xj
−

3∑

k=1

Γkij
∂Φ

∂xk
,

and hence the equations R̃ij = 0 are equivalent to

−∇dΦ− dΦ⊗ dΦ+Ric = 0.

Section 5.

(1) (a) Trivial.
(b) Locally, we have

(
F0 F1

)
=
(
E0 E1

)
S,

for the change of basis matrix S : U → SO0(1, 1) given by

S =

(
coshu sinhu
sinhu coshu

)
,

where u is the hyperbolic angle between F0 and E0. The same
calculation as the one at the end of Section 2 in Chapter 4
yields

A = SĀS−1 − dSS−1

where

A =

(
0 ω0

1

ω0
1 0

)
and Ā =

(
0 ω0

1

ω0
1 0

)

are the matrices of the connection 1-forms associated to {E0, E1}
and {F0, F1}. Writing this out in full one obtains

(
0 ω0

1

ω0
1 0

)
=

(
0 ω0

1

ω0
1 0

)
−
(

0 du
du 0

)
,
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and the result follows.
(c) Consider first two timelike curves c1, c2 : [0, 1] → M connect-

ing two points p, q ∈ U in such a way that their images bound
a disk D, with c1 inducing the clockwise orientation. Take
a unit timelike vector v ∈ TpM such that v ∈ C((E0)p) and
let Vi : [0, 1] → TM be the parallel transport of v along ci
(i = 1, 2). Then the hyperbolic angle ∆u between V1(1) and
V2(1) is given by

∆u =

∫

D
Ω0
1.

Indeed, setting F0 = V1 on c1, we see that the hyperbolic angle
between E0 and V1 along c1 varies by

∆u1 =

∫

c1

du =

∫

c1

ω0
1 − ω0

1 = −
∫

c1

ω0
1,

as ω0
1(ċ1) = 0 (F0 is parallel along c1). Similarly, the hyper-

bolic angle between E0 and V2 along c2 varies by

∆u2 = −
∫

c2

ω0
1.

Since V1(0) = V2(0) = v, we conclude that

∆u = ∆u2 −∆u1 =

∫

c1

ω0
1 −

∫

c2

ω0
1 = −

∫

∂D
ω0
1 = −

∫

D
Ω0
1

(where we used the Stokes theorem for the orientation defined
by −ω0 ∧ ω1).
Now apply this result to the case when c1 is the timelike ge-
odesic connecting α to β, and c2 is the broken geodesic con-
necting α to γ to β (where by abuse we identify the hyperbolic
angles with the points where they are measured). If we choose
v = ċ1(0) then we will have V1(t) = ċ1(t) for all t ∈ [0, 1].
On the other hand, the hyperbolic angle between ċ2 and V2
will be −α between α and γ. At γ the tangent vector rotates
by a hyperbolic angle of −γ, and hence the hyperbolic angle
between ċ2 and V2 becomes γ − α. Since the hyperbolic angle
between ċ2(1) and V1(1) is β, we conclude that the hyperbolic
angle between V1(1) and V2(1) is ∆u = γ−α−β, and therefore

γ − α− β = −
∫

∆
Ω0
1.
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(d) The metric for a submanifold {θ = constant, ϕ = constant} of
the Schwarzschild spacetime is

g = −
(
1− 2m

r

)
dt⊗ dt+

(
1− 2m

r

)−1

dr ⊗ dr

= −ω0 ⊗ ω0 + ωr ⊗ ωr,

where

ω0 =

(
1− 2m

r

) 1
2

dt and ωr =

(
1− 2m

r

)− 1
2

dr

in the region {r > 2m}. We have

dω0 =
m

r2

(
1− 2m

r

)− 1
2

dr ∧ dt = m

r2
ωr ∧ dt = ωr ∧ ω0

r ;

dωr = 0 = ω0 ∧ ωr0,
which imply

ω0
r = ωr0 =

m

r2
dt,

and hence

Ω0
r = dω0

r = −2m

r3
dr ∧ dt.

The formula in (c) becomes, in this case,

β = γ − α−
∫

∆

2m

r3
dr ∧ dt,

which can be physically interpreted as follows: if a free falling
observer O′ moves past a free falling observer O with veloc-
ity tanhα, and later a third free-falling observer O′′ speeds
past O′ with velocity − tanh γ, then O′′ hits O not with veloc-
ity − tanh(γ − α) (which would be the case in flat Minkowski
space), but with a velocity whose absolute value is smaller,
the difference being roughly the spacetime integral of the de-
rivative of the gravitational acceleration. The reason for this
is easy to understand: O is falling closer to the center of at-
traction (hence with greater acceleration) than O′ or O′′, and
hence gets an extra boost in its (negative) radial velocity.

(2) (a) Let {E0, Er, Eθ, Eϕ} be the orthonormal frame dual to the

orthonormal coframe {ω0, ωr, ωθ, ωϕ}, that is

E0 =
1

A

∂

∂t
, Er =

1

B

∂

∂r
,

Eθ =
1

r

∂

∂θ
, Eϕ =

1

r sin θ

∂

∂ϕ
.
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Then, since

ċ = ṫ
∂

∂t
+ ϕ̇

∂

∂ϕ
= ṫAE0 + ϕ̇rEϕ

(sin θ = 1), we have

∇ċ ċ = 0 ⇔ d

dτ
(ṫA)E0 + ṫA∇ċE0 +

d

dτ
(ϕ̇r)Eϕ + ϕ̇r∇ċEϕ = 0.

Moreover,

∇ċE0 = ṫA∇E0E0 + ϕ̇r∇EϕE0

and

∇ċEϕ = ṫA∇E0Eϕ + ϕ̇r∇EϕEϕ.

Since

∇E0E0 =

3∑

µ=0

ωµ0 (E0)Eµ = ωr0(E0)Er =
A′

AB
Er = A′Er,

∇E0Eϕ =
3∑

µ=0

ωµϕ(E0)Eµ = 0,

∇EϕE0 =
3∑

µ=0

ωµ0 (Eϕ)Eµ = 0,

∇EϕEϕ =

3∑

µ=0

ωµϕ(Eϕ)Eµ = ωrϕ(Eϕ)Er = − 1

Br
Er,

we have

∇ċE0 = ṫAA′Er and ∇ċEϕ = − ϕ̇

B
Er,

and so the geodesic equation becomes

ẗAE0 + (ṫ2A2A′ − ϕ̇2r

B
)Er + ϕ̈rEϕ = 0,

or, equivalently,




ẗ = 0
ϕ̈ = 0

ṫ2A2A′ = ϕ̇2r
B ⇔ AA′ṫ2 = ϕ̇2r ⇔ m

r2
ṫ2 = ϕ̇2r.

Finally, since we must have 〈ċ, ċ〉 = −1, we obtain

−
(
1− 2m

r

)
ṫ2 + r2ϕ̇2 = −1 ⇔

(
1− 2m

r
− m

r

)
ṫ2 = 1

⇔
(
1− 3m

r

)
ṫ2 = 1.
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(b) From the last equation above we see that for r = 3m we have
〈ċ, ċ〉 = 0, and we get an equatorial circular null geodesic. A
stationary observer placed on this circular light ray would see
it as a straight line, with infinite images of himself placed at
regular spacings (equal to 2πr), corresponding to light rays
completing an integer number of orbits before reaching his
eyes. Different images would be images of the observer at
different times.

(c) Let V = V 0E0+V
rEr+V

θEθ+V
ϕEϕ be the angular-momentum

vector field of a free-falling spinning particle on a circular orbit
around a pointlike massm. Since this vector field is orthogonal
to the motion we conclude that

(33) − ṫAV 0 + ϕ̇rV ϕ = 0.

From the fact that this vector field is parallel-transported
along its motion we have

∇ċV = 0 ⇔dV 0

dτ
E0 + V 0∇ċE0 +

dV r

dτ
Er + V r∇ċEr

+
dV θ

dτ
Eθ + V θ∇ċEθ +

dV ϕ

dτ
Eϕ + V ϕ∇ċEϕ = 0.

Since

∇E0Er =
3∑

µ=0

ωµr (E0)Eµ = ω0
r (E0)E0 = A′E0,

∇E0Eθ =
3∑

µ=0

ωµθ (E0)Eµ = 0,

∇EϕEr =
3∑

µ=0

ωµr (Eϕ)Eµ = ωϕr (Eϕ)Eϕ =
1

rB
Eϕ,

∇EϕEθ =
3∑

µ=0

ωµθ (Eϕ)Eµ = 0,

we have

∇ċEr = ṫA∇E0Er + ϕ̇r∇EϕEr = ṫAA′E0 +
ϕ̇

B
Eϕ,

∇ċEθ = ṫA∇E0Eθ + ϕ̇r∇EϕEθ = 0,
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and so we obtain

dV 0

dτ
= −ṫAA′V r,

dV r

dτ
= −ṫAA′V 0 +

ϕ̇

B
V ϕ,(34)

dV θ

dτ
= 0,

dV ϕ

dτ
= − ϕ̇

B
V r.(35)

Substituting (33) in (34) yields

(36)
dV r

dτ
= ϕ̇V ϕ

(
1

B
−A′r

)
= B

(
1− 3m

r

)
ϕ̇V ϕ,

and so, from (35) and (36), we get

dV r

dϕ
=
dV r

dτ

1

ϕ̇
= B

(
1− 3m

r

)
V ϕ,

dV ϕ

dϕ
=
dV ϕ

dτ

1

ϕ̇
= −V

r

B
.

Hence,

d2V ϕ

dϕ2
= − 1

B

dV r

dϕ
= −

(
1− 3m

r

)
V ϕ,

implying that

V ϕ(ϕ) = α cos

(√
1− 3m

r
ϕ

)
+ β sin

(√
1− 3m

r
ϕ

)

and

V r(ϕ) = −BdV
ϕ

dϕ

= −B
√
1− 3m

r

(
−α sin

(√
1− 3m

r
ϕ

)
+ β cos

(√
1− 3m

r
ϕ

))
.

Since the vector field V is initially aligned with the radial
direction we have V ϕ(0) = V θ(0) = V 0(0) = 0, implying that
V θ ≡ 0, and

V ϕ(ϕ) = β sin

(√
1− 3m

r
ϕ

)
,

V r(ϕ) = −Bβ
√
1− 3m

r
cos

(√
1− 3m

r
ϕ

)
,

V 0(ϕ) =
ϕ̇r

ṫA
V ϕ(ϕ) =

ϕ̇r

ṫA
β sin

(√
1− 3m

r
ϕ

)
.
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Hence,

V (0) = −βB
√
1− 3m

r
Xr,

V (2π) =
ϕ̇r

ṫA
β sin

(
2π

√
1− 3m

r

)
X0

− βB

√
1− 3m

r
cos

(
2π

√
1− 3m

r

)
Xr + β sin

(
2π

√
1− 3m

r

)
Xϕ,

and so, since

〈V (0), V (2π)〉 = β2B2

(
1− 3m

r

)
cos

(
2π

√
1− 3m

r

)

and

|V (0)|2 = β2B2

(
1− 3m

r

)
= |V (2π)|2,

we get

cos(δ) =
〈V (0), V (2π)〉
|V (0)| |V (2π)| = cos

(
2π

√
1− 3m

r

)
,

where δ is the angle between the two vectors V (0) and V (2π)
(after one revolution). Choosing β < 0, so that initially V has
the same direction as Er, one easily checks that δ > 0, and so

δ = 2π − 2π

(
1− 3m

r

) 1
2

.

(3) (a) If we use the time coordinate t as the parameter, the tan-
gent vector to the motion of a stationary observer is simply
∂
∂t . Therefore the proper time between two events whose time
coordinate differs by ∆t is

∆τ =

∫ t0+∆t

t0

∣∣∣∣
∂

∂t

∣∣∣∣ dt =
∫ t0+∆t

t0

(
1− 2m

r

) 1
2

dt =

(
1− 2m

r

) 1
2

∆t.

(b) This is a simple consequence of the fact that the map f given

in local coordinates by f̂(t, r, θ, ϕ) := (t + ∆t, r, θ, ϕ) is an
isometry.

(c) Consider two stationary observers with r coordinate r0 and r1.
If there is a null geodesic γ connecting the lines representing
their motions then f ◦γ is also a null geodesic connecting these
lines (where f is the isometry in (b)). Now by (a) the proper
time experienced by the observer at r0 between the events on
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the two null geodesics is

T =

(
1− 2m

r0

) 1
2

∆t,

whereas the similar quantity for the second observer is

T ′ =

(
1− 2m

r1

) 1
2

∆t.

Therefore

T ′ = T

√√√√1− 2m
r1

1− 2m
r0

.

If the null geodesics correspond to two successive crests in a
light wave, then T is the period of the wave as measured by
the observer at r0 and T

′ is the period of the wave as measured
by the observer at r1.

(4) (a) It suffices to notice that if

v = v0
∂

∂t
+ vr

∂

∂r
+ vθ

∂

∂θ
v + vϕ

∂

∂ϕ

then

v† = vr
∂

∂r
+ vθ

∂

∂θ
v + vϕ

∂

∂ϕ
.

(b) From Exercise 2.8.6 in Chapter 4 we know that the scalar
curvature for this metric is given by

S =
4B′

rB3
− 2

r2

(
1

B2
− 1

)
= −4m

r3
+

4m

r3
= 0,

where B = (1− 2m
r )−

1
2 . However, this metric is not flat, since,

again from Exercise 2.8.6 in Chapter 4, we have, for instance,

R θ
rθr = − B′

rB3
=
m

r3
6= 0.

