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9
An Introduction to Lie Groups

To prepare for the next chapters, we present some basic facts about Lie
groups. Alternative expositions and additional details can be obtained from
Abraham and Marsden [1978], Olver [1986], and Sattinger and Weaver
[1986]. In particular, in this book we shall require only elementary facts
about the general theory and a knowledge of a few of the more basic groups,
such as the rotation and Euclidean groups.

Here are how some of the basic groups occur in mechanics:

Linear and Angular Momentum. These arise as conserved quantities
associated with the groups of translations and rotations in space.

Rigid Body. Consider a free rigid body rotating about its center of mass,
taken to be the origin. “Free” means that there are no external forces, and
“rigid” means that the distance between any two points of the body is
unchanged during the motion. Consider a point X of the body at time
t = 0, and denote its position at time t by f(X, t). Rigidity of the body
and the assumption of a smooth motion imply that f(X, t) = A(t)X, where
A(t) is a proper rotation, that is, A(t) ∈ SO(3), the proper rotation group
of R3, the 3 × 3 orthogonal matrices with determinant 1. The set SO(3)
will be shown to be a three-dimensional Lie group, and since it describes
any possible position of the body, it serves as the configuration space. The
group SO(3) also plays a dual role of a symmetry group, since the same
physical motion is described if we rotate our coordinate axes. Used as a
symmetry group, SO(3) leads to conservation of angular momentum.
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Heavy Top. Consider a rigid body moving with a fixed point but un-
der the influence of gravity. This problem still has a configuration space
SO(3), but the symmetry group is only the circle group S1, consisting of
rotations about the direction of gravity. One says that gravity has broken
the symmetry from SO(3) to S1. This time, “eliminating” the S1 symme-
try “mysteriously” leads one to the larger Euclidean group SE(3) of rigid
motion of R3. This is a manifestation of the general theory of semidirect
products (see the Introduction, where we showed that the heavy top equa-
tions are Lie–Poisson for SE(3), and Marsden, Ratiu, and Weinstein [1984a,
1984b]).

Incompressible Fluids. Let Ω be a region in R3 that is filled with
a moving incompressible fluid and is free of external forces. Denote by
η(X, t) the trajectory of a fluid particle that at time t = 0 is at X ∈ Ω.
For fixed t the map ηt defined by ηt(X) = η(X, t) is a diffeomorphism of
Ω. In fact, since the fluid is incompressible, we have ηt ∈ Diffvol(Ω), the
group of volume-preserving diffeomorphisms of Ω. Thus, the configuration
space for the problem is the infinite-dimensional Lie group Diffvol(Ω). Using
Diffvol(Ω) as a symmetry group leads to Kelvin’s circulation theorem as a
conservation law. See Marsden and Weinstein [1983].

Compressible Fluids. In this case the configuration space is the whole
diffeomorphism group Diff(Ω). The symmetry group consists of density-
preserving diffeomorphisms Diffρ(Ω). The density plays a role similar to
that of gravity in the heavy top and again leads to semidirect products, as
does the next example.

Magnetohydrodynamics (MHD). This example is that of a com-
pressible fluid consisting of charged particles with the dominant electro-
magnetic force being the magnetic field produced by the particles them-
selves (possibly together with an external field). The configuration space
remains Diff(Ω), but the fluid motion is coupled with the magnetic field
(regarded as a two-form on Ω).

Maxwell–Vlasov Equations. Let f(x,v, t) denote the density function
of a collisionless plasma. The function f evolves in time by means of a
time-dependent canonical transformation on R6, that is, (x,v)-space. In
other words, the evolution of f can be described by ft = η∗

t f0, where
f0 is the initial value of f , ft its value at time t, and ηt is a canonical
transformation. Thus, Diffcan(R6), the group of canonical transformations,
plays an important role.

Maxwell’s Equations Maxwell’s equations for electrodynamics are in-
variant under gauge transformations that transform the magnetic (or 4)
potential by A �→ A+∇ϕ. This gauge group is an infinite-dimensional Lie
group. The conserved quantity associated with the gauge symmetry in this
case is the charge.
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9.1 Basic Definitions and Properties

Definition 9.1.1. A Lie group is a (Banach) manifold G that has a
group structure consistent with its manifold structure in the sense that
group multiplication

µ : G × G → G, (g, h) �→ gh,

is a C∞ map.

The maps Lg : G → G, h �→ gh, and Rh : G → G, g �→ gh, are called the
left and right translation maps. Note that

Lg1 ◦ Lg2 = Lg1g2 and Rh1 ◦ Rh2 = Rh2h1 .

If e ∈ G denotes the identity element, then Le = Id = Re, and so

(Lg)−1 = Lg−1 and (Rh)−1 = Rh−1 .

Thus, Lg and Rh are diffeomorphisms for each g and h. Notice that

Lg ◦ Rh = Rh ◦ Lg,

that is, left and right translation commute. By the chain rule,

TghLg−1 ◦ ThLg = Th(Lg−1 ◦ Lg) = Id .

Thus, ThLg is invertible. Likewise, TgRh is an isomorphism.
We now show that the inversion map I : G → G; g �→ g−1 is C∞.

Indeed, consider solving
µ(g, h) = e

for h as a function of g. The partial derivative with respect to h is just ThLg,
which is an isomorphism. Thus, the solution g−1 is a smooth function of g
by the implicit function theorem.

Lie groups can be finite- or infinite-dimensional. For a first reading of
this section, the reader may wish to assume that G is finite-dimensional.1

Examples

(a) Any Banach space V is an Abelian Lie group with group operations

µ : V × V → V, µ(x, y) = x + y, and I : V → V, I(x) = −x.

The identity is just the zero vector. We call such a Lie group a vector
group. �

1We caution that some interesting infinite-dimensional groups (such as groups of
diffeomorphisms) are not Banach–Lie groups in the (naive) sense just given.
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(b) The group of linear isomorphisms of Rn to Rn is a Lie group of
dimension n2, called the general linear group and denoted by GL(n, R).
It is a smooth manifold, since it is an open subset of the vector space
L(Rn, Rn) of all linear maps of Rn to Rn. Indeed, GL(n, R) is the inverse
image of R\{0} under the continuous map A �→ detA of L(Rn, Rn) to R.
For A, B ∈ GL(n, R), the group operation is composition,

µ : GL(n, R) × GL(n, R) → GL(n, R)

given by
(A, B) �→ A ◦ B,

and the inversion map is

I : GL(n, R) → GL(n, R)

defined by
I(A) = A−1.

Group multiplication is the restriction of the continuous bilinear map

(A, B) ∈ L(Rn, Rn) × L(Rn, Rn) �→ A ◦ B ∈ L(Rn, Rn).

Thus, µ is C∞, and so GL(n, R) is a Lie group.
The group identity element e is the identity map on Rn. If we choose a

basis in Rn, we can represent each A ∈ GL(n, R) by an invertible n × n
matrix. The group operation is then matrix multiplication µ(A, B) = AB,
and I(A) = A−1 is matrix inversion. The identity element e is the n ×
n identity matrix. The group operations are obviously smooth, since the
formulas for the product and inverse of matrices are smooth (rational)
functions of the matrix components. �

(c) In the same way, one sees that for a Banach space V , the group
GL(V, V ) of invertible elements of L(V, V ) is a Banach–Lie group. For the
proof that this is open in L(V, V ), see Abraham, Marsden, and Ratiu [1988].
Further examples are given in the next section. �

Charts. Given any local chart on G, one can construct an entire atlas on
the Lie group G by use of left (or right) translations. Suppose, for example,
that (U, ϕ) is a chart about e ∈ G, and that ϕ : U → V . Define a chart
(Ug, ϕg) about g ∈ G by letting

Ug = Lg(U) = {Lgh | h ∈ U }

and defining
ϕg = ϕ ◦ Lg−1 : Ug → V, h �→ ϕ(g−1h).

The set of charts {(Ug, ϕg)} forms an atlas, provided that one can show
that the transition maps

ϕg1 ◦ ϕ−1
g2

= ϕ ◦ Lg−1
1 g2

◦ ϕ−1 : ϕg2(Ug1 ∩ Ug2) → ϕg1(Ug1 ∩ Ug2)
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are diffeomorphisms (between open sets in a Banach space). But this follows
from the smoothness of group multiplication and inversion.

Invariant Vector Fields. A vector field X on G is called left invariant
if for every g ∈ G we have L∗

gX = X, that is, if

(ThLg)X(h) = X(gh)

for every h ∈ G. We have the commutative diagram in Figure 9.1.1 and
illustrate the geometry in Figure 9.1.2.

TG TG

G G

TLg

Lg

X X

�

�

� �

Figure 9.1.1. The commutative diagram for a left-invariant vector field.

h gh
X(h)

X(gh)ThLg

Figure 9.1.2. A left-invariant vector field.

Let XL(G) denote the set of left-invariant vector fields on G. If g ∈ G
and X, Y ∈ XL(G), then

L∗
g[X, Y ] = [L∗

gX, L∗
gY ] = [X, Y ],

so [X, Y ] ∈ XL(G). Therefore, XL(G) is a Lie subalgebra of X(G), the set
of all vector fields on G.

For each ξ ∈ TeG, we define a vector field Xξ on G by letting

Xξ(g) = TeLg(ξ).
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Then

Xξ(gh) = TeLgh(ξ) = Te(Lg ◦ Lh)(ξ)
= ThLg(TeLh(ξ)) = ThLg(Xξ(h)),

which shows that Xξ is left invariant. The linear maps

ζ1 : XL(G) → TeG, X �→ X(e)

and

ζ2 : TeG → XL(G), ξ �→ Xξ

satisfy ζ1 ◦ ζ2 = idTeG and ζ2 ◦ ζ1 = idXL(G). Therefore, XL(G) and TeG
are isomorphic as vector spaces.