(c) Let S ⊂ Σ be the equatorial plane θ = π
2 . Considering the

map φ : S → R3 given in local coordinates by

φ(r, ϕ) =
(
r cosϕ, r sinϕ,

√
8m(r − 2m)

)
,

with

dφ =




cosϕ −r sinϕ
sinϕ r cosϕ
4m√

8m(r−2m)
0


 ,
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whose image is the revolution surface generated by the curve
z(r) =

√
8m(r − 2m) when rotated around the z-axis, we

have, for v, w ∈ TpS and g̃ the usual inner product in R3,

(φ∗g̃)p(v, w) = (φ∗g̃)p

(
vr
∂

∂r
+ vϕ

∂

∂ϕ
,wr

∂

∂r
+ wϕ

∂

∂ϕ

)

= g̃φ(p)

(
(dφ)p

(
vr
∂

∂r
+ vϕ

∂

∂ϕ

)
, (dφ)p

(
wr

∂

∂r
+ wϕ

∂

∂ϕ

))

=

(
1 +

16m2

8m(r − 2m)

)
vrwr + r2vϕwϕ

=

(
1− 2m

r

)−1

vrwr + r2vϕwϕ = hp(v, w),

and so we conclude that the surfaces S and φ(S) are isometric.
(5) (a) Clearly, the 1-parameter groups of isometries ψs, φs :M →M

given in local coordinates by

ψs(t, r, ϕ) = (t+ s, r, ϕ) and φs(t, r, ϕ) = (t, r, ϕ+ s)

satisfy
(
∂

∂t

)

p

=
d

ds |s=0

ψs(p),

(
∂

∂ϕ

)

p

=
d

ds |s=0

φs(p),

and so ∂
∂t and

∂
∂ϕ are Killing fields.

(b) We know from Exercise 3.3.8 in Chapter 3 that if X is a Killing
vector field and c : I → M is a geodesics then 〈ċ, Xc(t)〉 is
constant. Hence there exist constants E > 0 (since c is future-
directed) and L such that

g

(
∂

∂t
, ċ

)
= −

(
1− 2m

r

)
ṫ = −E

g

(
∂

∂ϕ
, ċ

)
= r2ϕ̇ = L.

Moreover, if c is a null or a timelike geodesic, we must have
−σ = g(ċ, ċ) with σ = 0 or 1 respectively. Hence we obtain

−σ = g(ċ, ċ) = −
(
1− 2m

r

)
ṫ2 +

(
1− 2m

r

)−1

ṙ2 + r2ϕ̇2

and so,

−E2 + ṙ2 +
L2

r2

(
1− 2m

r

)
= −σ

(
1− 2m

r

)
.
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(c) Since
du

dϕ
=
u̇

ϕ̇
,

we have

d2u

dϕ2
=

d

dτ

(
u̇

ϕ̇

)
1

ϕ̇
=
üϕ̇− ϕ̈u̇

ϕ̇3

=
üLu2 − ϕ̈u̇

L3u6
(as ϕ̇ = L/r2 = Lu2)

=
üLu2 + 2ṙϕ̇u̇u

L3u6
(because r2ϕ̇ = L implies ϕ̈ = −2ṙϕ̇u)

=
ü+ 2ṙu̇u

L2u4
=
ü− 2ṙ2u3

L2u4
(since u̇ = −ṙu2)

=
2ṙ2u3 − u2r̈ − 2ṙ2u3

L2u4
(as ü = −r̈u2 − 2ṙuu̇ = 2ṙ2u3 − u2r̈)

= − r̈

L2u2
.

Now ṙ2 = E2 − (σ + L2

r2
)(1− 2m

r ) implies that

2ṙr̈ = 2L2 ṙ

r3

(
1− 2m

r

)
−
(
σ +

L2

r2

)
2mṙ

r2

and so

r̈ = L2u3 − 3mL2u4 − σmu2.

Hence

d2u

dϕ2
= − r̈

L2u2
= −u+ 3mu2 +

σm

L2
.

(d) The corresponding homogeneous equation is

d2u

dϕ2
+ u = 0

with general solution

u(ϕ) = α cosϕ+ β sinϕ

for some constants α and β. A particular solution of the non-
homogeneous equation is, for example, the constant function
u = m

L2 . The general solution of this equation is therefore given
by

u(ϕ) = α cosϕ+ β sinϕ+
m

L2
.

Taking ε ≥ 0 and ϕ0 so that

α = ε
m

L2
cosϕ0 and β = ε

m

L2
sinϕ0,
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we can write u in the form

u(ϕ) =
m

L2
(1 + ε cos(ϕ− ϕ0)).

(e) If ε ≪ 1 then u2 ≃ m2

L4 (1 + 2ε cos(ϕ − ϕ0)) and so u clearly
satisfies

u2 ≃ 2m

L2
u− m2

L4
.

Hence, for timelike geodesics (i.e. for σ = 1), we have

d2u

dϕ2
+ u =

m

L2
+ 3mu2 ≃ m

L2
+ 3m

(
2m

L2
u− m2

L4

)

and so u is an approximate solution of the equation

d2u

dϕ2
+

(
1− 6m2

L2

)
u =

m

L2

(
1− 3m2

L2

)
.

The general solution of this equation is

u(ϕ) = α cos

(√
1− 6m2

L2
ϕ

)
+β sin

(√
1− 6m2

L2
ϕ

)
+
m

L2

(
1− 3m2

L2

)

for some constants α and β. Hence the period of these func-
tions is

T =
2π√

1− 6m2

L2

= 2π

(
1 +

3m2

L2
+

27m4

2L4
+ · · ·

)

≃ 2π

(
1 +

3m2

L2

)
≃ 2π

(
1 +

3m

r

)
= 2π +

6πm

r
,

where we used the facts that u ≃ m
L2 and mu ≪ 1. Hence the

pericenter advances by approximately 6πm
r .

(f) If σ = 0 then ṙ2 = E2− L2

r2
(1− 2m

r ), and so r̈ = L2u3−3mL2u4.
Then,

d2u

dϕ2
= − r̈

L2u2
= −u+ 3mu2

and we have

d2u

dϕ2
+ u = 3mu2 ≃ 0.

The general solution of this approximate equation is

u(ϕ) = α cosϕ+ β sinϕ

for some constants α and β, and so, taking b > 0 and ϕ0 such
that α = −1

b sinϕ0 and β = 1
b cosϕ0, we can write u in the

form

u(ϕ) =
1

b
sin(ϕ− ϕ0).
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(g) Since u must satisfy the equation

d2u

dϕ2
+ u = 3mu2,

we have

m

b2

(
d2v

dϕ2
+ v

)
= 3mu2 ≃ 3

m

b2
sin2 ϕ

and so v is an approximate solution of the equation

d2v

dϕ2
+ v = 3 sin2 ϕ.

The general solution of the corresponding homogeneous equa-
tion is

v(ϕ) = α cosϕ+ β sinϕ

for some constants α and β. A particular solution of the non-
homogeneous equation can be obtained by the constant vari-
ation method. Namely, we will be looking for a particular
solution vp of the form

vp(ϕ) = f(ϕ) cosϕ+ g(ϕ) sinϕ.

Substituting in the equation we conclude that f and g must
satisfy

f ′′ + 2g′ = 0 and g′′ − 2f ′ = 3 sinϕ.

Hence, g must satisfy g′′′+4g′ = 3 cosϕ. A particular solution
is for instance g = sinϕ. Consequently, f must satisfy f ′ =
−2 sinϕ, and we can take f = 2 cosϕ. A particular solution
of the initial equation is then

vp(ϕ) = 2 cos2 ϕ+ sin2 ϕ = 1 + cos2 ϕ =
3

2
+

1

2
cos(2ϕ).

We conclude that

u(ϕ) =
1

b

(
sinϕ+

m

b
v
)

=
1

b

(
sinϕ+

m

b

(
3

2
+

1

2
cos(2ϕ) + α cosϕ+ β sinϕ

))
,

where α and β are integration constants.
(h) If ϕ ≃ 0 we have sinϕ ≃ ϕ ≃ 0 and cosϕ ≃ cos(2ϕ) ≃ 1. Since

m
b ≪ 1 (as mu≪ 1), we have

u ≃ 1

b

(
ϕ+

m

b
(2 + α)

)

and so

u = 0 ⇔ ϕ = −m
b
(2 + α).
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Moreover, if ϕ ≃ π we have sinϕ ≃ π−ϕ ≃ 0, cosϕ ≃ −1 and
cos(2ϕ) ≃ 1. Hence,

u ≃ 1

b

(
π − ϕ+

m

b
(2− α)

)

and so

u = 0 ⇔ ϕ = π +
m

b
(2− α).

We conclude that ϕ varies by approximately

∆ϕ = π +
m

b
(2− α) +

m

b
(2 + α) = π + 4

m

b
.

(6) With this metric we have

ω0 = A(r, t)dt, ωr = B(r, t)dr,

ωθ = rdθ, ωϕ = r sin θdϕ,

and so

dω0 =
∂rA

B
ωr ∧ dt, dωr =

∂tB

A
ω0 ∧ dr,

dωθ =
1

B
ωr ∧ dθ, dωϕ =

sin θ

B
ωr ∧ dϕ+ cos θ ωθ ∧ dϕ,

implying

ω0
r = ωr0 =

∂rA

B
dt+

∂tB

A
dr, ωθr = −ωrθ =

1

B
dθ

ωϕr = −ωrϕ =
sin θ

B
dϕ, ωϕθ = −ωθϕ = cos θdϕ.

Hence,

Ω0
r = Ωr0 =

(
(∂2rA)B − (∂rA)(∂rB)

AB3
− (∂2tB)A− (∂tA)(∂tB)

A3B

)
ωr ∧ ω0,

Ω0
θ = Ωθ0 = − ∂rA

rAB2
ω0 ∧ ωθ − ∂tB

rAB2
ωr ∧ ωθ,

Ω0
ϕ = Ωϕ0 = − ∂rA

rAB2
ω0 ∧ ωϕ − ∂tB

rAB2
ωr ∧ ωϕ,

Ωθr = −Ωrθ = − ∂tB

rAB2
ω0 ∧ ωθ − ∂rB

rB3
ωr ∧ ωθ,

Ωϕr = −Ωrϕ = − ∂tB

rAB2
ω0 ∧ ωϕ − ∂rB

rB3
ωr ∧ ωϕ,

Ωϕθ = −Ωθϕ =
B2 − 1

r2B2
ωϕ ∧ ωθ,
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and so the nonvanishing components of the Ricci tensor are

R00 =
(∂2rA)B − (∂rA)(∂rB)

AB3
− (∂2tB)A− (∂tA)(∂tB)

A3B
+ 2

∂rA

rAB2
,

Rrr = −(∂2rA)B − (∂rA)(∂rB)

AB3
+

(∂2tB)A− (∂tA)(∂tB)

BA3
+ 2

∂rB

rB3
,

R0r = Rr0 = 2
∂tB

rAB2
,

Rθθ = Rϕϕ = − ∂rA

rAB2
+
∂rB

rB3
+
B2 − 1

r2B2
.

Thus Ric = 0 is equivalent to the PDE system




B(∂rA) +A(∂rB) = 0

∂r

(
∂rA

A

)
+ 2

(
∂rA

A

)2

+
2

r

(
∂rA

A

)
= 0

∂tB = 0

2r(∂rB) +B(B2 − 1) = 0.

The last equation gives

2(∂rB)

(
B

B2 − 1
− 1

B

)
= −1

r
⇔ ∂r

(
log

(
B2 − 1

B2

))
= −1

r

and so, in view of the third equation,

1− 1

B2
=

2m

r
,

with m ∈ R constant, yielding

B(t, r) =

(
1− 2m

r

)− 1
2

.

Since the first equation can be written as ∂r(AB) = 0, we have

A(t, r) =
C(t)

B(t, r)
= C(t)

(
1− 2m

r

) 1
2

,

for some positive function C(t). It is then easily checked that the
second PDE holds. Rescaling the time coordinate using

t̃ :=

∫ t

0
C(s) ds,

we get dt̃ = C(t)dt, and then g can be written as

g = −
(
1− 2m

r

)
dt̃⊗dt̃+

(
1− 2m

r

)−1

dr⊗dr+r2dθ⊗dθ+r2 sin θdϕ⊗dϕ.
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(7) (a) From Exercise 5 we see that radial (θ̇ = ϕ̇ = 0) timelike or
null geodesics satisfy

{
ṙ2 = E2 − σ

(
1− 2m

r

)
(
1− 2m

r

)
ṫ = E

where E is an integration constant, σ = 1 for timelike geodesics
and σ = 0 for null geodesics. In either case, geodesics satis-
fying r(0) = r0 cannot be extended beyond the values of the
affine parameter

λ(2m) = λ(2m)− λ(r0) =

∫ 2m

r0

dλ

dr
dr =

∫ 2m

r0

dr

ṙ

or

λ(0) = λ(0)− λ(r0) =

∫ 0

r0

dλ

dr
dr =

∫ 0

r0

dr

ṙ
,

that is,

±
∫ 2m

r0

√
rdr√

(E2 − σ)r + 2mσ
or ±

∫ 0

r0

√
rdr√

(E2 − σ)r + 2mσ

(± is the sign of ṙ). Since both these integrals are clearly finite,
the geodesics are necessarily incomplete. Notice that
∫ 2m

r0

dt

dr
dr =

∫ 2m

r0

ṫ

ṙ
dr =

∫ 2m

r0

Er
3
2 dr

(r − 2m)
√

(E2 − σ)r + 2mσ

diverges, implying that t diverges as r → 2m for all geodesics
satisfying E 6= 0 (E = 0 can only happen for the timelike
geodesics in the region {r < 2m} with constant t).

(b) We already know that r → 2m for a finite value of the affine
parameter. From the definition of the Painlevé time coordinate
we see that it approaches
∫ 2m

r0

dt′

dr
dr =

∫ 2m

r0

dt

dr
dr +

∫ 2m

r0

√
2mr

r − 2m
dr

= ±
∫ 2m

r0

Er
3
2dr

(r − 2m)
√

(E2 − σ)r + 2mσ
+

∫ 2m

r0

√
2mr

r − 2m
dr

=

∫ 2m

r0

√
2mr

√
(E2 − σ)r + 2mσ ± Er

3
2

(r − 2m)
√

(E2 − σ)r + 2mσ
dr,

as r → 2m (± is the sign of ṙ). Consider the geodesics in
the region {r > 2m}, and choose E > 0, corresponding to
ṫ > 0. Then the Painlevé time coordinate t′ diverges for ṙ > 0,
and converges for ṙ < 0. Therefore ingoing geodesics can be
extended past r = 2m, but not outgoing ones. In other words,
radial timelike and null geodesics are asymptotic to r = 2m
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in the past (with t′ diverging for a finite value of the affine
parameter), but cross this hypersurface in the future.

(c) Since
∂

∂t′
=
∂t

∂t′
∂

∂t
+
∂r

∂t′
∂

∂r
=

∂

∂t
,

we see that ∂
∂t′ is still a Killing vector field. Therefore the

equations for a radial curve c : R →M to be a future-directed
timelike geodesic can be written as

{
g( ∂
∂t′ , ċ) = −E

g(ċ, ċ) = −1
⇔




ṫ′ −

√
2m
r

(
ṙ +

√
2m
r ṫ′

)
= E

ṫ′
2 −

(
ṙ +

√
2m
r ṫ′

)2
= 1

.

Therefore radial curves satisfying

dr

dt′
= −

√
2m

r
⇔ ṙ +

√
2m

r
ṫ′ = 0

are future-directed timelike geodesics as long as

ṫ′ = E = 1.

In particular this implies that the Painlevé time coordinate t′

coincides with the proper time along these curves.
(d) The light received by the stationary observer corresponds to

outgoing null geodesics. As we saw in (b), these geodesics
cannot cross the horizon, and hence accumulate along it, as
shown in Figure 11. Consequently, all of them intersect the
curve representing the falling particle. This means that the
stationary observer sees the particle forever, moving slower
and slower, and increasingly redshifted.

(8) If we use proper time as the parameter, we have

−
(
1− 2m

r

)
ṫ2 +

(
1− 2m

r

)−1

ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2 = −1.

An observer in the {r < 2m} region of Schwarzschild spacetime
will therefore satisfy

(
2m

r
− 1

)−1

ṙ2 ≥ 1.

We conclude that such an observer will hit the singularity in a
proper time interval

∆τ =

∫ 2m

0

dτ

dr
dr =

∫ 2m

0

dr

ṙ
≤
∫ 2m

0

(
2m

r
− 1

)− 1
2

dr

= 2m

∫ 1

0

√
x√

1− x
dx = 2m

[
arcsin

√
x−

√
x(1− x)

]1
0
= πm.
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r

t′ r = 2M

Figure 11. Stationary observer watching a particle fall
through the event horizon.

Section 6.

(1) Assume first that a = 1. From the solution of Exercise 2.8.6 in
Chapter 4 we can easily see that the non-vanishing components of
the curvature tensor are

R θ
r θr = − A′

rA3
= −k = R ϕ

r ϕr

R ϕ
θ ϕ θ =

1

r2

(
1

A2
− 1

)
= −k,

where A = (1− kr2)−
1
2 . Hence,

Ωji = −kωi ∧ ωj ,

and so, by Lemma 4.1 in Chapter 4, we conclude that the curvature
is constant equal toK = k in this case. Finally, from Exercise 1.12.8
in Chapter 4 we conclude that the curvature is constant equal to
K = k

a2
in the general case.

(2) Let c be an integral curve of ∂
∂t . Then

∇ċ ċ = ∇ ∂
∂t

∂

∂t
=

3∑

µ=0

ωµ0

(
∂

∂t

)
Xµ = 0,
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and we conclude that c is a geodesic. Moreover,

〈ċ, ċ〉 =
〈
∂

∂t
,
∂

∂t

〉
= −1

and so c is a timelike geodesic parametrized by proper time.
(3) (a) The distance between the two galaxies is clearly d(t) = a(t)x,

where

x =

∫ r1

0

dr√
1− kr2

.

Therefore

ḋ = ȧx =
ȧ

a
ax = Hd.

(b) The tangent vector to these curves is

ċ = ṫ
∂

∂t
+

∂

∂r
,

which is null if and only if

−ṫ2 + a2(t)

1− kr2
= 0 ⇔ ṫ = ± a(t)√

1− kr2
.

We must choose the positive sign for null geodesics connecting
the first galaxy to the second galaxy. Therefore

ċ =
a(t)√
1− kr2

∂

∂t
+

∂

∂r
=

a(t)√
1− kr2

(E0 + Er).

Since we have

ω0
r = ωr0 =

ȧ

a
ωr,

we see that

∇E0+Er(E0 + Er) = ωr0(E0 + Er)Er + ω0
r (E0 + Er)E0

=
ȧ

a
(E0 + Er).

Therefore E0 + Er is tangent to a reparameterized geodesic,
and consequently so is ċ.

(c) Differentiating the equation for dt
dr we obtain

dt′

dr
=

ȧ(t)t′√
1− kr2

=
ȧ(t)

a(t)

dt

dr
t′,

where t′ = ∂t
∂t0

. Integrating yields

∫ r1

0

1

t′
dt′

dr
dr =

∫ r1

0

ȧ(t)

a(t)

dt

dr
dr ⇔ log(t′(r1)) = log

(
a(t1)

a(t0)

)
.
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(4) (a) Since ä(t) never vanishes we know that ȧ(t) can only vanish
at isolated points. Choose t0 such that ȧ(t0) 6= 0. If ȧ(t0) < 0
then, since ä(t) < 0, we have ȧ(t) < ȧ(t0) for all t > t0.

Therefore a(t) will vanish before t = t0 − a(t0)
ȧ(t0)

(time at which

the straight line tangent to the graph of a(t) at t0 crosses the
t-axis). If ȧ(t0) > 0 then the same argument shows that a(t)

must have vanished after t = t0 − a(t0)
ȧ(t0)

.

(b) If k ≤ 0 then the ODE implies that ȧ(t) cannot vanish, and
hence a(t) must be increasing for t > 0 (as limt→0 a(t) = 0
and a(t) > 0 where defined). Therefore a(t) 6= 0 for all t > 0.
Moreover, we can also deduce from the ODE that ȧ(t) ≤ ȧ(t0)
for all t > t0 (where t0 > 0 is arbitrary), and hence a(t) cannot
blow up in finite time.

(c) If k = 1 then we have

(37) ȧ = ±
√

2α

a
− 1 = ±

√
2α− a

a
,

and hence a(t) ≤ 2α. This maximum value is attained for

t =

∫ 2α

0

da

ȧ
=

∫ 2α

0

√
a

2α− a
da

=

∫ π
2

0

√
2α sin2 u

2α(1− sin2 u)
4α sinu cosu du

= 4α

∫ π
2

0
sin2 u du = πα.

By symmetry of (37), we conclude that a(t) will vanish for
t = 2πα, after which the solution cannot be extended.

(d) Let c : (0, 2πα) → S3 be the motion of the observer along the
spatial S3, parameterized by the time coordinate t. Then we
must have

−1 + a2(t)h(ċ, ċ) < 0

(where h is the standard metric in S3). We conclude that
during the lifetime of the universe the observer can traverse a
distance along S3 at most
∫ 2πα

0

√
h(ċ, ċ) dt <

∫ 2πα

0

dt

a(t)
= 2

∫ 2α

0

da

aȧ
= 2

∫ 2α

0

da√
a(2α− a)

= 2

∫ π
2

0

4α sinu cosu du√
4α2 sin2 u(1− sin2 u)

= 4

∫ π
2

0
du = 2π.

Therefore he cannot completely circumnavigate the universe
during its lifetime.
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(e) If k = 1, for example, we have

ȧ =
da

du

/
dt

du
=

sinu

1− cosu
,

and therefore

ȧ2

2
− α

a
=

sin2 u

2(1− cosu)2
− 1

1− cosu
=

sin2 u− 2 + 2 cosu

2(1− cosu)2

=
− cos2 u− 1 + 2 cosu

2(1− cosu)2
= −1

2
.

The remaining cases are done similarly.
(5) The Minkowski metric in (R5, g) can be written in spherical coor-

dinates as

g = −dT ⊗ dT + dR⊗ dR+R2h

where h is the standard metric in S3. The induced metric on the
hypersurface Σ given by

R = 2α− T 2

8α

is then

gΣ = −dT ⊗ dT +
T 2

16α2
dT ⊗ dT +R2(T )h

= −
(
1− T 2

16α2

)
dT ⊗ dT +R2(T )h,

since dR = − T
4αdT . Hence, this surface will be isometric to the

FLRW model with k = 1 if R(T ) = a(t(T )) with t(T ) satisfying

dt

dT
=

√
1− T 2

16α2
.

This implicit relation is true on Σ. Indeed, if we assume that it
holds then from

da

dT
=
da

dt

dt

dT

and T 2 = 8α(2α−R) = 8α(2α− a) we have

dt

dT
=

√
a

2α
and − T

4α
= ȧ

√
a

2α
,

implying that T 2 = 8αaȧ2, and hence 2α− a = aȧ2, i.e.

ȧ2 − 2α

a
= −1,

which is the ODE satisfied by the FLRW model for k = 1.



CHAPTER 6 553

(6) The radius of a free-falling spherical shell r = r0 in a FLRW model
is R(t) = a(t)r0. Consequently, the ODE for a(t) is equivalent to

Ṙ2

2
− αr0

3

R
= −kr0

2

2
.

Notice that t is the proper time for an observer on the shell. On the
other hand, we know from Exercise 5.1.5 that a free-falling particle
moving radially in the Schwarzschild spacetime satisfies

ṙ2 = E2 − 1 +
2m

r
.

This is exactly the ODE above if m = αr0
3 and E2 − 1 = −kr02.

Physically, the spacetime obtained by gluing the inside of the
free-falling spherical shell in the FLRW spacetime to the outside of
the matching shell in the Schwarzschild spacetime represents the
evolution of a sphere of pressureless perfect fluid in empty space.
Notice that although the sphere’s radius varies in time, the grav-
itational field outside it is just the gravitational field of a point
particle of mass m = αr0

3, given by the Schwarzschild metric (28).
To obtain a model of collapse one should take a contracting FLRW
model, so that the radius of the sphere is decreasing in time. If
k ≤ 0 then the sphere starts out with infinite radius and collapses
to form a black hole. If k = 1 then the sphere is initially expanding,
reaches a maximum radius and proceeds to collapse to a black hole.

(7) If we allow for a cosmological constant Λ ∈ R we have





−3ä

a
= 4πρ− Λ

ä

a
+

2ȧ2

a2
+

2k

a2
= 4πρ+ Λ.

From the first equation we have 4πρ = −3ä
a + Λ. Substituting in

the second equation we obtain

4ä

a
+

2ȧ2

a2
+

2k

a2
= 2Λ,

and so

(38) ä =
aΛ

2
− ȧ2

2a
− k

2a
.
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On the other hand, the quantity

4πρa3

3
=

(
Λ− 3ä

a

)
a3

3
=
a3Λ

3
− äa2

=
a3Λ

3
− a3Λ

2
+
ȧ2a

2
+
ka

2

= −a
3Λ

6
+
aȧ2

2
+
ka

2
is constant, since

d

dt

(
−a

3Λ

6
+
aȧ2

2
+
ka

2

)

= −a
2ȧΛ

2
+ aȧä+

ȧ3

2
+
kȧ

2

= −a
2ȧΛ

2
+ aȧ

(
aΛ

2
− ȧ2

2a
− k

2a

)
+
ȧ3

2
+
kȧ

2
= 0.

Hence we have

4πρ
a3

3
=
a3Λ

3
− äa2 = α

for some α ∈ R, implying that

ä =
aΛ

3
− α

a2
.

Then from (38) we obtain

aΛ

3
− α

a2
− aΛ

2
+
ȧ2

2a
= − k

2a

⇔ ȧ2

2
− α

a
− Λ

6
a2 = −k

2
.