The Lie Algebra of a Lie Group. Define the Lie bracket in TeG by

[ξ, η] := [Xξ, Xη](e),

where ξ, η ∈ TeG and where [Xξ, Xη] is the Jacobi–Lie bracket of vector
fields. This clearly makes TeG into a Lie algebra. (Lie algebras were defined
in the Introduction.) We say that this defines a bracket in TeG via left
extension. Note that by construction,

[Xξ, Xη] = X[ξ,η]

for all ξ, η ∈ TeG.

Definition 9.1.2. The vector space TeG with this Lie algebra structure
is called the Lie algebra of G and is denoted by g.

Defining the set XR(G) of right-invariant vector fields on G in the
analogous way, we get a vector space isomorphism ξ �→ Yξ, where Yξ(g) =
(TeRg)(ξ), between TeG = g and XR(G). In this way, each ξ ∈ g defines an
element Yξ ∈ XR(G), and also an element Xξ ∈ XL(G). We will prove that
a relation between Xξ and Yξ is given by

I∗Xξ = −Yξ, (9.1.1)

where I : G → G is the inversion map: I(g) = g−1. Since I is a dif-
feomorphism, (9.1.1) shows that I∗ : XL(G) → XR(G) is a vector space
isomorphism. To prove (9.1.1) notice first that for u ∈ TgG and v ∈ ThG,
the derivative of the multiplication map has the expression

T(g,h)µ(u, v) = ThLg(v) + TgRh(u). (9.1.2)

In addition, differentiating the map g �→ µ(g, I(g)) = e gives

T(g,g−1)µ(u, TgI(u)) = 0



9.1 Basic Definitions and Properties 271

for all u ∈ TgG. This and (9.1.2) yield

TgI(u) = −(TeRg−1 ◦ TgLg−1)(u), (9.1.3)

for all u ∈ TgG. Consequently, if ξ ∈ g, and g ∈ G, we have

(I∗Xξ)(g) = (TI ◦ Xξ ◦ I−1)(g) = Tg−1I(Xξ(g−1))

= −(TeRg ◦ Tg−1Lg)(Xξ(g−1)) (by (9.1.3))

= −TeRg(ξ) = −Yξ(g) (since Xξ(g−1) = TeLg−1(ξ))

and (9.1.1) is proved. Hence for ξ, η ∈ g,

−Y[ξ,η] = I∗X[ξ,η] = I∗[Xξ, Xη] = [I∗Xξ, I∗Xη]
= [−Yξ,−Yη] = [Yξ, Yη],

so that
−[Yξ, Yη](e) = Y[ξ,η](e) = [ξ, η] = [Xξ, Xη](e).

Therefore, the Lie algebra bracket [ , ]R in g defined by right extension
of elements in g,

[ξ, η]R := [Yξ, Yη](e),

is the negative of the one defined by left extension, that is,

[ξ, η]R := −[ξ, η].

Examples

(a) For a vector group V , TeV ∼= V ; it is easy to see that the left-invariant
vector field defined by u ∈ TeV is the constant vector field Xu(v) = u for
all v ∈ V . Therefore, the Lie algebra of a vector group V is V itself, with
the trivial bracket [v, w] = 0 for all v, w ∈ V . We say that the Lie algebra
is Abelian in this case. �

(b) The Lie algebra of GL(n, R) is L(Rn, Rn), also denoted by gl(n),
the vector space of all linear transformations of Rn, with the commutator
bracket

[A, B] = AB − BA.

To see this, we recall that GL(n, R) is open in L(Rn, Rn), and so the Lie
algebra, as a vector space, is L(Rn, Rn). To compute the bracket, note that
for any ξ ∈ L(Rn, Rn),

Xξ : GL(n, R) → L(Rn, Rn)

given by A �→ Aξ is a left-invariant vector field on GL(n, R) because for
every B ∈ GL(n, R), the map

LB : GL(n, R) → GL(n, R)
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defined by LB(A) = BA is a linear mapping, and hence

Xξ(LBA) = BAξ = TALBXξ(A).

Therefore, by the local formula

[X, Y ](x) = DY (x) · X(x) − DX(x) · Y (x),

we get

[ξ, η] = [Xξ, Xη](I) = DXη(I) · Xξ(I) − DXξ(I) · Xη(I).

But Xη(A) = Aη is linear in A, so DXη(I) · B = Bη. Hence

DXη(I) · Xξ(I) = ξη,

and similarly
DXξ(I) · Xη(I) = ηξ.

Thus, L(Rn, Rn) has the bracket

[ξ, η] = ξη − ηξ. (9.1.4)

�

(c) We can also establish (9.1.4) by a coordinate calculation. Choosing a
basis in Rn, each A ∈ GL(n, R) is specified by its components Ai

j such that
(Av)i = Ai

jv
j (sum on j). Thus, a vector field X on GL(n, R) has the form

X(A) =
∑

i,j Ci
j(A)(∂/∂Ai

j). It is checked to be left invariant, provided
that there is a matrix (ξi

j) such that for all A,

X(A) =
∑
i,j,k

Ai
kξk

j

∂

∂Ai
j

.

If Y (A) =
∑

i,j,k Ai
kηk

j (∂/∂Ai
j) is another left-invariant vector field, we

have

(XY )[f ] =
∑

Ai
kξk

j

∂

∂Ai
j

[∑
Al

mηm
p

∂f

∂Al
p

]
=

∑
Ai

kξk
j δl

iδ
j
mηm

p

∂f

∂Al
p

+ (second derivatives)

=
∑

Ai
kξk

j ηj
m

∂f

∂Ai
j

+ (second derivatives),

where we have used ∂As
m/∂Ak

j = δk
s δj

m. Therefore, the bracket is the left-
invariant vector field [X, Y ] given by

[X, Y ][f ] = (XY − Y X)[f ] =
∑

Ai
k(ξk

j ηj
m − ηk

j ξj
m)

∂f

∂Ai
m

.

This shows that the vector field bracket is the usual commutator bracket
of n × n matrices, as before. �
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One-Parameter Subgroups and the Exponential Map. If Xξ is the
left-invariant vector field corresponding to ξ ∈ g, there is a unique integral
curve γξ : R → G of Xξ starting at e, γξ(0) = e and γ′

ξ(t) = Xξ(γξ(t)). We
claim that

γξ(s + t) = γξ(s)γξ(t),

which means that γξ(t) is a smooth one-parameter subgroup. Indeed,
as functions of t, both sides equal γξ(s) at t = 0 and both satisfy the
differential equation σ′(t) = Xξ(σ(t)) by left invariance of Xξ, so they are
equal. Left invariance or γξ(t + s) = γξ(t)γξ(s) also shows that γξ(t) is
defined for all t ∈ R.

Definition 9.1.3. The exponential map exp : g → G is defined by

exp(ξ) = γξ(1).

We claim that
exp(sξ) = γξ(s).

Indeed, for fixed s ∈ R, the curve t �→ γξ(ts), which at t = 0 passes through
e, satisfies the differential equation

d

dt
γξ(ts) = sXξ(γξ(ts)) = Xsξ(γξ(ts)).

Since γsξ(t) satisfies the same differential equation and passes through e at
t = 0, it follows that γsξ(t) = γξ(ts). Putting t = 1 yields exp(sξ) = γξ(s).

Hence the exponential mapping maps the line sξ in g onto the one-
parameter subgroup γξ(s) of G, which is tangent to ξ at e. It follows from
left invariance that the flow F ξ

t of Xξ satisfies F ξ
t (g) = gF ξ

t (e) = gγξ(t), so

F ξ
t (g) = g exp(tξ) = Rexp tξg.

Let γ(t) be a smooth one-parameter subgroup of G, so γ(0) = e in partic-
ular. We claim that γ = γξ, where ξ = γ′(0). Indeed, taking the derivative
at s = 0 in the relation γ(t + s) = γ(t)γ(s) gives

dγ(t)
dt

=
d

ds

∣∣∣∣
s=0

Lγ(t)γ(s) = TeLγ(t)γ
′(0) = Xξ(γ(t)),

so that γ = γξ, since both equal e at t = 0. In other words, all smooth
one-parameter subgroups of G are of the form exp tξ for some ξ ∈ g. Since
everything proved above for Xξ can be repeated for Yξ, it follows that the
exponential map is the same for the left and right Lie algebras of a Lie
group.

From smoothness of the group operations and smoothness of the solu-
tions of differential equations with respect to initial conditions, it follows



274 9. An Introduction to Lie Groups

that exp is a C∞ map. Differentiating the identity exp(sξ) = γξ(s) with
respect to s at s = 0 shows that T0 exp = idg. Therefore, by the inverse
function theorem, exp is a local diffeomorphism from a neighborhood of
zero in g onto a neighborhood of e in G. In other words, the exponential
map defines a local chart for G at e; in finite dimensions, the coordinates
associated to this chart are called the canonical coordinates of G. By
left translation, this chart provides an atlas for G. (For typical infinite-
dimensional groups like diffeomorphism groups, exp is not locally onto a
neighborhood of the identity. It is also not true that the exponential map
is a local diffeomorphism at any ξ �= 0, even for finite-dimensional Lie
groups.)

It turns out that the exponential map characterizes not only the smooth
one-parameter subgroups of G, but the continuous ones as well, as given
in the next proposition (see the internet supplement or Varadarajan [1974]
for the proof).

Proposition 9.1.4. Let γ : R → G be a continuous one-parameter sub-
group of G. Then γ is automatically smooth, and hence γ(t) = exp tξ, for
some ξ ∈ g.

Examples

(a) Let G = V be a vector group, that is, V is a vector space and the
group operation is vector addition. Then g = V and exp : V → V is the
identity mapping. �

(b) Let G = GL(n, R); so g = L(Rn, Rn). For every A ∈ L(Rn, Rn), the
mapping γA : R → GL(n, R) defined by

t �→
∞∑

i=0

ti

i!
Ai

is a one-parameter subgroup, because γA(0) = I and

γ′
A(t) =

∞∑
i=0

ti−1

(i − 1)!
Ai = γA(t)A.

Therefore, the exponential mapping is given by

exp : L(Rn, Rn) → GL(n, Rn), A �→ γA(1) =
∞∑

i=0

Ai

i!
.

As is customary, we will write

eA =
∞∑

i=0

Ai

i!
.
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We sometimes write expG : g → G when there is more than one group
involved. �

(c) Let G1 and G2 be Lie groups with Lie algebras g1 and g2. Then
G1 × G2 is a Lie group with Lie algebra g1 × g2, and the exponential map
is given by

exp : g1 × g2 → G1 × G2, (ξ1, ξ2) �→ (exp1(ξ1), exp2(ξ2)). �

Computing Brackets. Here is a computationally useful formula for the
bracket. One follows these three steps:

1. Calculate the inner automorphisms

Ig : G → G, where Ig(h) = ghg−1.

2. Differentiate Ig(h) with respect to h at h = e to produce the adjoint
operators

Adg : g → g; Adg η = TeIg · η.

Note that (see Figure 9.1.3)

Adg η = Tg−1Lg · TeRg−1 · η.

3. Differentiate Adg η with respect to g at e in the direction ξ to get
[ξ, η], that is,

Teϕ
η · ξ = [ξ, η], (9.1.5)

where ϕη(g) = Adg η.

Adg

TeLg

e

g

TgRg
–1

Figure 9.1.3. The adjoint mapping is the linearization of conjugation.

Proposition 9.1.5. Formula (9.1.5) is valid.
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Proof. Denote by ϕt(g) = g exp tξ = Rexp tξ g the flow of Xξ. Then

[ξ, η] = [Xξ, Xη](e) =
d

dt
Tϕt(e)ϕ

−1
t · Xη(ϕt(e))

∣∣∣∣
t=0

=
d

dt
Texp tξ Rexp(−tξ) Xη(exp tξ)

∣∣∣∣
t=0

=
d

dt
Texp tξ Rexp(−tξ) TeLexp tξ η

∣∣∣∣
t=0

=
d

dt
Te(Lexp tξ ◦ Rexp(−tξ))η

∣∣∣∣
t=0

=
d

dt
Adexp tξ η

∣∣∣∣
t=0

,

which is (9.1.5). �

Another way of expressing (9.1.5) is

[ξ, η] =
d

dt

d

ds
g(t)h(s)g(t)−1

∣∣∣∣
s=0,t=0

, (9.1.6)

where g(t) and h(s) are curves in G with g(0) = e, h(0) = e, and where
g′(0) = ξ and h′(0) = η.

Example. Consider the group GL(n, R). Formula (9.1.4) also follows
from (9.1.5). Here, IAB = ABA−1, and so

AdA η = AηA−1.

Differentiating this with respect to A at A = Identity in the direction ξ
gives

[ξ, η] = ξη − ηξ. �

Group Homomorphisms. Some simple facts about Lie group homo-
morphisms will prove useful.

Proposition 9.1.6. Let G and H be Lie groups with Lie algebras g and
h. Let f : G → H be a smooth homomorphism of Lie groups, that is,
f(gh) = f(g)f(h), for all g, h ∈ G. Then Tef : g → h is a Lie algebra
homomorphism, that is, (Tef)[ξ, η] = [Tef(ξ), Tef(η)], for all ξ, η ∈ g. In
addition,

f ◦ expG = expH ◦Tef.
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Proof. Since f is a group homomorphism, f ◦ Lg = Lf(g) ◦ f . Thus,
Tf ◦ TLg = TLf(g) ◦ Tf , from which it follows that

XTef(ξ)(f(g)) = Tgf(Xξ(g)),

that is, Xξ and XTef(ξ) are f -related . It follows that the vector fields
[Xξ, Xη] and [XTef(ξ), XTef(η)] are also f -related for all ξ, η ∈ g (see Abra-
ham, Marsden, and Ratiu [1988, Section 4.2]). Hence

Tef([ξ, η]) = (Tf ◦ [Xξ, Xη])(e) (where e = eG)
= [XTef(ξ), XTef(η)](ē) (where ē = eH = f(e))
= [Tef(ξ), Tef(η)].

Thus, Tef is a Lie algebra homomorphism.
Fixing ξ ∈ g, note that α : t �→ f(expG(tξ)) and β : t �→ expH(tTef(ξ))

are one-parameter subgroups of H. Moreover, α′(0) = Tef(ξ) = β′(0), and
so α = β. In particular, f(expG(ξ)) = expH(Tef(ξ)), for all ξ ∈ g. �

Example. Proposition 9.1.6 applied to the determinant map gives the
identity

det(expA) = exp(trace A)

for A ∈ GL(n, R). �

Corollary 9.1.7. Assume that f1, f2 : G → H are homomorphisms of
Lie groups and that G is connected. If Tef1 = Tef2, then f1 = f2.

This follows from Proposition 9.1.6, since a connected Lie group G is
generated by a neighborhood of the identity element. This latter fact may
be proved following these steps:

1. Show that any open subgroup of a Lie group is closed (since its com-
plement is a union of group cosets, each of which is homeomorphic
to the given open subgroup).

2. Show that a subgroup of a Lie group is open if and only if it contains
a neighborhood of the identity element.

3. Conclude that a Lie group is connected if and only if it is generated
by arbitrarily small neighborhoods of the identity element.

From Proposition 9.1.6 and the fact that the inner automorphisms are
group homomorphisms, we get the following corollary.

Corollary 9.1.8.

(i) exp(Adg ξ) = g(exp ξ)g−1, for every ξ ∈ g and g ∈ G; and

(ii) Adg[ξ, η] = [Adg ξ,Adg η].
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More Automatic Smoothness Results. There are some interesting
results related in spirit to Proposition 9.1.4 and the preceding discussions.
A striking example of this is the following result proved in the internet
supplement:

Theorem 9.1.9. Any continuous homomorphism of finite-dimensional
Lie groups is smooth.

There is a remarkable consequence of this theorem. If G is a topological
group (that is, the multiplication and inversion maps are continuous), one
could, in principle, have more than one differentiable manifold structure
making G into two nonisomorphic Lie groups (i.e., the manifold structures
are not diffeomorphic) but both inducing the same topological structure.
This phenomenon of “exotic structures” occurs for general manifolds. How-
ever, in view of the theorem above, this cannot happen in the case of Lie
groups. Indeed, since the identity map is a homeomorphism, it must be
a diffeomorphism. Thus, a topological group that is locally Euclidean (i.e.,
there is an open neighborhood of the identity homeomorphic to an open ball
in Rn) admits at most one smooth manifold structure relative to which it
is a Lie group.

The existence part of this statement is Hilbert’s famous fifth problem:
Show that a locally Euclidean topological group admits a smooth (actually
analytic) structure making it into a Lie group. The solution of this problem
was achieved by Gleason and, independently, by Montgomery and Zippin
in 1952; see Kaplansky [1971] for an excellent account of this proof.

Abelian Lie Groups. Since any two elements of an Abelian Lie group
G commute, it follows that all adjoint operators Adg, g ∈ G, equal the
identity. Therefore, by equation (9.1.5), the Lie algebra g is Abelian; that
is, [ξ, η] = 0 for all ξ, η ∈ g.

Examples

(a) Any finite-dimensional vector space, thought of as an Abelian group
under addition, is an Abelian Lie group. The same is true in infinite di-
mensions for any Banach space. The exponential map is the identity. �

(b) The unit circle in the complex plane S1 = { z ∈ C | |z| = 1 } is
an Abelian Lie group under multiplication. The tangent space TeS

1 is the
imaginary axis, and we identify R with TeS

1 by t �→ 2πit. With this iden-
tification, the exponential map exp : R → S1 is given by exp(t) = e2πit.
Note that exp−1(1) = Z. �

(c) The n-dimensional torus Tn = S1 × · · · × S1 (n times) is an Abelian
Lie group. The exponential map exp : Rn → Tn is given by

exp(t1, . . . , tn) = (e2πit1 , . . . , e2πitn).
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Since S1 = R/Z , it follows that

T
n = R

n/Z
n,

the projection Rn → Tn being given by exp above. �

If G is a connected Lie group whose Lie algebra g is Abelian, the Lie
group homomorphism g ∈ G �→ Adg ∈ GL(g) has induced Lie algebra
homomorphism ξ ∈ g �→ adξ ∈ gl(g) the constant map equal to zero.
Therefore, by Corollary 9.1.7, Adg = identity on G, for any g ∈ G. Apply
Corollary 9.1.7 again, this time to the conjugation by g on G (whose induced
Lie algebra homomorphism is Adg), to conclude that it equals the identity
map on G. Thus, g commutes with all elements of G; since g was arbitrary,
we conclude that G is Abelian. We summarize these observations in the
following proposition.

Proposition 9.1.10. If G is an Abelian Lie group, its Lie algebra g is
also Abelian. Conversely, if G is connected and g is Abelian, then G is
Abelian.

The main structure theorem for Abelian Lie groups is the following,
whose proof can be found in the internet supplement, Varadarajan [1974],
or Knapp [1996].