To analyze the possible behaviors of the function a(t), we study
the function

V (a) =
2α

a
+

Λ

3
a2 − k = ȧ2

We start by noticing that if Λ < 0 and α > 0 (so that ρ > 0) then

lim
a→0+

V (a) = +∞;

lim
a→+∞

V (a) = −∞;

V ′(a) = −2α

a2
+

2Λ

3
a < 0,

and so V (a) has a unique positive zero at a0 (say). Since V
′(a0) 6= 0,

we conclude that a(t) goes from the big bang a = 0 to its maximum
value a = a0 and back to a big crunch in a finite time interval

∆t = 2

∫ a0

0

da

|ȧ| = 2

∫ a0

0

da√
V (a)

,
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irrespective of the value of k.
If Λ < 0 and α = 0 (so that ρ = 0) then V (a) ≥ 0 implies

k = −1, and the behavior of a(t) is similar to the α > 0 case.
If Λ > 0 and α > 0 (so that ρ > 0) then

lim
a→0+

V (a) = lim
a→+∞

V (a) = +∞

and V ′(a) has a unique positive zero

a∗ =

(
3α

Λ

) 1
3

where it changes from being negative to being positive. Since

V (a∗) =
(
9α2Λ

) 1
3 − k,

we see that if k ≤ 0 then that |ȧ| is bounded below by a positive
constant, and so ȧ does not change sign. If we choose an expanding
solution, ȧ > 0, then there exists a big bang and the universe
expands forever after that. If k = 1 there are several possible
behaviors for a(t): if Λ > 1

9α2 then the behavior is the same as for

k ≤ 0; if Λ = 1
9α2 then there is a stationary solution a(t) ≡ 1√

Λ

(Einstein universe) and two solutions which asymptote to it, one
expanding from a big bang and the other contracting from infinite
radius; and if Λ < 1

9α2 there are also two possibilities, a solution
which expands from a big bang to a maximum value and back to a
big crunch, and a solution which contracts from infinite radius to
a minimum radius and the re-expands back to infinite radius.

If Λ > 0 and α = 0 (so that ρ = 0) then there is a big bang
and the universe expands forever after that if k = −1, there is
continuous expansion from zero to infinite radius but without a big
bang (that is, limt=−∞ a(t) = 0) for k = 0, and there is contraction
from infinite radius to a minimum radius and the re-expansion back
to infinite radius if k = 1.

(8) Using spherical coordinates, the metric for the 4-dimensional Minkowski
spacetime is written

g = −dt⊗ dt+ dr ⊗ dr + r2h,

where h is the standard metric in S3.
(a) The equation for the “cylinder” is r2 = 1

Λ , and the induced
metric is therefore

gEinstein = −dt⊗ dt+
1

Λ
h.

This is the metric for a FLRW model with k = 1 and a(t) =
1√
Λ
. In this case,

ȧ2

2
− α

a
− Λ

6
a2 = −α

√
Λ− 1

6
= −1

2
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if α = 1
3
√
Λ

(cf. Exercise 7). We conclude that this metric

satisfies the Einstein equation with cosmological constant Λ >
0 for a pressureless fluid with density

ρ =
3α

4πa3
=

Λ

4π
.

(b) The equation for the “sphere” is −t2 + r2 = 3
Λ , and is solved

by 



t =
√

3
Λ sinh

(√
Λ
3 τ

)

r =
√

3
Λ cosh

(√
Λ
3 τ

) .

The induced metric is therefore

gdeSitter = −dτ ⊗ dτ +
3

Λ
cosh2

(√
Λ

3
τ

)
h.

This is the metric for a FLRW model with k = 1 and a(τ) =√
3
Λ cosh

(√
Λ
3 τ

)
. In this case,

ȧ2

2
− α

a
− Λ

6
a2 = −1

2
− α

a
= −1

2

if α = 0. We conclude that this metric satisfies the Einstein
equation with cosmological constant Λ > 0 for a pressureless
fluid with density ρ = 0.

(9) (a) From Exercise 3 we know that the null geodesic connecting the
two galaxies can be found by solving the differential equation

dt

dr
=

t√
1 + r2

.

This equation is separable, and can be integrated to give
∫ t1

t0

dt

t
=

∫ r1

0

dr√
1 + r2

⇔ log

(
t1
t0

)
= arcsinh(r1)

⇔ r1 = sinh(log(1 + z)) =
1

2

(
1 + z − 1

1 + z

)
.

Therefore

R = t1r1 = t1
z2 + 2z

2 + 2z
.

(b) In this case we must solve

dt

dr
= eHt,
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and so
∫ t1

t0

e−Htdt =
∫ r1

0
dr ⇔ r1 =

1

H

(
e−Ht0 − e−Ht1

)
.

Therefore

R = eHt1r1 =
z

H
.

(c) In this case we must solve

dt

dr
=

(
t

t1

) 2
3

,

and so
∫ t1

t0

(
t

t1

)− 2
3

dt =

∫ r1

0
dr ⇔

r1 = 3t1
2
3

(
t1

1
3 − t0

1
3

)
= 3t1

(
1− (1 + z)−

1
2

)
.

Therefore

R = r1 = 3t1

(
1− (1 + z)−

1
2

)
.

Section 7.

(1) Let M be a non-time-orientable Lorentzian manifold. For each
point p ∈ M we consider the set Cp of the two components of the

set of timelike vectors in TpM . Let M be the set

M = {(p, Cp) | p ∈M, Cp ∈ Cp}.
Given a parametrization (U,ϕ) of M by normal coordinates we
consider the maps ϕ : U →M defined by

ϕ(x0, x1, x2, x3) =

(
ϕ(x0, x1, x2, x3), C

((
∂

∂x0

)

ϕ(x)

))
,

where x = (x0, x1, x2, x3) ∈ U and C
((

∂
∂x0

)
ϕ(x)

)
is the connected

component of
(
∂
∂x0

)
ϕ(x)

(which we can assume to be timelike, re-

stricting U if necessary). We begin with the observation that, for
each parameterization (U,ϕ) of M by normal coordinates, there

exists a parameterization (Ũ , ϕ̃) which induces the opposite time-

orientation on TpM for every p ∈ ϕ(U): one just takes Ũ :=

{(x0, x1, x2, x3) | (−x0, x1, x2, x3) ∈ U} and considers ϕ̃ : Ũ → M
given by ϕ̃(x0, x1, x2, x3) = ϕ(−x0, x1, x2, x3).

The maps ϕ : U → M define a topology on M , given by the
basis

{ϕ(U) | (U,ϕ) is a parametrization of M by normal coordinates}.



558 SOLUTIONS TO EXERCISES

That this is indeed a basis for a topology and that such topology
is Hausdorff and second countable follows from the fact that

{ϕ(U) | (U,ϕ) is a parametrization of M by normal coordinates}
is a basis for the topology of M with the same properties.

Given two parameterizations (U,ϕ) and (V, ψ) of M by normal
coordinates, the map (ψ)−1 ◦ ϕ is defined on the image by ϕ−1

of the connected components of ϕ(U)∩ ψ(V ) where C
((

∂
∂x0

)
ϕ(x)

)

and C
((

∂
∂x0

)
ψ(x)

)
agree. Moreover

(
(ψ)−1 ◦ ϕ

)
(x) =

(
ψ−1 ◦ ϕ

)
(x),

whenever this map is defined, and soM is a differentiable manifold.
Consider now the map π : M → M defined by π(p, Cp) = p.

Just like in the orientable double covering case (cf. Exercise 8.6.9
in Chapter 1), this map is smooth and surjective. We will use it to
define a Lorentzian metric g := π∗g on M for which π is trivially a
local isometry. Note that (M, g) is time-orientable: if {(Uα, ϕα)}
is the atlas above and {ρi}i∈I is a partition of unity subordinated
to the open cover {ϕα(Uα)} with supp ρi ⊂ ϕαi(Uαi) then

X :=
∑

i∈I
ρi

∂

∂x0αi

is a (globally defined) timelike vector field.
Since M is time-orientable it admits a non-vanishing vector

field. If, in addition, M is compact this implies that the Euler
characteristics of both M and M are zero. Hence, if dimM = 2,
the only compact Lorentzian manifolds are the torus and the Klein
bottle.

(2) (a) Take q ∈ I+(p). Then there exists a future-directed timelike
curve c : [0, 1] → M connecting p to q. Let V be a geodesi-
cally convex neighborhood of q as in Proposition 7.1, and take
s ∈ (0, 1) such that c([s, 1]) ⊂ V . The chronological future
I+(r, V ) of the point r := c(s) with respect to the spacetime
(V, g) is clearly an open set (image of an open set by the expo-
nential map) satisfying q ∈ I+(r, V ) ⊂ I+(p). Therefore q is
an interior point of I+(p). Since q is arbitrary, I+(p) is open.

(b) Let M be R2 with the point (1, 1) deleted. If p is the origin
then I+(p) is the Minkowski cone

I+(p) = {(t, x) ∈ R2 | t > |x|}.
However, no point in the line t = x with t > 1 can be reached
from p by a causal curve. Hence,

J+(p) = I+(p)∪{(t,−t) ∈ R2 | t ≥ 0}∪ {(t, t) ∈ R2 | 0 < t < 1}
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is not closed.
(c) Let q ∈ J+(p). Then there is a future-directed causal curve

c : [0, 1] → M connecting p to q. Let T be a future-directed
timelike vector field parallel along c, and γ : [0, 1]× (−ε, ε) →
M a smooth map such that γ(0, t) = c(t) and

∂γ

∂s
(0, t) = tTc(t).

Setting

γ′ =
∂γ

∂s
= γ∗

∂

∂s
and γ̇ =

∂γ

∂t
= γ∗

∂

∂t
we have

∇γ′ γ̇ −∇γ̇γ
′ = γ∗

[
∂

∂s
,
∂

∂t

]
= 0.

Therefore
∂

∂s |s=0

〈γ̇, γ̇〉 = 2〈∇γ′ γ̇, γ̇〉|s=0
= 2〈∇γ̇γ

′, γ̇〉|s=0

= 2〈∇ċ(tTc(t)), ċ〉 = 2〈Tc(t), ċ〉 < 0,

and so γ̇(s, t) is timelike and future-directed for small positive
s. Therefore

q = lim
s→0+

γ(s, 1) ∈ I+(p).

(d) Clearly I+(p) ⊂ int J+(p). To see that int J+(p) ⊂ I+(p) let
q ∈ int J+(p). Taking a geodesically convex neighborhood V
of q with V ⊂ J+(p) it is easily seen that there exists a point
r ∈ J+(p) which can be connected to q by a future-directed
timelike curve. If rn ∈ I+(p) is a sequence with rn → r we
have rn ∈ I−(q) (hence q ∈ I+(rn)) for sufficiently large n.
Thus q ∈ I+(p).

(e) It is clear that I+(r) is an open subset of J+(p). Therefore
I+(r) is an open subset of int J+(p) = I+(p).

(f) This is equivalent to proving that if r ∈ J−(q) and p ∈ I−(r)
then p ∈ I−(q), which is done as above.

(g) IfM is the quotient of the Minkowski 2-dimensional spacetime
by the group of isometries generated by f(t, x) = (t+1, x) then
I+(p) =M for any point p ∈M .

(3) Note that ċ(t) = (1,− sin t, cos t) (implying that 〈ċ, ċ〉 = 0) and
that c(0) = (0, 1, 0). To show that c(t) ∈ I+(c(0)) for all t > 0 we
consider the curves

γt(s) := (s t, 1 + s(cos t− 1), s sin t)

defined for s ∈ [0, 1]. These curves connect the point c(0) to c(t)
and are time-like since

〈γ̇t(s), γ̇t(s)〉 = 2− 2 cos t− t2 < 0
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for t > 0. Indeed this function is concave down with maximum
value 0 at t = 0.

Finally, the motion represented by the curve c is an uniform
circular motion at the speed of light.

(4) Take local coordinates around each point p ∈ K := supph. By
continuity, the matrix of the components of gε in these coordinates,
(gµν + εhµν), has one negative and three positive eigenvalues for
ε ∈ (−εp, εp) in some neighborhood Vp of p. Since {Vp}p∈K is an
open cover of K, we can take a finite subcover {Vp1 , . . . , VpN }. If
ε0 = min{εp1 , . . . , εpN }, then it is clear that gε is a Lorentzian
metric for |ε| < ε0.

Let t : M → R be a global time function for g. Since K is
compact, we have on K

g(grad t, grad t) ≤ −δ

for some δ > 0. Consider the map f : (−ε0, ε0)×K → R given by

f(ε, p) = gε

(
(gradε t)p , (gradε t)p

)
,

where gradε is the gradient with respect to the metric gε. This map
is clearly continuous and satisfies

f(0, p) ≤ −δ

for all p ∈ K. Therefore there exists ε1 ∈ (0, ε0) such that

f(ε, p) < 0

for |ε| < ε1 and p ∈ K. We conclude that if |ε| < ε1 then t is still a
global time function for gε, and so (M, gε) satisfies the chronology
condition.

(5) Let π : R2 → M be the quotient map. Any timelike curve in M
is of the form π ◦ c, where c(s) = (t(s), x(s)) is a timelike curve
in Minkowski 2-dimensional spacetime. Assuming, without loss of
generality, that this curve is future-pointing, i.e. ṫ(s) > 0, we have

−ṫ2(s) + ẋ2(s) < 0 ⇒ ṫ(s) > |ẋ(s)| ≥ ẋ(s),

and so any two points p, q on c with q ∈ I+(p) satisfy

t(q)− t(p) > x(q)− x(p).

Therefore p and q cannot differ by a vector of the form (n, n), and
hence π ◦ c never returns to the same point. We conclude that
(M, g) does not admit closed timelike curves and thus satisfies the
chronology condition.

On the other hand, let

h = −φ dt⊗ dt,
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where φ is a nonnegative smooth function with compact support
which is identically 1 on π([0, 1]× [0, 1]). Then the curve π ◦c, with
c(s) = (s, s), is timelike for the metric

gε := g + εh = −(1 + εφ)dt⊗ dt+ dx⊗ dx.

Since c connects the points (0, 0) and (1, 1) in this interval, π ◦ c is
a closed timelike curve, meaning that (M, gε) does not satisfy the
chronology condition.

(6) (a) Trivial.
(b) Taking for instance S = {0}× [−1, 1] in Minkowski 2-dimensi-

onal spacetime, we have that D+(S) is the closed triangle with
vertices (0,−1), (0, 1) and (1, 0), and hence is not open.