Theorem 9.1.11. Every connected Abelian n-dimensional Lie group G
is isomorphic to a cylinder, that is, to Tk × Rn−k for some k = 1, . . . , n.

Lie Subgroups. It is natural to synthesize the subgroup and submani-
fold concepts.

Definition 9.1.12. A Lie subgroup H of a Lie group G is a subgroup
of G that is also an injectively immersed submanifold of G. If H is a sub-
manifold of G, then H is called a regular Lie subgroup.

For example, the one-parameter subgroups of the torus T2 that wind
densely on the torus are Lie subgroups that are not regular.

The Lie algebras g and h of G and a Lie subgroup H, respectively, are
related in the following way:

Proposition 9.1.13. Let H be a Lie subgroup of G. Then h is a Lie
subalgebra of g. Moreover,

h = { ξ ∈ g | exp tξ ∈ H for all t ∈ R }.
Proof. The first statement is a consequence of Proposition 9.1.6, which
also shows that exp tξ ∈ H, for all ξ ∈ h and t ∈ R. Conversely, if exp tξ ∈
H, for all t ∈ R, we have,

d

dt
exp tξ

∣∣∣∣
t=0

∈ h,

since H is a Lie subgroup; but this equals ξ by definition of the exponential
map. �
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The following is a powerful theorem often used to find Lie subgroups.

Theorem 9.1.14. If H is a closed subgroup of a Lie group G, then H
is a regular Lie subgroup. Conversely, if H is a regular Lie subgroup of G,
then H is closed.

The proof of this theorem may be found in the internet supplement,
Abraham and Marsden [1978], Adams [1969], Varadarajan [1974], or Knapp
[1996].

The next result is sometimes called “Lie’s third fundamental theorem.”

Theorem 9.1.15. Let G be a Lie group with Lie algebra g, and let h be
a Lie subalgebra of g. Then there exists a unique connected Lie subgroup H
of G whose Lie algebra is h.

The proof may be found in the internet supplement, Knapp [1996], or
Varadarajan [1974].

We remind the reader that the Lie algebras appropriate to fluid dynamics
and plasma physics are infinite-dimensional. Nevertheless, there is still,
with the appropriate technical conditions, a correspondence between Lie
groups and Lie algebras analogous to the preceding theorems. The reader
should be warned, however, that these theorems do not naively generalize
to the infinite-dimensional situation, and to prove them for special cases,
specialized analytical theorems may be required.

Quotients. If H is a closed subgroup of G, we denote by G/H, the set
of left cosets, that is, the collection { gH | g ∈ G }. Let π : G → G/H be
the projection g �→ gH.

Theorem 9.1.16. There is a unique manifold structure on G/H such
that the projection π : G → G/H is a smooth surjective submersion. (Recall
from Chapter 4 that a smooth map is called a submersion when its derivative
is surjective.)

Again the proof may be found in Abraham and Marsden [1978], Knapp
[1996], or Varadarajan [1974]. One calls the manifold G/H a homogeneous
space.

The Maurer–Cartan Equations. We close this section with a proof
of the Maurer–Cartan structure equations on a Lie group G. Define
λ, ρ ∈ Ω1(G; g), the space of g-valued one-forms on G, by

λ(ug) = TgLg−1(ug), ρ(ug) = TgRg−1(ug).

Thus, λ and ρ are Lie-algebra-valued one-forms on G that are defined by
left and right translation to the identity, respectively. Define the two-form
[λ, λ] by

[λ, λ](u, v) = [λ(u), λ(v)],

and similarly for [ρ, ρ].
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Theorem 9.1.17 (Maurer–Cartan Structure Equations).

dλ + [λ, λ] = 0, dρ − [ρ, ρ] = 0.

Proof. We use identity 6 from the table in §4.4. Let X, Y ∈ X(G) and let
ξ = TgLg−1(X(g)) and η = TgLg−1(Y (g)) for fixed g ∈ G. Recalling that
Xξ denotes the left invaraint vector field on G equalling ξ at the identity,
we have

(dλ)(Xξ, Xη) = Xξ[λ(Xη)] − Xη[λ(Xξ)] − λ([Xξ, Xη]).

Since λ(Xη)(h) = ThLh−1(Xη(h)) = η is constant, the first term vanishes.
Similarly, the second term vanishes. The third term equals

λ([Xξ, Xη]) = λ(X[ξ,η]) = [ξ, η],

and hence
(dλ)(Xξ, Xη) = −[ξ, η].

Therefore,

(dλ + [λ, λ]) (Xξ, Xη) = −[ξ, η] + [λ, λ](Xξ, Xη)
= −[ξ, η] + [λ(Xξ), λ(Xη)]
= −[ξ, η] + [ξ, η] = 0.

This proves that

(dλ + [λ, λ]) (X, Y )(g) = 0.

Since g ∈ G was arbitrary as well as X and Y , it follows that dλ+[λ, λ] = 0.
The second relation is proved in the same way but working with the

right-invariant vector fields Yξ, Yη. The sign in front of the second term
changes, since [Yξ, Yη] = Y−[ξ,η]. �

Remark. If α is a (0, k)-tensor with values in a Banach space E1, and β
is a (0, l)-tensor with values in a Banach space E2, and if B : E1 × E2 →
E3 is a bilinear map, then replacing multiplication in (4.2.1) by B, the
same formula defines an E3-valued (0, k + l)-tensor on M . Therefore, using
Definitions 4.2.2–4.2.4, if

α ∈ Ωk(M, E1) and β ∈ Ωl(M, E2),

then [
(k + l)!

k!l!

]
A(α ⊗ β) ∈ Ωk+l(M, E3).

Recall that the tensor product involves the choice of B. We shall call this
expression the wedge product associated to B and denote it either by
α ∧B β or B∧(α, β).
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In particular, if E1 = E2 = E3 = g and B = [ , ] is the Lie algebra
bracket, then for α, β ∈ Ω1(M ; g), we have

[α, β]∧(u, v) = [α(u), β(v)] − [α(v), β(u)] = −[β, α]∧(u, v)

for any vectors u, v tangent to M . Thus, alternatively, one can write the
structure equations as

dλ + 1
2 [λ, λ]∧ = 0, dρ − 1

2 [ρ, ρ]∧ = 0. �

Haar measure. One can characterize Lebesgue measure up to a multi-
plicative constant on Rn by its invariance under translations. Similarly, on
a locally compact group there is a unique (up to a nonzero multiplicative
constant) left-invariant measure, called Haar measure . For Lie groups
the existence of such measures is especially simple.

Proposition 9.1.18. Let G be a Lie group. Then there is a volume form
µ, unique up to nonzero multiplicative constants, that is left invariant. If
G is compact, µ is right invariant as well.

Proof. Pick any n-form µe on TeG that is nonzero and define an n-form
on TgG by

µg(v1, . . . , vn) = µe · (TLg−1v1, . . . , TLg−1 · vn).

Then µg is left invariant and smooth. For n = dimG, µe is unique up to a
scalar factor, so µg is as well.

Fix g0 ∈ G and consider R∗
g0

µ = cµ for a constant c. If G is compact,
this relationship may be integrated, and by the change of variables formula
we deduce that c = 1. Hence, µ is also right invariant. �

Exercises

� 9.1-1. Verify Adg[ξ, η] = [Adg ξ,Adg η] directly for GL(n).

� 9.1-2. Let G be a Lie group with group operations µ : G × G → G and
I : G → G. Show that the tangent bundle TG is also a Lie group, called
the tangent group of G with group operations Tµ : TG×TG → TG, TI :
TG → TG.

� 9.1-3 (Defining a Lie group by a chart at the identity). Let G be a group
and suppose that ϕ : U → V is a one-to-one map from a subset U of G
containing the identity element to an open subset V in a Banach space (or
Banach manifold). The following conditions are necessary and sufficient for
ϕ to be a chart in a Hausdorff–Banach–Lie group structure on G:
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(a) The set W = { (x, y) ∈ V × V | ϕ−1(y) ∈ U } is open in V × V , and
the map (x, y) ∈ W �→ ϕ(ϕ−1(x)ϕ−1(y)) ∈ V is smooth.

(b) For every g ∈ G, the set Vg = ϕ(gUg−1 ∩ U) is open in V and the
map x ∈ Vg �→ ϕ(gϕ−1(x)g−1) ∈ V is smooth.

� 9.1-4 (The Heisenberg group). Let (Z,Ω) be a symplectic vector space
and define on H := Z × S1 the following operation:

(u, exp iφ)(v, exp iψ) =
(
u + v, exp i[φ + ψ + �

−1Ω(u, v)]
)
.

(a) Verify that this operation gives H the structure of a noncommutative
Lie group.

(b) Show that the Lie algebra of H is given by h = Z×R with the bracket
operation2

[(u, φ), (v, ψ)] = (0, 2�
−1Ω(u, v)).

(c) Show that [h, [h, h]] = 0, that is, h is nilpotent, and that R lies in the
center of the algebra (i.e., [h, R] = 0); one says that h is a central
extension of Z.

9.2 Some Classical Lie Groups

The Real General Linear Group GL(n, R). In the previous section we
showed that GL(n, R) is a Lie group, that it is an open subset of the vector
space of all linear maps of Rn into itself, and that its Lie algebra is gl(n, R)
with the commutator bracket. Since it is open in L(Rn, Rn) = gl(n, R), the
group GL(n, R) is not compact. The determinant function det : GL(n, R) →
R is smooth and maps GL(n, R) onto the two components of R\{0}. Thus,
GL(n, R) is not connected.

Define
GL+(n, R) = {A ∈ GL(n, R) | det(A) > 0 }

and note that it is an open (and hence closed) subgroup of GL(n, R). If

GL−(n, R) = {A ∈ GL(n, R) | det(A) < 0 },

the map A ∈ GL+(n, R) �→ I0A ∈ GL−(n, R), where I0 is the diagonal
matrix all of whose entries are 1 except the (1, 1)-entry, which is −1, is a
diffeomorphism. We will show below that GL+(n, R) is connected, which

2This formula for the bracket, when applied to the space Z = R2n of the usual p’s
and q’s , shows that this algebra is the same as that encountered in elementary quan-
tum mechanics via the Heisenberg commutation relations. Hence the name “Heisenberg
group.”
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will prove that GL+(n, R) is the connected component of the identity in
GL(n, R) and that GL(n, R) has exactly two connected components.

To prove this we need a theorem from linear algebra called the polar de-
composition theorem. To formulate it, recall that a matrix R ∈ GL(n, R) is
orthogonal if RRT = RT R = I. A matrix S ∈ gl(n, R) is called symmet-
ric if ST = S. A symmetric matrix S is called positive definite, denoted
by S > 0, if

〈Sv,v〉 > 0

for all v ∈ Rn, v �= 0. Note that S > 0 implies that S is invertible.

Proposition 9.2.1 (Real Polar Decomposition Theorem). For any A ∈
GL(n, R) there exists a unique orthogonal matrix R and positive definite
matrices S1, S2, such that

A = RS1 = S2R. (9.2.1)

Proof. Recall first that any positive definite symmetric matrix has a
unique square root: If λ1, . . . , λn > 0 are the eigenvalues of AT A, diagonal-
ize AT A by writing

AT A = B diag(λ1, . . . , λn)B−1,

and then define
√

AT A = B diag(
√

λ1, . . . ,
√

λn)B−1.

Let S1 =
√

AT A, which is positive definite and symmetric. Define R =
AS−1

1 and note that

RT R = S−1
1 AT AS−1

1 = I,

since S2
1 = AT A by definition. Since both A and S1 are invertible, it follows

that R is invertible and hence RT = R−1, so R is an orthogonal matrix.
Let us prove uniqueness of the decomposition. If A = RS1 = R̃S̃1, then

AT A = S1R
T R̃S̃1 = S̃2

1 .

However, the square root of a positive definite matrix is unique, so S1 = S̃1,
whence also R̃ = R.

Now define S2 =
√

AAT , and as before, we conclude that A = S2R
′

for some orthogonal matrix R′. We prove now that R′ = R. Indeed, A =
S2R

′ = (R′(R′)T )S2R
′ = R′((R′)T S2R

′) and (R′)T S2R
′ > 0. By unique-

ness of the prior polar decomposition, we conclude that R′ = R and
(R′)T S2R

′ = S1. �
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Now we will use the real polar decomposition theorem to prove that
GL+(n, R) is connected. Let A ∈ GL+(n, R) and decompose it as A = SR,
with S positive definite and R an orthogonal matrix whose determinant is
1. We will prove later that the collection of all orthogonal matrices having
determinant equal to 1 is a connected Lie group. Thus there is a continuous
path R(t) of orthogonal matrices having determinant 1 such that R(0) = I
and R(1) = R. Next, define the continuous path of symmetric matrices
S(t) = I + t(S − I) and note that S(0) = I and S(1) = S. Moreover,

〈S(t)v,v〉 = 〈[I + t(S − I)]v,v〉
= ‖v‖2 + t〈Sv,v〉 − t‖v‖2

= (1 − t)‖v‖2 + t〈Sv,v〉 > 0,

for all t ∈ [0, 1], since 〈Sv,v〉 > 0 by hypothesis. Thus S(t) is a continuous
path of positive definite matrices connecting I to S. We conclude that
A(t) := S(t)R(t) is a continuous path of matrices whose determinant is
strictly positive connecting A(0) = S(0)R(0) = I to A(1) = S(1)R(1) =
SR = A. Thus, we have proved the following:

Proposition 9.2.2. The group GL(n, R) is a noncompact disconnected
n2-dimensional Lie group whose Lie algebra gl(n, R) consists of all n × n
matrices with the bracket

[A, B] = AB − BA.

The connected component of the identity is GL+(n, R), and GL(n, R) has
two components.

The Real Special Linear Group SL(n, R). Let det : L(Rn, Rn) → R

be the determinant map and recall that

GL(n, R) = {A ∈ L(Rn, Rn) | det A �= 0 },

so GL(n, R) is open in L(Rn, Rn). Notice that R\{0} is a group under
multiplication and that

det : GL(n, R) → R\{0}

is a Lie group homomorphism because

det(AB) = (detA)(detB).

Lemma 9.2.3. The map det : GL(n, R) → R\{0} is C∞, and its deriva-
tive is given by DdetA ·B = (detA) trace(A−1B).

Proof. The smoothness of det is clear from its formula in terms of matrix
elements. Using the identity

det(A + λB) = (detA) det(I + λA−1B),
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it suffices to prove

d

dλ
det(I + λC)

∣∣∣∣
λ=0

= trace C.

This follows from the identity for the characteristic polynomial

det(I + λC) = 1 + λ trace C + · · · + λn det C. �

Define the real special linear group SL(n, R) by

SL(n, R) = {A ∈ GL(n, R) | det A = 1 } = det−1(1). (9.2.2)

From Theorem 9.1.14 it follows that SL(n, R) is a closed Lie subgroup
of GL(n, R). However, this method invokes a rather subtle result to prove
something that is in reality straightforward. To see this, note that it follows
from Lemma 9.2.3 that det : GL(n, R) → R is a submersion, so SL(n, R) =
det−1(1) is a smooth closed submanifold and hence a closed Lie subgroup.

The tangent space to SL(n, R) at A ∈ SL(n, R) therefore consists of all
matrices B such that trace(A−1B) = 0. In particular, the tangent space at
the identity consists of the matrices with trace zero. We have seen that the
Lie algebra of GL(n, R) is L(Rn, Rn) = gl(n, R) with the Lie bracket given
by [A, B] = AB − BA. It follows that the Lie algebra sl(n, R) of SL(n, R)
consists of the set of n × n matrices having trace zero, with the bracket

[A, B] = AB − BA.

Since trace(B) = 0 imposes one condition on B, it follows that

dim[sl(n, R)] = n2 − 1.

In dealing with classical Lie groups it is useful to introduce the following
inner product on gl(n, R):

〈A, B〉 = trace(ABT ). (9.2.3)

Note that

‖A‖2 =
n∑

i,j=1

a2
ij , (9.2.4)

which shows that this norm on gl(n, R) coincides with the Euclidean norm
on Rn2

.
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We shall use this norm to show that SL(n, R) is not compact. Indeed, all
matrices of the form 

1 0 . . . t
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


are elements of SL(n, R) whose norm equals

√
n + t2 for any t ∈ R. Thus,

SL(n, R) is not a bounded subset of gl(n, R) and hence is not compact.
Finally, let us prove that SL(n, R) is connected. As before, we shall use

the real polar decomposition theorem and the fact, to be proved later,
that the set of all orthogonal matrices having determinant equal to 1 is a
connected Lie group. If A ∈ SL(n, R), decompose it as A = SR, where R
is an orthogonal matrix having determinant 1 and S is a positive definite
matrix having determinant 1. Since S is symmetric, it can be diagonalized,
that is, S = B diag(λ1, . . . , λn)B−1 for some orthogonal matrix B and
λ1, . . . , λn > 0. Define the continuous path

S(t) = B diag

(
(1 − t) + tλ1, . . . , (1 − t) + tλn−1, 1/

n−1∏
i=1

((1 − t) + tλi)

)
B−1

for t ∈ [0, 1] and note that by construction, detS(t) = 1; S(t) is symmetric;
S(t) is positive definite, since each entry (1 − t) + tλi > 0 for t ∈ [0, 1];
and S(0) = I, S(1) = S. Now let R(t) be a continuous path of orthogonal
matrices of determinant 1 such that R(0) = I and R(1) = R. Therefore,
A(t) = S(t)R(t) is a continuous path in SL(n, R) satisfying A(0) = I and
A(1) = SR = A, thereby showing that SL(n, R) is connected.

Proposition 9.2.4. The Lie group SL(n, R) is a noncompact connected
(n2 − 1)-dimensional Lie group whose Lie algebra sl(n, R) consists of the
n×n matrices with trace zero (or linear maps of Rn to Rn with trace zero)
with the bracket

[A, B] = AB − BA.

The Orthogonal Group O(n). On Rn we use the standard inner prod-
uct

〈x,y〉 =
n∑

i=1

xiyi,

where x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn. Recall that a
linear map A ∈ L(Rn, Rn) is orthogonal if

〈Ax, Ay〉 = 〈x,y〉 (9.2.5)

for all x,y ∈ R. In terms of the norm ‖x‖ = 〈x,x〉1/2, one sees from the
polarization identity that A is orthogonal iff ‖Ax‖ = ‖x‖, for all x ∈ Rn,
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or in terms of the transpose AT , which is defined by 〈Ax,y〉 =
〈
x, AT y

〉
,

we see that A is orthogonal iff AAT = I.
Let O(n) denote the orthogonal elements of L(Rn, Rn). For A ∈ O(n),

we see that

1 = det(AAT ) = (detA)(detAT ) = (detA)2;

hence det A = ±1, and so A ∈ GL(n, R). Furthermore, if A, B ∈ O(n), then

〈ABx, ABy〉 = 〈Bx, By〉 = 〈x,y〉 ,

and so AB ∈ O(n). Letting x′ = A−1x and y′ = A−1y, we see that

〈x,y〉 = 〈Ax′, Ay′〉 = 〈x′,y′〉 ,

that is,
〈x,y〉 =

〈
A−1x, A−1y

〉
;

hence A−1 ∈ O(n).
Let S(n) denote the vector space of symmetric linear maps of Rn to itself,

and let ψ : GL(n, R) → S(n) be defined by ψ(A) = AAT . We claim that I
is a regular value of ψ. Indeed, if A ∈ ψ−1(I) = O(n), the derivative of ψ
is

Dψ(A) · B = ABT + BAT ,

which is onto (to hit C, take B = CA/2). Thus, ψ−1(I) = O(n) is a closed
Lie subgroup of GL(n, R), called the orthogonal group. The group O(n)
is also bounded in L(Rn, Rn): The norm of A ∈ O(n) is

‖A‖ =
[
trace(AT A)

]1/2
= (trace I)1/2 =

√
n.