(c) Taking for instance S = {0} × (−1, 1) in Minkowski 2-dimen-
sional spacetime, we have that D+(S) is the union of S with
the open triangle with vertices (0,−1), (0, 1) and (1, 0), and
hence is not closed.

(7) (a) The function t :M → R is a time function, and hence (M, g) is
stably causal. However, the domain of dependence any surface
whose normal vector is timelike can never be M , as illustrated
in Figure 8.

(b) For instance, p = (−1, 0) and q = (1, 0).
(c) Again p = (−1, 0) and q = (1, 0). The length of the broken

geodesics connecting p to r = (0,−ε) to q (with ε > 0) is

τε = 2
√
1− ε2,

and hence it is clear that the supremum of the lengths of time-
like curves connecting p to q is greater or equal than 2. How-
ever, if c : [−1, 1] → M is a timelike curve connecting p to q,
it has to intersect the x-axis at a point (0,−ε) with ε > 0.
Hence, if c is parameterized by the time coordinate t (so that
c(0) = (0,−ε)), we have (cf. Exercise 2.2.8)

τ(c) ≤ τε < 2,

showing that 2 is indeed the supremum, and that it is never
attained.

(8) Assume first that (Σ, h) is complete. Let c : I → M be an inex-
tendible causal curve. Since t is clearly a time function we can
assume without loss of generality that c is parameterized by t.
Therefore c(t) = (t, γ(t)) with γ : I → Σ. The fact that c is
timelike is equivalent to

h(γ̇, γ̇) < 1.
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Let tn ∈ I be an increasing bounded sequence with limit t0. If d is
the Riemannian distance on Σ and n > m then

d(γ(tn), γ(tm)) =

∫ tn

tm

(h(γ̇, γ̇))
1
2 dt ≤ tn − tm.

Thus {γ(tn)} is a Cauchy sequence, which must converge, implying
that there exists limt→t0 γ(t). Since c is inextendible, we conclude
that I cannot be bounded above. By a similar argument it cannot
be bounded below, and hence I = R. We conclude that every
inextendible causal curve intersects every level set of t, and hence
(M, g) is globally hyperbolic.

Assume now that (Σ, h) is not complete, but (M, g) is globally
hyperbolic. Let γ : I → Σ be a geodesic parameterized by arclength
which cannot be extended for t ≥ 0. Then c(t) = (t0 + t, γ(t)) is
a future inextendible causal curve contained in the region where
t < t0. Since the integral curves of ∂

∂t are timelike, any Cauchy
surface S ⊂M is a graph

S = {(t, p) ∈M | t = f(p)}

of some smooth function f : Σ → R. The projection d : I → S of
c on S, given by d(t) = (f(γ(t)), γ(t)), is necessarily spacelike, and

so satisfies ḟ2 < h(γ̇, γ̇) = 1 (where f(t) := f(γ(t))). This implies

that the limit f0 := limt→0 f(t) exists. As |ḟ | < 1, we then have
f(t) > f0 + t for all t < 0. Choosing t0 = f0 − 1, we guarantee that
c and d do not intersect, that is, c does not intersect S. Therefore
we reach a contradiction, meaning that (M, g) cannot be globally
hyperbolic.

(9) (a) By Exercise 8, the Minkowski spacetime is globally hyperbolic,
as R3 with the Euclidean metric is complete.

(b) Let (Σ, h) be the 3-dimensional Riemannian manifold of con-
stant curvature such that the metric for the FLRW spacetime
(M, g) is

g = −dt⊗ dt+ a2(t)h = a2(t) (−dτ ⊗ dτ + h) ,

where

τ =

∫
dt

a(t)
.

The causal properties of this spacetimes are therefore the same
as the causal properties of the spacetime with metric

g̃ = −dτ ⊗ dτ + h,

which by Exercise 8 is globally hyperbolic (it is easily seen that
the result in Exercise 8 remains true if we replace R by any
open interval I ⊂ R) .
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(c) The region r > 2m of the Schwarzschild spacetime corresponds
to the metric

g = −V dt⊗ dt+
1

V
dr ⊗ dr + r2

(
dθ ⊗ dθ + sin2 θ dϕ⊗ dϕ

)

= V

(
−dt⊗ dt+

1

V 2
dr ⊗ dr +

r2

V

(
dθ ⊗ dθ + sin2 θ dϕ⊗ dϕ

))

where

V = 1− 2m

r
> 0.

The causal properties of this spacetimes are therefore the same
as the causal properties of the spacetime with metric

g̃ = −dt⊗ dt+
1

V 2
dr ⊗ dr +

r2

V

(
dθ ⊗ dθ + sin2 θ dϕ⊗ dϕ

)
,

which by Exercise 8 is globally hyperbolic if and only if the
Riemannian metric

h =
1

V 2
dr ⊗ dr +

r2

V

(
dθ ⊗ dθ + sin2 θ dϕ⊗ dϕ

)

is complete. Since S2 is compact, we know from the general
theory of differential equations that if a solution of the geodesic
equation for this metric blows up then either r → 2m or r →
+∞ in finite arclength. Since for r0 > 2m

∫ r0

2m

dr

V
=

∫ r0

2m

rdr

r − 2m
= +∞

and
∫ +∞

r0

dr

V
=

∫ +∞

r0

rdr

r − 2m
= +∞,

this cannot occur, and hence h is geodesically complete.
(d) The region r < 2m of the Schwarzschild spacetime corresponds

to the metric

g = − 1

V
dr ⊗ dr + V dt⊗ dt+ r2

(
dθ ⊗ dθ + sin2 θ dϕ⊗ dϕ

)

where

V =
2m

r
− 1 > 0.

Let c : I → M be an inextendible causal curve, which we
can assume without loss of generality to be parameterized by
the time function r, and choose r0 ∈ I ⊂ (0, 2m). In local
coordinates we have c(r) = (r, t(r), θ(r), ϕ(r)). If there exists
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ε > 0 such that V (r) > ε for all r ∈ I then for r > r0 we have

− 1

V
+ V ṫ2 + r2

(
θ̇2 + sin2 θ ϕ̇2

)
≤ 0 ⇒

εṫ2 + r0
2
(
θ̇2 + sin2 θ ϕ̇2

)
≤ 1

ε
.

Since the Riemannian metric

h = εdt⊗ dt+ r0
2
(
dθ ⊗ dθ + sin2 θ dϕ⊗ dϕ

)

is clearly complete, the same argument as in Exercise 8 shows
that c is not future-inextendible. Therefore I ∩ (r0, 2m) =
(r0, 2m). Analogously, if there exists ε > 0 such that r > ε for
all r ∈ I then for r < r0 we have

− 1

V
+ V ṫ2 + r2

(
θ̇2 + sin2 θ ϕ̇2

)
≤ 0 ⇒

(
2m

r0
− 1

)
ṫ2 + ε2

(
θ̇2 + sin2 θ ϕ̇2

)
≤
(
2m

r0
− 1

)−1

.

Since the Riemannian metric

h =

(
2m

r0
− 1

)
dt⊗ dt+ ε2

(
dθ ⊗ dθ + sin2 θ dϕ⊗ dϕ

)

is clearly complete, the same argument as in Exercise 8 shows
that c is not past-inextendible. Therefore I ∩ (0, r0) = (0, r0),
and hence c intersects all level sets of r.

(10) Let t : M → R be a time function whose level sets are Cauchy
surfaces. Since grad t does not vanish, t cannot have maxima or
minima, and so its range must be an open interval I ⊂ R. If
f : I → R is a diffeomorphism then f ◦ t is also a time function
whose level sets are Cauchy surfaces, and so we can assume I = R.
Define

X :=
grad t

〈grad t, grad t〉 ,

so that

X · t = 〈X, grad t〉 = 1.

Since X is timelike, its integral curves must cross all level sets of
the time function t (as (M, g) is globally hyperbolic), and thus X
is complete. If ψt is the flow of X then it is easy to check that
F : R× S →M defined by F (t, p) = ψt(p) is a diffeomorphism.

Section 8.

(1) The only non-vanishing Christoffel symbols on (M, g) are

Γuuu = − 2u

u2 + v2
and Γvvv = − 2v

u2 + v2
.
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Hence the geodesics equations are

ü− 2u

u2 + v2
u̇2 = 0

and

v̈ − 2v

u2 + v2
v̇2 = 0.

Taking for instance v ≡ 0 we obtain

ü

u̇
= 2

u̇

u

and so

u̇ = −au2,
implying that

u(t) =
1

at+ b

for some constants a, b ∈ R. Therefore, the curve

c(t) :=

(
1

at+ b
, 0

)

is a null geodesic through the point c(0) = (1b , 0). If for instance

b > 0 and a < 0 this geodesic is defined for t < − b
a . The image of

this geodesic is

{(u, 0) | u > 0}
and so this curve is inextendible in M . We conclude that M (and
consequently M) is not geodesically complete.

(2) (a) Let us consider M := R × (−π
2 ,

π
2 ) and the map p : M → H

given by

p(t, x) =

(
cos t

cosx
,
sin t

cosx
, tanx

)

(note that u2 + v2 − w2 = 1
cos2 x

− tan2 x = 1). We have

du = − sin t

cosx
dt+

cos t sinx

cos2 x
dx;

dv =
cos t

cosx
dt+

sin t sinx

cos2 x
dx;

dw =
1

cos2 x
dx,

and so if i : H → R3 is the inclusion map

g := p∗(i∗g) = (i ◦ p)∗g =
1

cos2 x
(−dt⊗ dt+ dx⊗ dx) .

Note that p is a covering map; since M is simply connected,
(M, g) is the universal cover of (H, i∗g).
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(b) As we have seen in (a), (M, g) is conformal to the open set
R× (−π

2 ,
π
2 ) of the Minkowski space. Just as in the case of the

Euclidean 2-sphere, the geodesics of (H, i∗g) can be obtained
by considering the slices given by the intersection of H with
2-planes Π through the origin (note that this intersection may
have two components).
If g restricted to Π is negative definite then H ∩ Π is a circle
in Π. Indeed, if {e1, e2} is an orthonormal basis for Π then a
point ae1+be2 is in H = {v ∈ R3 | g(v, v) = −1} if and only if
a2 + b2 = 1. Then α(t) = cos t e1 + sin t e2 is a constant speed
parametrization of Π ∩ H. Moreover, 〈α̇, α̇〉 = −1, and so α
is timelike. Since α̈ = − cos t e1 − sin t e2 is normal to H, we
conclude that α is a geodesic of H.
If g restricted to Π is nondegenerate with signature 0 then
let {e0, e1} be an orthonormal basis of Π with e0 timelike. A
point ae0 + be1 is in H if and only if a2 − b2 = 1, and so
Π ∩ H is given by two branches of a hyperbola in Π. Then
α(t) = cosh t e0 + sinh t e1 is a constant speed parametrization
of one of these branches. Moreover, 〈α̇, α̇〉 = 1, and so α is
spacelike. Since α̈ = cosh t e0 + sinh t e1 is normal to H, we
conclude that α is a geodesic of H.
If g restricted to Π is degenerate with nullspace of dimension
1 then any vector v 6= 0 in the nullspace is itself a null vector.
If p ∈ Π ∩ H then {p, v} is a basis for Π. A point ap + bv is
in H if and only if a2 = 1, that is if and only if a = ±1. Then
Π∩H consists of two parallel straight lines. The one through
p is parameterized by α(t) = p + t v. Since α is a geodesic of
(R3, g) lying in H it is a geodesic of H. Moreover, α̇(0) = vp,
and so α is a null geodesic.
We conclude that if c is a non-constant timelike geodesic of
(H, g) then it is a periodic parametrization of a circle in R3; if
c is null then it is linear parameterization of a straight line in
R3; and if c is spacelike then it is a hyperbolic parametrization
of one branch of a hyperbola in R3. Consequently, (H, g) and
(M, g) are geodesically complete. Moreover, timelike geodesics
in M project to closed geodesics in H, and so, for instance,
all timelike geodesics starting at p = (0, 0) meet at conjugate
points q = (±π, 0). In addition, spacelike geodesics through a
point p are timelike geodesics for the metric −g and so are con-
fined to the chronological past and future of p in this metric.
Therefore expp is not surjective for any p (cf. Figure 12).

(c) Let p = (0, 0) and q be the point (π + ε, 0) with ε > 0. Then
there exist piecewise smooth causal curves connecting p to q
with arbitrarily large length. Indeed we may take a future-
directed null geodesic from p to the line x = x0, a past-directed
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null geodesic from q to the same curve and the portion of this
line between the two geodesics (which is a timelike geodesics).
The resulting curve has length greater than

1

cos (x0)
((π + ε− x0)− x0) >

ε

cos (x0)

and this length can be made arbitrarily large by making x0 →
π
2 . These curves can then be smoothed into timelike curves
with arbitrary large length.

(3) The nonvanishing Christoffel symbols for this metric are

Γ0
0x = Γ0

x0 = Γx00 = Γxxx = −1

x
,

and hence the geodesic equations are

ẗ− 2

x
ṫẋ = 0,

ẍ− 1

x
ṫ2 − 1

x
ẋ2 = 0.

The first equation yields

1

x2
ẗ− 2

x3
ṫẋ = 0 ⇔ d

dτ

(
ṫ

x2

)
= 0 ⇔ ṫ = αx2

where α ∈ R is constant. For a future-pointing timelike geodesic
parameterized by its proper time τ we have α > 0 and

1

x2
(
−ṫ2 + ẋ2

)
= −1 ⇔ ẋ2 = α2x4 − x2 ⇔ ẋ

x
√
α2x2 − 1

= ±1.