Therefore, O(n) is compact. We shall see in §9.3 that O(n) is not connected,
but has two connected components, one where det = +1 and the other
where det = −1.

The Lie algebra o(n) of O(n) is kerDψ(I), namely, the skew-symmetric
linear maps with the usual commutator bracket [A, B] = AB − BA. The
space of skew-symmetric n×n matrices has dimension equal to the number
of entries above the diagonal, namely, n(n − 1)/2. Thus,

dim[O(n)] = 1
2n(n − 1).

The special orthogonal group is defined as

SO(n) = O(n) ∩ SL(n, R),

that is,

SO(n) = {A ∈ O(n) | detA = +1 }. (9.2.6)
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Since SO(n) is the kernel of det : O(n) → {−1, 1}, that is, SO(n) =
det−1(1), it is an open and closed Lie subgroup of O(n), hence is com-
pact. We shall prove in §9.3 that SO(n) is the connected component of
O(n) containing the identity I, and so has the same Lie algebra as O(n).
We summarize:

Proposition 9.2.5. The Lie group O(n) is a compact Lie group of di-
mension n(n − 1)/2. Its Lie algebra o(n) is the space of skew-symmetric
n × n matrices with bracket [A, B] = AB − BA. The connected compo-
nent of the identity in O(n) is the compact Lie group SO(n), which has
the same Lie algebra so(n) = o(n). The Lie group O(n) has two connected
components.

Rotations in the Plane SO(2). We parametrize

S1 = {x ∈ R
2 | ‖x‖ = 1 }

by the polar angle θ, 0 ≤ θ < 2π. For each θ ∈ [0, 2π], let

Aθ =
[

cos θ − sin θ
sin θ cos θ

]
,

using the standard basis of R2. Then Aθ ∈ SO(2) represents a counter-
clockwise rotation through the angle θ. Conversely, if

A =
[

a1 a2

a3 a4

]
is in SO(2), the relations

a2
1 + a2

2 = 1, a2
3 + a2

4 = 1,

a1a3 + a2a4 = 0,

detA = a1a4 − a2a3 = 1

show that A = Aθ for some θ. Thus, SO(2) can be identified with S1, that
is, with rotations in the plane.

Rotations in Space SO(3). The Lie algebra so(3) of SO(3) may be
identified with R3 as follows. We define the vector space isomorphism ˆ :
R3 → so(3), called the hat map, by

v = (v1, v2, v3) �→ v̂ =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 . (9.2.7)

Note that the identity
v̂w = v × w
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characterizes this isomorphism. We get

(ûv̂ − v̂û)w = û(v × w) − v̂(u × w)
= u × (v × w) − v × (u × w)
= (u × v) × w = (u × v)ˆ · w.

Thus, if we put the cross product on R3, ˆ becomes a Lie algebra isomor-
phism, and so we can identify so(3) with R3 carrying the cross product as
Lie bracket.

We also note that the standard dot product may be written

v · w = 1
2 trace

(
v̂T ŵ

)
= − 1

2 trace (v̂ŵ) .

Theorem 9.2.6 (Euler’s Theorem). Every element A ∈ SO(3), A �= I,
is a rotation through an angle θ about an axis w.

To prove this, we use the following lemma:

Lemma 9.2.7. Every A ∈ SO(3) has an eigenvalue equal to 1.

Proof. The eigenvalues of A are given by roots of the third-degree poly-
nomial det(A − λI) = 0. Roots occur in conjugate pairs, so at least one is
real. If λ is a real root and x is a nonzero real eigenvector, then Ax = λx,
so

‖Ax‖2 = ‖x‖2 and ‖Ax‖2 = |λ|2 ‖x‖2

imply λ = ±1. If all three roots are real, they are (1, 1, 1) or (1,−1,−1),
since det A = 1. If there is one real and two complex conjugate roots, they
are (1, ω, ω̄), since det A = 1. In any case, one real root must be +1. �

Proof of Theorem 9.2.6. By Lemma 9.2.7, the matrix A has an eigen-
vector w with eigenvalue 1, say Aw = w. The line spanned by w is also
invariant under A. Let P be the plane perpendicular to w; that is,

P = {y | 〈w,y〉 = 0 } .

Since A is orthogonal, A(P ) = P . Let e1, e2 be an orthogonal basis in P .
Then relative to (w, e1, e2), A has the matrix

A =

 1 0 0
0 a1 a2

0 a3 a4

 .

Since [
a1 a2

a3 a4

]
lies in SO(2), A is a rotation about the axis w by some angle. �
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Corollary 9.2.8. Any A ∈ SO(3) can be written in some orthonormal
basis as the matrix

A =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

The infinitesimal version of Euler’s theorem is the following:

Proposition 9.2.9. Identifying the Lie algebra so(3) of SO(3) with the
Lie algebra R3, exp(tŵ) is a rotation about w by the angle t‖w‖, where
w ∈ R3.

Proof. To simplify the computation, we pick an orthonormal basis {e1, e2,
e3} of R3, with e1 = w/‖w‖. Relative to this basis, ŵ has the matrix

ŵ = ‖w‖

 0 0 0
0 0 −1
0 1 0

 .

Let

c(t) =

 1 0 0
0 cos t‖w‖ − sin t‖w‖
0 sin t‖w‖ cos t‖w‖

 .

Then

c′(t) =

 0 0 0
0 −‖w‖ sin t‖w‖ −‖w‖ cos t‖w‖
0 ‖w‖ cos t‖w‖ −‖w‖ sin t‖w‖


= c(t)ŵ = TILc(t)(ŵ) = Xŵ(c(t)),

where Xŵ is the left-invariant vector field corresponding to ŵ. Therefore,
c(t) is an integral curve of Xŵ; but exp(tŵ) is also an integral curve of Xŵ.
Since both agree at t = 0, exp(tŵ) = c(t), for all t ∈ R. But the matrix
definition of c(t) expresses it as a rotation by an angle t‖w‖ about the
axis w. �

Despite Euler’s theorem, it might be good to recall now that SO(3) can-
not be written as S2 × S1; see Exercise 1.2-4.

Amplifying on Proposition 9.2.9, we give the following explicit formula
for exp ξ, where ξ ∈ so(3), which is called Rodrigues’ formula:

exp[v̂] = I +
sin ‖v‖
‖v‖ v̂ + 1

2

 sin
(

‖v‖
2

)
‖v‖
2

2

v̂2. (9.2.8)

This formula was given by Rodrigues in 1840; see also Exercise 1 in Hel-
gason [1978, p. 249] and see Altmann [1986] for some interesting history of
this formula.
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Proof of Rodrigues’ Formula. By (9.2.7),

v̂2w = v × (v × w) = 〈v,w〉v − ‖v‖2w. (9.2.9)

Consequently, we have the recurrence relations

v̂3 = −‖v‖2v̂, v̂4 = −‖v‖2v̂2, v̂5 = ‖v‖4v̂, v̂6 = ‖v‖4v̂2, . . . .

Splitting the exponential series in odd and even powers,

exp[v̂] = I +
[
I − ‖v‖2

3!
+

‖v‖4

5!
− · · · + (−1)n+1 ‖v‖2n

(2n + 1)!
+ · · ·

]
v̂

+
[

1
2!

− ‖v‖2

4!
+

‖v‖4

6!
+ · · · + (−1)n−1 ‖v‖n−2

(2n)!
+ · · ·

]
v̂2

= I +
sin ‖v‖
‖v‖ v̂ +

1 − cos ‖v‖
‖v‖2

v̂2, (9.2.10)

and so the result follows from the identity 2 sin2(‖v‖/2) = 1− cos ‖v‖. �

The following alternative expression, equivalent to (9.2.8), is often useful.
Set n = v/‖v‖, so that ‖n‖ = 1. From (9.2.9) and (9.2.10) we obtain

exp[v̂] = I + (sin ‖v‖)n̂ + (1 − cos ‖v‖)[n ⊗ n − I]. (9.2.11)

Here, n ⊗ n is the matrix whose entries are ninj , or as a bilinear form,
(n ⊗ n)(α, β) = n(α)n(β). Therefore, we obtain a rotation about the unit
vector n = v/‖v‖ of magnitude ‖v‖.

The results (9.2.8) and (9.2.11) are useful in computational solid me-
chanics, along with their quaternionic counterparts. We shall return to this
point below in connection with SU(2); see Whittaker [1927] and Simo and
Fox [1989] for more information.

We next give a topological property of SO(3).

Proposition 9.2.10. The rotation group SO(3) is diffeomorphic to the
real projective space RP3.

Proof. To see this, map the unit ball D in R3 to SO(3) by sending
(x, y, z) to the rotation about (x, y, z) through the angle π

√
x2 + y2 + z2

(and (0, 0, 0) to the identity). This mapping is clearly smooth and surjec-
tive. Its restriction to the interior of D is injective. On the boundary of D,
this mapping is 2 to 1, so it induces a smooth bijective map from D, with
antipodal points on the boundary identified, to SO(3). It is a straightfor-
ward exercise to show that the inverse of this map is also smooth. Thus,
SO(3) is diffeomorphic with D, with antipodal points on the boundary
identified.

However, the mapping

(x, y, z) �→ (x, y, z,
√

1 − x2 − y2 − z2)
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is a diffeomorphism between D, with antipodal points on the boundary
identified, and the upper unit hemisphere of S3 with antipodal points on
the equator identified. The latter space is clearly diffeomorphic to the unit
sphere S3 with antipodal points identified, which coincides with the space
of lines in R4 through the origin, that is, with RP3. �

The Real Symplectic Group Sp(2n, R). Let

J =
[

0 I
−I 0

]
.

Recall that A ∈ L(R2n, R2n) is symplectic if AT JA = J. Let Sp(2n, R) be
the set of 2n×2n symplectic matrices. Taking determinants of the condition
AT JA = J gives

1 = det J = (detAT ) · (detAJ) · (detA) = (detA)2.

Hence,
detA = ±1,

and so A ∈ GL(2n, R). Furthermore, if A, B ∈ Sp(2n, R), then

(AB)T
J(AB) = BT AT

JAB = J.

Hence, AB ∈ Sp(2n, R), and if AT JA = J, then

JA = (AT )−1
J = (A−1)T

J,

so
J =

(
A−1

)T
JA−1, or A−1 ∈ Sp(2n, R).

Thus, Sp(2n, R) is a group. If

A =
[
a b
c d

]
∈ GL(2n, R),

then (see Exercise 2.3-2)

A ∈ Sp(2n, R) iff

{
aT c and bT d are symmetric and
aT d − cT b = 1.

(9.2.12)

Define ψ : GL(2n, R) → so(2n) by ψ(A) = AT JA. Let us show that J is
a regular value of ψ. Indeed, if A ∈ ψ−1(J) = Sp(2n, R), the derivative of
ψ is

Dψ(A) · B = BT
JA + AT

JB.

Now, if C ∈ so(2n), let
B = − 1

2AJC.
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We verify, using the identity AT J = JA−1, that Dψ(A) · B = C. Indeed,

BT
JA + AT

JB = BT (A−1)T
J + JA−1B

= (A−1B)T
J + J(A−1B)

= (− 1
2JC)T

J + J(− 1
2JC)

= − 1
2CT

J
T

J − 1
2J

2C

= − 1
2CJ

2 − 1
2J

2C = C,

since JT = −J and J2 = −I. Thus Sp(2n, R) = ψ−1(J) is a closed smooth
submanifold of GL(2n, R) whose Lie algebra is

kerDψ(J) =
{

B ∈ L
(
R

2n, R2n
)
| BT

J + JB = 0
}

.

The Lie group Sp(2n, R) is called the symplectic group, and its Lie
algebra

sp(2n, R) =
{

A ∈ L
(
R

2n, R2n
)
| AT

J + JA = 0
}

the symplectic algebra. Moreover, if

A =
[
a b
c d

]
∈ sl(2n, R),

then

A ∈ sp(2n, R) iff d = −aT , c = cT , and b = bT . (9.2.13)

The dimension of sp(2n, R) can be readily calculated to be 2n2 + n.
Using (9.2.12), it follows that all matrices of the form[

I 0
tI I

]
are symplectic. However, the norm of such a matrix is equal to

√
2n + t2n,

which is unbounded if t ∈ R. Therefore, Sp(2n, R) is not a bounded subset
of gl(2n, R) and hence is not compact. We next summarize what we have
found.

Proposition 9.2.11. The symplectic group

Sp(2n, R) := {A ∈ GL(2n, R) |AT
JA = J }

is a noncompact, connected Lie group of dimension 2n2 +n. Its Lie algebra
sp(2n, R) consists of the 2n×2n matrices A satisfying AT J+JA = 0, where

J =
[

0 I
−I 0

]
with I the n × n identity matrix.
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We shall indicate in §9.3 how one proves that Sp(2n, R) is connected.
We are ready to prove that symplectic linear maps have determinant 1,

a fact that we promised in Chapter 2.

Lemma 9.2.12. If A ∈ Sp(n, R), then det A = 1.

Proof. Since AT JA = J and det J = 1, it follows that (detA)2 = 1.
Unfortunately, this still leaves open the possibility that detA = −1. To
eliminate it, we proceed in the following way.

Define the symplectic form Ω on R2n by Ω(u,v) = uT Jv, that is, relative
to the chosen basis of R2n, the matrix of Ω is J. As we saw in Chapter 5, the
standard volume form µ on R2n is given, up to a factor, by µ = Ω∧Ω∧· · ·∧Ω,
or, equivalently,

µ(v1, . . . ,v2n) = det (Ω(vi,vj)) .

By the definition of the determinant of a linear map, (detA)µ = A∗µ, we
get

(detA)µ (v1, . . . ,v2n) = (A∗µ) (v1, . . . ,v2n)
= µ (Av1, . . . , Av2n) = det (Ω (Avi, Avj))
= det (Ω (vi,vj))
= µ (v1, . . . ,v2n) ,

since A ∈ Sp(2n, R), which is equivalent to Ω(Au, Av) = Ω(u,v) for all
u,v ∈ R2n. Taking v1, . . . ,v2n to be the standard basis of R2n, we conclude
that detA = 1. �

Proposition 9.2.13 (Symplectic Eigenvalue Theorem). If λ0 ∈ C is an
eigenvalue of A ∈ Sp(2n, R) of multiplicity k, then 1/λ0, λ0, and 1/λ0

are eigenvalues of A of the same multiplicity k. Moreover, if ±1 occur as
eigenvalues, their multiplicities are even.

Proof. Since A is a real matrix, if λ0 is an eigenvalue of A of multiplicity
k, so is λ0 by elementary algebra.

Let us show that 1/λ0 is also an eigenvalue of A. If p(λ) = det(A − λI)
is the characteristic polynomial of A, since

JAJ
−1 =

(
A−1

)T
,
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det J = 1, J−1 = −J = JT , and detA = 1 (by Proposition 9.2.11), we get

p(λ) = det(A − λI) = det
[
J(A − λI)J−1

]
= det(JAJ

−1 − λI) = det
((

A−1 − λI
)T

)
= det(A−1 − λI) = det

(
A−1(I − λA)

)
= det(I − λA) = det

(
λ

(
1
λ

I − A

))
= λ2n det

(
1
λ

I − A

)
= λ2n(−1)2n det

(
A − 1

λ
I

)
= λ2np

(
1
λ

)
. (9.2.14)

Since 0 is not an eigenvalue of A, it follows that p(λ) = 0 iff p (1/λ) = 0,
and hence, λ0 is an eigenvalue of A iff 1/λ0 is an eigenvalue of A.

Now assume that λ0 has multiplicity k, that is,

p(λ) = (λ − λ0)kq(λ)

for some polynomial q(λ) of degree 2n − k satisfying q(λ0) �= 0. Since
p(λ) = λ2np(1/λ), we conclude that

p(λ) = p
(

1
λ

)
λ2n = (λ − λ0)kq(λ) = (λλ0)k

(
1
λ0

− 1
λ

)k

q(λ).

However,
λk

0

λ2n−k
q(λ)

is a polynomial in 1/λ, since the degree of q(λ) is 2n − k, k ≤ 2n. Thus
1/λ0 is a root of p(λ) having multiplicity l ≥ k. Reversing the roles of λ0

and 1/λ0, we similarly conclude that k ≥ l, and hence it follows that k = l.
Finally, note that λ0 = 1/λ0 iff λ0 = ±1. Thus, since all eigenvalues of

A occur in pairs whose product is 1 and the size of A is 2n× 2n, it follows
that the total number of times +1 and −1 occur as eigenvalues is even.
However, since det A = 1 by Lemma 9.2.12, we conclude that −1 occurs an
even number of times as an eigenvalue of A (if it occurs at all). Therefore,
the multiplicity of 1 as an eigenvalue of A, if it occurs, is also even. �

Figure 9.2.1 illustrates the possible configurations of the eigenvalues of
A ∈ Sp(4, R).

Next, we study the eigenvalues of matrices in sp(2n, R). The following
theorem is useful in the stability analysis of relative equilibria. If A ∈
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Figure 9.2.1. Symplectic eigenvalue theorem on R
4.

sp(2n, R), then AT J + JA = 0, so that if p(λ) = det(A− λI) is the charac-
teristic polynomial of A, we have

p(λ) = det(A − λI) = det(J(A − λI)J)
= det(JAJ + λI)

= det(−AT
J
2 + λI)

= det(AT + λI) = det(A + λI)
= p(−λ).

In particular, notice that trace(A) = 0. Proceeding as before and using this
identity, we conclude the following:

Proposition 9.2.14 (Infinitesimally Symplectic Eigenvalues). If λ0 ∈ C

is an eigenvalue of A ∈ sp(2n, R) of multiplicity k, then −λ0, λ0, and −λ0

are eigenvalues of A of the same multiplicity k. Moreover, if 0 is an eigen-
value, it has even multiplicity.

Figure 9.2.2 shows the possible infinitesimally symplectic eigenvalue con-
figurations for A ∈ sp(4, R).
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Figure 9.2.2. Infinitesimally symplectic eigenvalue theorem on R
4.

The Symplectic Group and Mechanics. Consider a particle of mass
m moving in a potential V (q), where q = (q1, q2, q3) ∈ R3. Newton’s second
law states that the particle moves along a curve q(t) in R3 in such a way
that mq̈ = − grad V (q). Introduce the momentum pi = mq̇i, i = 1, 2, 3,
and the energy

H(q,p) =
1

2m

3∑
i=1

p2
i + V (q).