Using

∫
dx

x
√
α2x2 − 1

= − arctan

(
1√

α2x2 − 1

)

we obtain
1

α2x2 − 1
= tan2(β ∓ τ),

for some constant β ∈ R, and hence x(τ) blows up as τ → ±β.
Incidentally, one can show that H with this metric is isometric

to an open subset of the 2-dimensional anti-de Sitter spacetime.
Moreover, both the de Sitter and the anti-de Sitter spacetimes of
any dimension have similar geodesically incomplete open subsets
isometric to the upper-half plane Hn ⊂ Rn with a left-invariant
metric for the Lie group structure defined in Exercise 4.7.1 of Chap-
ter 4.
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(4) It is easily seen that

(gµν) =




−1 0 0 0
0 γ11 γ12 γ13
0 γ21 γ22 γ23
0 γ31 γ32 γ33




−1

=




−1 0 0 0
0 γ11 γ12 γ13

0 γ21 γ22 γ23

0 γ31 γ32 γ33


 .

Consequently, we have for instance

Γ0
00 =

1

2

3∑

α=0

g0α
(
∂g0α
∂t

+
∂g0α
∂t

− ∂g00
∂xα

)

= −1

2

(
∂g00
∂t

+
∂g00
∂t

− ∂g00
∂t

)
= 0,

and similarly Γi00 = 0. Finally,

Γi0j =
1

2

3∑

α=0

giα
(
∂gjα
∂t

+
∂g0α
∂xj

− ∂g0j
∂xα

)

=
1

2

3∑

k=1

γik
(
∂gjk
∂t

+
∂g0k
∂xj

− ∂g0j
∂xk

)

=
1

2

3∑

k=1

γik
∂γjk
∂t

=
3∑

k=1

γikβkj .

(5) Writing V = aU +W with W orthogonal to U (hence spacelike)
we have

〈V, V 〉 = a2〈U,U〉+ 〈W,W 〉 = −a2 + 〈W,W 〉,
and so

〈U, V 〉2 = a2〈U,U〉2 = a2 = −〈V, V 〉+ 〈W,W 〉.
Moreover, since 〈W,W 〉 ≥ 0, we obtain

〈U, V 〉2 + 〈V, V 〉 ≥ 0,

and consequently

〈U, V 〉2 + 1

2
〈V, V 〉 > 〈U, V 〉2 + 〈V, V 〉 ≥ 0.

(6) For such a spacetime one has

Ric = 4πρ(2ν ⊗ ν + g) + Λg,

where ν is the 1-form associated to the unit velocity field U . If V
is a unit timelike vector field, we have

Ric(V, V ) = 8πρ〈U, V 〉2 − 4πρ− Λ.
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Notice that the strong energy condition is equivalent to the require-
ment that Ric(V, V ) ≥ 0 for every unit timelike vector field V . This
condition can be written as

8πρ cosh2 u− 4πρ− Λ ≥ 0,

where u is the hyperbolic angle between U and V (which we as-
sume without loss of generality to have the same time orientation).
Assume that the strong energy condition holds. For u = 0 we have

4πρ− Λ ≥ 0,

whereas making u→ +∞ yields

ρ ≥ 0.

On the other hand, if ρ ≥ 0 and 4πρ− Λ ≥ 0 we have

8πρ cosh2 u− 4πρ− Λ = 8πρ(cosh2 u− 1) + 4πρ− Λ ≥ 0,

and so the strong energy condition holds.
(7) Clearly, simple neighborhoods form a basis for the topology of M ,

and so for every open cover {Vα}α∈A there is a refinement {Uβ}β∈B
by simple neighborhoods, i.e.

⋃

α∈A
Vα =

⋃

β∈B
Uβ

and for each β ∈ B there exists α ∈ A such that Uβ ⊂ Vα.
Let us assume first that V :=

⋃
α∈A Vα is compact. Then there

is a finite subcover {Uβi}ki=1 such that

V =
k⋃

i=1

Uβi .

Clearly {Uβi}ki=1 is a countable locally finite refinement of the open
cover {Vα}α∈A by simple neighborhoods.

If V is not compact we can use a compact exhaustion, that is a
sequence {Ki}i∈N of compact subsets of V such thatKi ⊂ Ki+1 and
M = ∪∞

i=1Ki (see Remark 7.4 in Chapter 2). The family {Uβ}β∈B
is a cover of K1 so we can consider a finite subcover of K1

{Uβ1 , . . . , Uβk1}.
By induction, we obtain a finite collection of neighborhoods

{Uβi1 , . . . , Uβiki}

that covers Ki \ intKi−1 (a compact set). Note that, by taking
smaller simple neighborhoods if necessary, we can assume that

ki⋃

j=1

Uβij
⊂ intKi+1 \Ki−2
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and so the countable cover {Uβij}i∈N, 1≤j≤ki is locally finite and the

result follows.
(8) First note that a similar argument to that of Proposition 8.6 shows

that D−(S) ∩ J+(p) is compact.
(i) Consider a sequence of points qn ∈ J+(p) converging to a

point q ∈ M , and let S be a Cauchy surface with t(S) >
t(q) (where t : M → R is the global time function of M),
so that q ∈ D−(S). Then for sufficiently large n ∈ N we
have qn ∈ A := D−(S) ∩ J+(p), and so, since A is compact,
q ∈ A ⊂ J+(p).

(ii) First note that (i) holds for J−(q), that is, J−(q) is closed
for any q ∈ M . Hence the set B := J+(p) ∩ J−(q) is closed.
Taking a Cauchy surface S such that t(S) = t(q), we have
that B is a closed subset of the compact set D−(S) ∩ J+(p),
implying that it is itself a compact set.

(9) Let γ ∈ C(S, p). Then there exists a sequence γn ∈ T (S, p) such
that γn → γ. We begin by showing that γ intersects each level set
Sa := t−1(a) for 0 ≤ a ≤ t(p). Indeed, if γ ∩ Sa = ∅ then, since
γ is compact and Sa closed, the distance between them would be
greater than some ε > 0. But since each γn intersects Sa we would
have dH(γ, γn) > ε, a contradiction. A similar argument shows
that γ cannot intersect Sa for a < 0 or a > t(p).

It is easy to check that the map πa : C(S, p) → C(Sa) given
by πa(c) = c ∩ Sa is a continuous map (here C(Sa) is the set of
all compact subsets of Sa with the Hausdorff metric). Therefore
πa(γn) → πa(γ). Since each πa(γn) is a point, πa(γ) is also a point,
and so γ can be thought of as a map γ : [0, t(p)] →M .

To see that γ is a causal curve we notice that if 0 ≤ a < b ≤ t(p)
we have γn(a) → γ(a) and γn(b) → γ(b) with γn(b) ∈ I+(γn(a)).
If q ∈ I−(γ(a)) then, for sufficiently large n, γn(a) ∈ I+(q), and

hence γn(b) ∈ I+(q). It follows that γ(b) ∈ I+(q) = J+(q) (recall

that J+(q) ⊂ I+(q) is closed), and hence q ∈ J−(γ(b)). Taking a
sequence of points qn ∈ I−(γ(a)) with qn → γ(a), we conclude that
γ(a) ∈ J−(γ(b)).

Finally, γ must be continuous: if an ∈ [0, t(p)] is an increasing
sequence with limit a ∈ [0, t(p)] then γ(an) → γ(a), for otherwise
there would exist a subsequence bn with γ(bn) → q ∈ Sa, and we
would have γ(bn) 6∈ J−(γ(a)) for sufficiently large n.

(10) The proof is entirely analogous to that of Theorem 8.8, replacing
T (S, p) by the set T (p, q) of all timelike curves connecting p to q.
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(11) In the usual local coordinates (t, r, θ, ϕ), the future-directed time-
like geodesic corresponding to an equatorial circular orbit satisfies

{
ṫ =

(
1− 3m

r

)− 1
2

rϕ̇2 = m
r2
ṫ2

when parameterized by its proper time (cf. Exercise 5.1.2). There-
fore ∣∣∣∣

dϕ

dt

∣∣∣∣ =
(m
r3

) 1
2
,

and the period of the orbit is

∆t = 2π

(
r3

m

) 1
2

when measured in the time coordinate t. The proper time measured
by the orbiting observer is therefore

∆τ =
∆t

ṫ
= ∆t

(
1− 3m

r

) 1
2

.

On the other hand, the stationary observer which is present at
events p and q measures a proper time

∆τst = ∆t

(
1− 2m

r

) 1
2

(cf. Exercise 5.1.3). Therefore ∆τst > ∆τ , i.e. the (free-falling)
orbiting observer measures less proper time between p and q than
the (accelerated) stationary observer. In other words, the timelike
geodesic corresponding to the circular orbit is not maximizing.

(12) Let p ∈ M and take a normal sphere S = Sδ(p). Because (M, g)
is complete, we can define the map exp : R × S → M using the
outward-pointing unit normal, and M = Bδ(p)∪ exp(R×S). Since
S is compact, we have θ ≤ θ0 on S for some θ0 > 0. Exactly the
same calculation as in the proof of Proposition 8.4 shows that

∂θ

∂t
+

1

n− 1
θ2 ≤ −ε,

where n = dimM . In particular,

∂θ

∂t
≤ −ε,

and hence θ ≤ −1 for some t ≤ 1+θ0
ε along any geodesic (note that

the line θ = −εt + θ0 crosses the line θ = −1 at t = 1+θ0
ε ). From

that point on we have

∂θ

∂t
+

1

n− 1
θ2 ≤ 0 ⇒ 1

θ
≥ t

n− 1
− 1.
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We conclude that each outward-directed geodesic orthogonal to S
reaches a conjugate point in arclength at most

1 + θ0
ε

+ n− 1,

where it ceases to be minimizing. Thus all points in M are closer
to p than

δ +
1 + θ0
ε

+ n− 1,

meaning that M is bounded and hence compact.
Notice that in the Riemannian setting no contradictions are

obtained: all points on a geodesic past the conjugate point can be
reached from S by a geodesic which is shorter (not longer, as in the
Lorentzian case), and hence hasn’t necessarily reached a conjugate
point itself. Thus the proof of the singularity theorem does not
work in Riemannian geometry.

(13) (a) Minkowski spacetime does not contain a Cauchy hypersurface
whose expansion satisfies θ ≤ θ0 < 0.

(b) The Einstein universe does not contain a Cauchy hypersurface
whose expansion satisfies θ ≤ θ0 < 0

(c) The de Sitter universe does not satisfy the strong energy con-
dition (cf. Exercise 6).

(d) The 2-dimensional anti-de Sitter spacetime is not globally hy-
perbolic; notice however that any globally hyperbolic open
subset of this spacetime is geodesically incomplete.

Section 9.

(1) It is easily seen that

(gµν) =




α −1 β2 β3
−1 0 0 0
β2 0 γ22 γ23
β3 0 γ32 γ33




−1

=




0 −1 0 0
−1 δ β2 β3

0 β2 γ22 γ23

0 β3 γ32 γ33


 ,

where βi =
∑3

j=2 γ
ijβj and δ =

∑3
i=2 βiβ

i − α. Consequently, we
have for instance

Γuur =
1

2

3∑

α=0

guα
(
∂grα
∂u

+
∂guα
∂r

− ∂gur
∂xα

)

= −1

2

(
∂grr
∂u

+
∂gur
∂r

− ∂gur
∂r

)
= 0,
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and similarly Γurr = Γuri = Γrrr = Γirr = 0. Finally,

Γirj =
1

2

3∑

α=0

giα
(
∂gjα
∂r

+
∂grα
∂xj

− ∂grj
∂xα

)

=
1

2
βi
(
∂grj
∂r

+
∂grr
∂xj

− ∂grj
∂r

)
+

1

2

3∑

k=2

γik
(
∂gjk
∂r

+
∂grk
∂xj

− ∂grj
∂xk

)

=
1

2

3∑

k=2

γik
∂γjk
∂r

=
3∑

k=2

γikβkj .

(2) (a) The proof of Proposition 8.6 can be used almost word by word
if we take p1 to be an accumulation point in Σ of initial points
of the curves cn connecting Σ to the points qn.

(b) The proof of Corollary 8.7 applies (cf. Exercise 8.12.8).
(3) (a) Minkowski spacetime does not contain trapped surfaces.

(b) The Einstein universe has compact Cauchy hypersurfaces.
(c) The de Sitter universe has compact Cauchy hypersurfaces.
(d) The 2-dimensional anti-de Sitter spacetime is not globally hy-

perbolic; notice however that any globally hyperbolic open
subset of this spacetime is geodesically incomplete.
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1-parameter group
of diffeomorphisms, 33
of isometries, 103

Aberration, 246
Acceleration

covariant, 132
proper, 247

Action
determined by a Lagrangian, 194
infinitesimal, 197
of a discrete group, 43
of a group, 41
Hamiltonian, 225
Poisson, 225

Action-angle coordinates, 229
Affine

connection, 95
map, 45, 102, 146
parameter, 100

Alternating tensor, 63
Ambrose theorem, 115
Angle, 93

hyperbolic, 245, 260
Angular

momentum, 162, 173, 199, 202
velocity, 175, 181

Anti-de Sitter universe, 289, 292, 298
Anti-trapped surface, 297
Antipodal map, 17
Arclength, 100
Arnold-Liouville theorem, 214
Atlas, 12

equivalence, 12
maximal, 12

Ball
normal, 106
open, 115

Basis

associated to a parameterization, 20
change of, 86
dual, 85
equivalence, 48
of a fiber bundle, 57
of a topology, 54
orthonormal, 243
orientation, 48

Bi-invariant metric, 110
curvature, 124
geodesic, 110
Levi-Civita connection, 110

Bianchi identity, 119
Biangle, 140
Big bang, 268
Big crunch, 269
Birkhoff ergodicity theorem, 215

discrete version, 218
Birkhoff theorem, 265
Black hole, 259
Bolyai, 91, 117
Boundary

of a differentiable manifold with
boundary, 52

of a topological manifold with
boundary, 9

Brachistochrone curve, 199
Brouwer fixed point theorem, 85
Bump function, 88
Bundle

cotangent, 69
fiber, 57
tangent, 21, 24, 50

Canonical
immersion, 24
symplectic form, 205
symplectic form with magnetic term,

228
symplectic potential, 205
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Car and garage paradox, 244
Cartan, 61
Cartan connection, 249
Cartan formula, 76
Cartan structure equations, 129
Cartan-Hadamard theorem, 115
Casimir function, 221
Cauchy hypersurface, 278, 280
Cauchy sequence, 116
Causal

continuous curve, 286
curve, 272
future, 272, 275, 294
past, 272, 275, 294

Center of mass, 169, 179, 201
Central field, 161, 211, 216
Centrifugal force, 181
Chain rule, 23
Chandler precession, 181
Change of basis matrix, 86
Change of variables theorem, 87
Chart, 11
Chern, 154
Christoffel symbols, 96

for the 2-sphere, 162
for the hyperbolic plane, 164

Chronological
future, 272, 275, 294
past, 272, 275, 294
spacetime, 277, 279

Chronology condition, 277, 279
Circle, 6
Circular orbit, 216, 217, 261, 264, 291
Clifton-Pohl torus, 289
Closed

form, 74
set, 54

Coframe, 125
orthonormal, 140

Collapse, 270
Commutator

of matrices, 39
of vector fields, 30

Compact
exhaustion, 89
subset, 55
topological space, 55

Compactly supported
form, 76
function, 84

Complete
integrability, 211
metric space, 116

Riemannian manifold, 112, 279
vector field, 33

Configuration space, 158
Conformally related metrics, 160
Conjugate point, 111, 280, 292
Connected

subset, 55
sum, 8
topological space, 55

Connection
affine, 95
Cartan, 249
compatible with the metric, 99
forms, 126
Levi-Civita, 99
symmetric, 98

Conservation of energy, 159, 191, 196
Conservative

force, 159
mechanical system, 159
mechanical system with magnetic

term, 210
Constant curvature manifold, 122, 140,

266
Constraint

holonomic, 165
non-holonomic, 184
semi-holonomic, 186
true non-holonomic, 186

Continuity equation for an
incompressible fluid, 183

Continuous
causal curve, 286
map, 54

Contractible manifold, 76
Contraction

of a tensor, 123
of a tensor by a vector, 68

Contravariant tensor, 62
Convergence of a sequence, 55
Coordinate

chart, 11
neighborhood, 11

Coordinate system, 11
normal, 110, 272
synchronized, 281
action-angle, 229
Darboux, 219

Copernican principle, 266
Coriolis force, 181
Cosmological constant, 270
Cotangent

bundle, 69
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space, 68
Covariant

acceleration, 132
tensor, 62, 69

Covariant derivative
of a 1-form, 99
of a tensor field, 99
of a vector field, 96
of a vector field along a curve, 97

Covering, 44
manifold, 44
map, 44
transformation, 44
universal, 44

Critical
density, 268
value, 27

Critical point, 27
nondegenerate, 139
of the action, 194

Curvature
forms, 128
Gauss, 121, 133, 140, 149, 152, 153
geodesic, 132, 133, 153
mean, 149
nonpositive, 111
normal, 151
of a bi-invariant metric, 124
of a curve, 152
operator, 111, 118
principal, 149, 152
scalar, 123
sectional, 120, 153
tensor, 119

Curve
brachistochrone, 199
causal, 272
compatible with a holonomic

constraint, 165
compatible with a non-holonomic

constraint, 184
curvature, 152
differentiable, 18
future-directed, 272
future-inextendible, 277
geodesic, 97
length, 93
past-inextendible, 277
piecewise differentiable, 108
timelike, 241, 251
variation, 194

Cut locus, 111
Cycloid, 200

Cylinder, 8

D’Alembert principle, 166, 188
Darboux theorem, 219
Dark energy, 271
De Rham cohomology, 75
De Sitter universe, 271, 292, 298
Deck transformation, 44
Deflection of light, 265
Degree of a map, 82
Density

critical, 268
function, 171
of matter, 248
rest, 251

Derivative
covariant, 96, 97, 99
directional, 30, 34, 95
exterior, 72, 74
of a differentiable map, 21

Diffeomorphism, 16
group, 33
local, 16

Differentiable
action, 42
curve, 18
distribution, 184, 191
form, 71
infinitely, 16, 56
manifold, 11
manifold with boundary, 51
map, 16, 56
structure, 12
tensor field, 69
vector field, 29

Differential
form, see also Form
of a function, 68
of a map, 22

Directional derivative, 30, 34, 95
Discrete group, 43
Distance

between simultaneous events, 236
on a connected Riemannian manifold,

112
Distribution, 184

differentiable, 184, 191
integrable, 186, 187, 191
orthogonal, 187

Divergence
of a vector field, 85, 104

Domain of dependence, 278, 279
future, 278
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past, 278
Doppler effect, 245
Double covering

orientable, 51
time-orientable, 278

Double pendulum, 169
Dual

basis, 85
space, 62, 85

Dumbbell, 169

Einstein, 235
Einstein field equation, 251
Einstein universe, 271, 292, 298
Einstein-de Sitter universe, 271
Electric

field, 200
potential, 200

Embedding, 25, 28
Energy

conservation, 159, 191, 196
kinetic, 159
mechanical, 159
potential, 159

Energy-momentum tensor, 251
Enterprise, 247
Equations of structure, 129
Equilibrium point, 233
Equinox precession, 182
Equivalence

class, 55
of atlases, 12
of bases, 48
principle, 249, 250
relation, 55

Euclidean
space, 92, 118, 129, 142
surface, 144, 146

Euler, 157
Euler angles, 178
Euler characteristic, 11, 137, 139

of a Lie group, 147
of the sphere, 138
of the torus, 138

Euler equations, 175
for an incompressible fluid, 183

Euler force, 181
Euler top, 175
Euler-Lagrange equations, 194
Event, 236

horizon, 258
simultaneity, 236

Exact form, 74

Expansion, 281, 293
Exponential map

on a Lie group, 41, 110
on a Riemannian manifold, 105, 110

Extended Hamiltonian function, 203
Exterior derivative, 72, 74
External force, 158

conservative, 159
positional, 159

Fermat metric, 254
Fermi-Walker transport, 252
Fiber

bundle, 57
derivative, 196

Field
central, 161, 211, 216
electric, 200
electromagnetic, 200
magnetic, 200
of dual coframes, 125
of frames, 125
tensor, 68
vector, 29

First integral, 210
Fixed point, 42, 233

hyperbolic, 233
nondegenerate, 233
stable, 233

Flow
commuting, 34
geodesic, 109
Hamiltonian, 207
linear, 214
of a left-invariant vector field, 40
of a vector field, 33

Fluid
incompressible, 183
perfect, 251

Foliation, 186
leaf, 186
singular, 222

Force
centrifugal, 181
conservative, 159
Coriolis, 181
Euler, 181
external, 158
inertial, 181
positional, 159
reaction, 166, 188

Form, 70
closed, 74
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compactly supported, 76
connection, 126
covariant derivative, 99
curvature, 128
differentiable, 71
exact, 74
Lie derivative, 76
Liouville, 205
local representation, 72
pull-back, 71
symplectic, 205
volume, 83

Foucault pendulum, 102
Frame

field of, 125
inertial, 236
orthonormal, 128
rest, 247
rotating, 253

Free
action, 42
particle, 158, 236

Freedman, 17
Friedmann-Lemâıtre-Robertson-Walker

model, 266, 269, 270, 279, 288, 297
with a cosmological constant, 270

Frobenius theorem, 186
Fubini theorem, 90
Function

bump, 88
compactly supported, 84
continuously differentiable, 56
differential, 68
extended Hamiltonian, 203
Hamiltonian, 196
infinitely differentiable, 56
Morse, 139
upper semicontinuous, 286
Casimir, 221

Fundamental group, 44, 58
Future

causal, 272, 275, 294
chronological, 272, 275, 294
domain of dependence, 278

Future-directed
causal curve, 272
timelike curve, 272

Future-inextendible causal curve, 277
Future-pointing vector, 241, 244

Galileo, 157, 235
Galileo group, 236
Galileo spacetime, 236

Galileo transformation, 237
Gauss, 5, 91, 117, 151
Gauss curvature, 121, 133, 140, 152, 153

of an isometric embedding, 149
Gauss map, 149
Gauss-Bonnet theorem, 136

for manifolds with boundary, 139
for non-orientable manifolds, 139

General linear group, 36
General relativity, 250
Geodesic, 97

biangle, 140
completeness, 112
curvature, 132, 133, 153
flow, 109
homogeneity, 105
maximizing, 285, 291
minimizing, 108
null, 250, 276
of a bi-invariant metric, 110
of the hyperbolic plane, 103
of the hyperbolic space, 146
of the Schwarzschild spacetime, 263
precession, 261
reparameterized, 160, 199
spacelike, 250
timelike, 250
triangle, 102, 140, 260

Geodesically convex neighborhood, 272
Global time function, 277
Globally hyperbolic spacetime, 278, 279
Golfer dilemma, 194
Gompf, 17
Gradient, 94, 95

symplectic, 207
Grassmannian, 47
Gravitational

collapse, 270
potential, 248
redshift, 261

Gromov, 93
Group, 57

abelian, 57
action, 41
fundamental, 44, 58
Galileo, 236
general linear, 36
homomorphism, 57
isomorphism, 57
Lie, 36
Lorentz, 241
orthogonal, 36
rotation, 37
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special linear, 37
special orthogonal, 37, 170
special unitary, 38
unitary, 38

Half space, 9, 51
Hamilton, 157
Hamilton equations, 204
Hamiltonian

completely integrable, 211
extended function, 203
flow, 207
function, 196
vector field, 207, 221
action, 225

Harmonic
oscillator, 163

Hartman-Grobman theorem, 233
Hausdorff metric, 285
Hausdorff space, 6, 54
Hawking, 259, 268, 280
Hawking theorem, 287
Hessian, 139
Hilbert, 147
Holonomic constraint, 165
Homeomorphism, 54
Homogeneity of geodesics, 105
Homogeneous

Riemannian manifold, 115
space, 42

Homomorphism
of groups, 57
of Lie algebras, 31, 209

Homotopy, 58
invariance, 82
smooth, 76, 82

Hopf-Rinow theorem, 113
Hubble constant, 268
Hubble law, 269
Hyper-regular Lagrangian, 203
Hyperbolic

angle, 245, 260
plane, 102, 132, 144, 147, 164
space, 133, 141, 146, 252
surface, 144
fixed point, 233

Hypersurface, 149
Cauchy, 278, 280
simultaneity, 236

Ice skate, 185, 187, 192
Immersion, 24, 28

canonical, 24

isometric, 148
Impact parameter, 264
Incompressible fluid

continuity equation, 183
Euler equation, 183

Independence
of frequencies, 215
of functions, 211

Index of a singularity, 134
Induced

metric, 92
orientation, 53, 79

Inertia
ellipsoid, 181
moment of, 174, 175, 180
Newton’s law of, 236

Inertial
force, 181
frame, 236
observer, 238, 245

Infinitely differentiable, 16
function, 56

Infinitesimal action, 197
Inner product, 92
Instantaneous rest frame, 247
Integrable

distribution, 186, 187, 191
Hamiltonian, 211

Integral
curve, 31
of a compactly supported form, 77
of a compactly supported function, 84
submanifold, 186

Interior
of a set, 54
point on a manifold with boundary, 9

Inverse function theorem, 57
Involution of functions, 211
Isometric immersion, 148
Isometry, 93, 101

group, 143
of the Euclidean plane, 144, 146
of the hyperbolic plane, 144, 147
of the sphere, 102, 146, 147
subgroup, 143

Isomorphism
of groups, 57
of Lie algebras, 31

Isotropic Riemannian manifold, 121,
125

Isotropy subgroup, 42, 212

Jacobi, 157
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Jacobi equation, 111
Jacobi field, 111
Jacobi identity, 31
Jacobi metric, 160
Jacobi theorem, 160
Jacobian matrix, 56

KAM theorem, 215
Kepler problem, 164
Kernel of a group homomorphism, 57
Kervaire, 14, 17
Killing vector field, 103
Killing-Hopf theorem, 143
Kinetic energy, 159
Kirillov theorem, 222
Klein bottle, 7, 9, 147, 278
Koszul formula, 100
Kronecker symbol, 39
Kruskal extension, 259

Lagrange, 157
Lagrange top, 179, 182, 217
Lagrangian, 194

G-invariant, 197
action determined by, 194
hyper-regular, 203

Laplace, 157
Laplace equation, 248
Leaf

of a foliation, 186
symplectic, 222

Left-invariant
metric, 95, 171
vector field, 38, 40

Legendre transformation, 203
Leibniz rule, 31, 210, 220
Length

contraction, 243
of a differentiable curve, 93
of a piecewise differentiable curve,

108
of a vector, 93
of a vector in Minkowski spacetime,

240
Levi-Civita connection, 99

of a bi-invariant metric, 110
of the hyperbolic plane, 102, 164
of the sphere, 102, 162

Levi-Civita theorem, 100
Lie algebra, 31, 209

homomorphism, 31, 209
isomorphism, 31
of a Lie group, 38

of the general linear group, 39
of the orthogonal group, 40
of the special linear group, 40
of the special orthogonal group, 40,

173
of the special unitary group, 40
of the unitary group, 40
of vector fields on a manifold, 31

Lie bracket, 30
Lie derivative

of a form, 76
of a function, 35
of a tensor field, 70
of a vector field, 35

Lie group, 36
bi-invariant metric, 110
Euler characteristic, 147
exponential map, 41, 110
homomorphism, 41
left-invariant metric, 95, 171
left-invariant vector field, 38, 40
of isometries, 143

Lie theorem, 44
Light

cone, 241, 258
deflection, 265

Lightlike, see also null
Linear

flow, 214
momentum, 201

Linear fractional transformations, 154
Liouville form, 205
Liouville theorem, 208
Lobachevsky, 91, 117
Local

diffeomorphism, 16
isometry, 93

Local immersion theorem, 24
Local representation

of a form, 72
of a map, 16

Loop, 58
Lorentz group, 241
Lorentz transformation, 242
Lorentzian manifold, 250
Lucas problem, 237

Möbius band, 8, 9, 50, 147
Möbius transformation, 17, 154
Magnetic

field, 200
vector potential, 200

Manifold
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contractible, 76
covering, 44
differentiable, 11
isotropic, 121, 125
Lorentzian, 250
of constant curvature, 122, 140, 266
orientable, 49, 83
oriented, 50
Poisson, 220
product, 14
pseudo-Riemannian, 250
Riemannian, 92
simply connected, 58
symplectic, 218
topological, 6
with boundary, 9, 51

Map
affine, 45, 102, 146
antipodal, 17
continuity, 54
covering, 44
degree, 82
derivative, 56
differentiable, 16, 56
differential, 22
exponential, 41, 105, 110
Gauss, 149
homotopy, 58
orientation preserving, 50
orientation reversing, 50
momentum, 225
Poisson, 224

Mass
center of, 169, 179, 201
distribution, 170
of the Schwarzschild solution, 258
operator, 158

Matrix
change of basis, 86
commutator, 39
exponential, 41
group, 41
Jacobian, 56

Matter density function, 248
Maximal atlas, 12
Mean curvature, 149
Mechanical energy, 159
Mechanical system, 158

conservative, 159
conservative with magnetic term, 210
motion, 158

Metric
bi-invariant, 110

conformally related, 160
Fermat, 254
Hausdorff, 285
induced, 92
Jacobi, 160
left-invariant, 95, 171
Minkowski, 239
pseudo-Riemannian, 250
quotient, 95
Riemannian, 92

Metric space, 115
completeness, 116
topology, 115

Milne universe, 271
Milnor, 14, 17
Minimal surface, 154
Minkowski, 235
Minkowski metric, 239
Minkowski spacetime, 240, 279, 291, 298
Mixed tensor, 62
Moment of inertia

principal, 174, 180
tensor, 174, 175

Momentum
angular, 162, 173, 199, 202
linear, 201
map, 225

Morse function, 139
Morse theorem, 139
Motion

of a mechanical system, 158
periodic, 163, 164

Myers theorem, 291

Nash, 93
Neighborhood, 54

coordinate, 11
geodesically convex, 272
normal, 105
simple, 283

Newton, 157, 235
Newton equation, 158, 161

for a conservative system, 161
generalized, 166, 188

Newton’s law of inertia, 236
Newton’s second law, 158
Nodal line, 178
Noether theorem, 197

Hamiltonian version, 225
Non-holonomic constraint, 184
Nondegenerate

2-tensor, 92
critical point, 139
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fixed point, 233
Normal

ball, 106
coordinates, 110, 272
curvature, 151
modes, 169
neighborhood, 105
sphere, 106
subgroup, 57

Null
geodesic, 250, 276
vector, 241, 244

Observer
in a rotating frame, 253
inertial, 238, 245
stationary, 257

Open
ball, 115
cover, 54
equivalence relation, 55
set, 54

Orbit, 164
circular, 216, 217, 261, 264, 291
of a group action, 42
periodic, 163
space, 42

Orientable
double covering, 51
manifold, 49, 83

Orientation
induced on the boundary, 53, 79
number, 49
of a basis, 48
of a manifold, 49, 84
of a vector space, 48
time, 241

Orientation preserving
linear map, 48
map, 50

Orientation reversing
linear map, 48
map, 50

Oriented manifold, 50
Orthogonal

distribution, 187
group, 36

Orthonormal
basis, 243
field of coframes, 140
field of frames, 128

Painlevé time coordinate, 258, 265

Paradox
car and garage, 244
twin, 244, 245, 253, 275

Parallel
postulate, 102, 103
transport, 97, 102, 103

Parameter
affine, 100
impact, 264

Parameterization, 11
Particle

free, 158, 236
in a central field, 161, 211, 216
in an electromagnetic field, 200
on a surface, 165, 167

Partition of unity, 77, 87
Past

causal, 272, 275, 294
chronological, 272, 275, 294
domain of dependence, 278

Past-inextendible causal curve, 277
Pathwise connected space, 186
Pendulum

double, 169
Foucault, 102
simple, 165, 167, 168
spherical, 169

Penrose, 259, 268, 280
Penrose theorem, 296
Perfect

fluid, 251
reaction force, 166, 167, 188

Pericenter, 164
Perihelion precession, 264
Periodic

motion, 163, 164
orbit, 163

Picard-Lindelöf theorem, 32, 97
Piecewise differentiable curve, 108
Poincaré recurrence theorem, 208, 210
Poincaré lemma, 76
Poinsot theorem, 181
Poisson, 157
Poisson action, 225
Poisson bivector, 222
Poisson bracket, 209, 220
Poisson equation, 248
Poisson manifold, 220
Poisson map, 224
Polar coordinates, 161
Positional force, 159
Positive definite

2-tensor, 92
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linear operator, 174
Potential

electric, 200
energy, 159
gravitational, 248
magnetic, 200

Precession
Chandler, 181
geodesic, 261
of Mercury’s perihelion, 264
of the angular velocity, 181
of the equinoxes, 182
Thomas, 253

Principal
axis, 174, 180
curvature, 149, 152
direction, 149
moment of inertia, 174, 180

Principle
Copernican, 266
equivalence, 249, 250
relativity, 237

Product
manifold, 14
orientation, 50
topology, 55

Projection
bundle map, 21
stereographic, 14, 17

Projective
plane, 7, 9
space, 15, 43, 85

Proper
acceleration, 247
action, 42
map, 42, 57
time, 217, 241, 251

Pseudo-Riemannian
manifold, 250
metric, 250

Pseudo-rigid body, 182
Pseudosphere, 144
Pull-back

of a covariant tensor, 69
of a form, 71

Push-forward, 22
of a vector field, 31

Quaternions, 47, 58
Quotient

metric, 95
space, 55
topology, 55

Rank theorem, 27
Reaction force, 166, 188

perfect, 166, 167, 188
Redshift

Doppler, 245
gravitational, 261

Regular
point, 27
value, 27

Relativity
general, 250
of simultaneity, 243
principle, 237
special, 240

Reparameterization, 95, 160, 199
Resonant torus, 216
Rest

density, 251
frame, 247

Restricted 3-body problem, 200
Reversed triangle inequality, 245
Ricci tensor, 122, 249, 291
Riemann, 5, 91, 117
Riemann tensor, 118
Riemannian manifold, 92

complete, 112, 279
homogeneous, 115
isotropic, 121, 125
of constant curvature, 122, 140, 266
volume element, 94

Riemannian metric, 92
Rigid body, 165, 167, 169

general, 179
mass distribution, 170
symmetry, 180
with a fixed point, 170

Rotating frame, 253
Rotation group, 37

Sagnac effect, 254
Sard theorem, 83
Scalar curvature, 123
Schur theorem, 146
Schwarzschild solution, 255, 279, 289,

297
geodesic, 263
mass, 258

Second countability axiom, 6, 54
Second fundamental form, 148, 152

of a distribution, 188
along a normal vector, 148

Sectional curvature, 120, 153
Semi-holonomic constraint, 186
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Sequence
Cauchy, 116
convergence, 55

Signature, 243, 250, 252
Simple

neighborhood, 283
pendulum, 165, 167, 168

Simply connected
covering manifold, 44
manifold, 58

Simultaneity
hypersurface, 236
of events, 236
relativity of, 243

Singular
point, 134
spacetime, 280
foliation, 222

Singularity
index, 134
isolated, 134

Smale, 14
Smooth, see also differentiable
Spacelike

geodesic, 250
vector, 240, 244

Spacetime, 236, 250
chronological, 277, 279
Friedmann-Lemâıtre-Robertson-

Walker, 266, 269, 270, 279, 288,
297

Galileo, 236
globally hyperbolic, 278, 279
Minkowski, 240, 279, 291, 298
Schwarzschild, 255, 279, 289, 297
singular, 280
stably causal, 277, 279
static, 254
time-orientable, 272
time-oriented, 272

Special linear group, 37
Special orthogonal group, 37, 170
Special relativity, 240
Special unitary group, 38
Sphere, 6, 13, 28, 132, 133

curvature, 142, 153
Euler characteristic, 138
isometry, 102, 146, 147
Levi-Civita connection, 102, 162
normal, 106
parallel transport, 102, 103
rolling without slipping, 192
standard differentiable structure, 15

standard metric, 93, 101
symplectic structure, 228

Spherical pendulum, 169
Stabilizer, 42
Stable fixed point, 233
Stably causal spacetime, 277, 279
Standard

differentiable structure on RPn, 15
differentiable structure on Rn, 13
differentiable structure on Sn, 15
metric on RPn, 95
metric on S2, 101
metric on Sn, 93

Static spacetime, 254
Stationary

observer, 257
solution, 233

Stereographic projection, 14, 17
Stokes theorem, 79
Strong energy condition, 282, 291, 293
Structure

differentiable, 12
equations, 129
functions, 132

Subcover, 54
Subgroup, 57

isotropy, 42, 212
normal, 57

Submanifold, 26, 28
integral, 186

Submersion, 26
Subspace topology, 54
Support of a form, 76
Surface, 14

anti-trapped, 297
Euclidean, 144, 146
hyperbolic, 144
minimal, 154
of revolution, 132, 153, 169, 216
trapped, 296

Symmetric
2-tensor, 92
connection, 98

Symmetry
of a distance function, 112
of a rigid body, 180

Symplectic
canonical potential, 205
gradient, 207
manifold, 218
leaf, 222

Symplectic form
canonical, 205
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canonical with magnetic term, 228
on the sphere, 228

Synchronized coordinate system, 281

Tangent
bundle, 21, 24, 50
space, 19, 23
vector, 19

Tensor, 62
alternating, 63
contraction, 123
contraction by a vector, 68
contravariant, 62
covariant, 62
curvature, 119
energy-momentum, 251
mixed, 62
product, 62
Ricci, 122, 291
Riemann, 118
Poisson, 222

Tensor field, 68
covariant derivative, 99
Lie derivative, 70

Theorema Egregium, 151
Thomas precession, 253
Time

average, 215
coordinate, 217
dilation, 243
function, 236, 277
orientation, 241
Painlevé coordinate, 258, 265
proper, 217, 241, 251

Time-orientable
double covering, 278
spacetime, 272

Time-oriented spacetime, 272
Timelike

curve, 241, 251
geodesic, 250
vector, 240, 244

Tisserand criterion, 201
Topological

manifold, 6
manifold with boundary, 9
space, 54

Topology, 54
basis, 54
metric, 115
product, 55
subspace, 54

Torsion, 98

Torus, 7, 44, 278
Clifton-Pohl, 289
Euler characteristic, 138
flat square metric, 95
of revolution, 7
resonant, 216

Totally geodesic submanifold, 153
Totally normal neighborhood, 108
Tractrix, 147
Tractroid, 147
Transitive action, 42
Transverse vector field, 139
Trapped surface, 296
Triangle inequality, 112

reversed, 245
Triangulation, 11, 137
True non-holonomic constraint, 186
Twin paradox, 244

generalized, 245, 275
on a cylinder, 253

Unitary group, 38
Universal covering, 44
Universe, 266

anti-de Sitter, 289, 292, 298
de Sitter, 271, 292, 298
Einstein, 271, 292, 298
Einstein-de Sitter, 271
Milne, 271

Upper semicontinuous function, 286

Variation of a curve, 194
Vector

future-pointing, 241, 244
length, 93
lightlike, see also null
null, 241, 244
spacelike, 240, 244
tangent, 19
timelike, 240, 244

Vector field, 29
f -related, 35
along a curve, 96
commutator, 30
commuting, 30, 34
compatible with a distribution, 186
complete, 33
covariant derivative, 96
divergence, 85, 104
flow, 33
Hamiltonian, 207, 221
Jacobi, 111
Killing, 103
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left-invariant, 38, 40
Lie algebra, 31
Lie derivative, 35
on a submanifold, 34
parallel along a curve, 97
push-forward, 31
singular point, 134
transverse, 139
velocity, 251

Velocity
addition formula, 245
angular, 175
vector field, 251

Volume
form, 83
of a compact manifold, 84

Volume element, 83
Riemannian, 94

Wedge product, 63
Wheel rolling without slipping, 184,

187, 189, 192
White hole, 259
Whitney, 5
Whitney theorem, 28, 93

Zero measure set, 78
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