Then
∂H

∂qi
=

∂V

∂qi
= −mq̈i = −ṗi, and

∂H

∂pi
=

1
m

pi = q̇i,

and hence Newton’s law F = ma is equivalent to Hamilton’s equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, 2, 3.
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Writing z = (q,p),

J · grad H(z) =
[

0 I
−I 0

]
∂H

∂q
∂H

∂p

 = (q̇, ṗ) = ż,

so Hamilton’s equations read ż = J · grad H(z). Now let

f : R
3 × R

3 → R
3 × R

3

and write w = f(z). If z(t) satisfies Hamilton’s equations

ż = J · grad H(z),

then w(t) = f(z(t)) satisfies ẇ = AT ż, where AT = [∂wi/∂zj ] is the
Jacobian matrix of f . By the chain rule,

ẇ = AT
J gradz H(z) = AT

JA gradw H(z(w)).

Thus, the equations for w(t) have the form of Hamilton’s equations with
energy K(w) = H(z(w)) if and only if AT JA = J, that is, iff A is symplec-
tic. A nonlinear transformation f is canonical iff its Jacobian matrix is
symplectic.

As a special case, consider a linear map A ∈ Sp(2n, R) and let w = Az.
Suppose H is quadratic, that is, of the form H(z) = 〈z, Bz〉/2, where B is
a symmetric 2n × 2n matrix. Then

grad H(z) · δz = 1
2 〈δz, Bz〉 + 〈z, Bδz〉

= 1
2 (〈δz, Bz〉 + 〈Bz, δz〉) = 〈δz, Bz〉 ,

so grad H(z) = Bz and thus the equations of motion become the linear
equations ż = JBz. Now

ẇ = Aż = AJBz = J(AT )−1Bz = J(AT )−1BA−1Az = JB′w,

where B′ = (AT )−1BA−1 is symmetric. For the new Hamiltonian we get

H ′(w) = 1
2

〈
w, (AT )−1BA−1w

〉
= 1

2

〈
A−1w, BA−1w

〉
= H(A−1w) = H(z).

Thus, Sp(2n, R) is the linear invariance group of classical mechanics.

The Complex General Linear Group GL(n, C). Many important Lie
groups involve complex matrices. As in the real case,

GL(n, C) = {n × n invertible complex matrices }
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is an open set in L(Cn, Cn) = {n×n complex matrices }. Clearly, GL(n, C)
is a group under matrix multiplication. Therefore, GL(n, C) is a Lie group
and has the Lie algebra gl(n, C) = {n×n complex matrices } = L(Cn, Cn).
Hence GL(n, C) has complex dimension n2, that is, real dimension 2n2.

We shall prove below that GL(n, C) is connected (contrast this with
the fact that GL(n, R) has two components). As in the real case, we will
need a polar decomposition theorem to do this. A matrix U ∈ GL(n, C)
is unitary if UU† = U†U = I, where U† := U

T
. A matrix P ∈ gl(n, C)

is called Hermitian if P † = P . A Hermitian matrix P is called positive
definite, denoted by P > 0, if 〈Pz, z〉 > 0 for all z ∈ Cn, z �= 0, where
〈 , 〉 denotes the inner product on Cn. Note that P > 0 implies that P is
invertible.

Proposition 9.2.15 (Complex Polar Decomposition). For any matrix
A ∈ GL(n, C), there exists a unique unitary matrix U and positive definite
Hermitian matrices P1, P2 such that

A = UP1 = P2U.

The proof is identical to that of Proposition 9.2.1 with the obvious
changes. The only additional property needed is the fact that the eigenval-
ues of a Hermitian matrix are real. As in the proof of the real case, one
needs to use the connectedness of the space of unitary matrices (proved in
§9.3) to conclude the following:

Proposition 9.2.16. The group GL(n, C) is a complex noncompact con-
nected Lie group of complex dimension n2 and real dimension 2n2. Its Lie
algebra gl(n, C) consists of all n×n complex matrices with the commutator
bracket.

On gl(n, C), the inner product is defined by

〈A, B〉 = trace(AB†).

The Complex Special Linear Group. This group is defined by

SL(n, C) := {A ∈ GL(n, C) | det A = 1 }

and is treated as in the real case. In the proof of its connectedness one uses
the complex polar decomposition theorem and the fact that any Hermitian
matrix can be diagonalized by conjugating it with an appropriate unitary
matrix.

Proposition 9.2.17. The group SL(n, C) is a complex noncompact Lie
group of complex dimension n2 − 1 and real dimension 2(n2 − 1). Its Lie
algebra sl(n, C) consists of all n×n complex matrices of trace zero with the
commutator bracket.
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The Unitary Group U(n). Recall that Cn has the Hermitian inner
product

〈x,y〉 =
n∑

i=0

xiȳi,

where x =
(
x1, . . . , xn

)
∈ Cn, y =

(
y1, . . . , yn

)
∈ Cn, and ȳi denotes the

complex conjugate. Let

U(n) = {A ∈ GL(n, C) | 〈Ax, Ay〉 = 〈x,y〉 } .

The orthogonality condition 〈Ax, Ay〉 = 〈x,y〉 is equivalent to AA† =
A†A = I, where A† = ĀT , that is, 〈Ax,y〉 =

〈
x, A†y

〉
. From |det A| = 1,

we see that det maps U(n) into the unit circle S1 = { z ∈ C | |z| = 1 }. As
is to be expected by now, U(n) is a closed Lie subgroup of GL(n, C) with
Lie algebra

u(n) = {A ∈ L(Cn, Cn) | 〈Ax,y〉 = −〈x, Ay〉 }
= {A ∈ gl(n, C) | A† = −A };

the proof parallels that for O(n). The elements of u(n) are called skew-
Hermitian matrices. Since the norm of A ∈ U(n) is

‖A‖ =
(
trace(A†A)

)1/2
= (trace I)1/2 =

√
n,

it follows that U(n) is closed and bounded, hence compact, in GL(n, C).
From the definition of u(n) it immediately follows that the real dimension
of U(n) is n2. Thus, even though the entries of the elements of U(n) are
complex, U(n) is a real Lie group.

In the special case n = 1, a complex linear map ϕ : C → C is multiplica-
tion by some complex number z, and ϕ is an isometry if and only if |z| = 1.
In this way the group U(1) is identified with the unit circle S1.

The special unitary group

SU(n) = {A ∈ U(n) | det A = 1 } = U(n) ∩ SL(n, C)

is a closed Lie subgroup of U(n) with Lie algebra

su(n) = {A ∈ L(Cn, Cn) | 〈Ax,y〉 = −〈x, Ay〉 and traceA = 0 }.
Hence, SU(n) is compact and has (real) dimension n2 − 1.

We shall prove later that both U(n) and SU(n) are connected.

Proposition 9.2.18. The group U(n) is a compact real Lie subgroup of
GL(n, C) of (real) dimension n2. Its Lie algebra u(n) consists of the space
of skew-Hermitian n × n matrices with the commutator bracket. SU(n) is
a closed real Lie subgroup of U(n) of dimension n2 − 1 whose Lie algebra
su(n) consists of all trace zero skew-Hermitian n × n matrices.

In the Internet supplement to this chapter, we shall show that

Sp(2n, R) ∩ O(2n, R) = U(n).

We shall also discuss some beautiful generalizations of this fact.
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The Group SU(2). This group warrants special attention, since it ap-
pears in many physical applications such as the Cayley–Klein parameters
for the free rigid body and in the construction of the (nonabelian) gauge
group for the Yang–Mills equations in elementary particle physics.

From the general formula for the dimension of SU(n) it follows that
dim SU(2) = 3. The group SU(2) is diffeomorphic to the three-sphere S3 =
{x ∈ R4 | ‖x‖ = 1 }, with the diffeomorphism given by

x = (x0, x1, x2, x3) ∈ S3 ⊂ R
4 �→

[
x0 − ix3 −x2 − ix1

x2 − ix1 x0 + ix3

]
∈ SU(2).

(9.2.15)

Therefore, SU(2) is connected and simply connected.
By Euler’s Theorem 9.2.6 every element of SO(3) different from the iden-

tity is determined by a vector v, which we can choose to be a unit vector,
and an angle of rotation θ about the axis v. The trouble is, the pair (v, θ)
and (−v,−θ) represent the same rotation and there is no consistent way
to continuously choose one of these pairs, valid for the entire group SO(3).
Such a choice is called, in physics, a choice of spin. This suggests the exis-
tence of a double cover of SO(3) that, hopefully, should also be a Lie group.
We will show below that SU(2) fulfills these requirements3. This is based
on the following construction.

Let σ1, σ2, σ3 be the Pauli spin matrices, defined by

σ1 =
[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, and σ3 =

[
1 0
0 −1

]
,

and let σ = (σ1, σ2, σ3). Then one checks that

[σ1, σ2] = 2iσ3 (plus cyclic permutations),

from which one finds that the map

x �→ x̃ =
1
2i

x · σ =
1
2

[
−ix3 −ix1 − x2

−ix1 + x2 ix3

]
,

where x ·σ = x1σ1 +x2σ2 +x3σ3, is a Lie algebra isomorphism between R3

and the 2×2 skew-Hermitian traceless matrices (the Lie algebra of SU(2));
that is, [x̃, ỹ] = (x × y)˜. Note that

−det(x · σ) = ‖x‖2, and trace (x̃ỹ) = − 1
2x · y.

3For any SO(n), it is a theorem that there is a unique simply connected 2:1 covering
group, called the spin group and denoted by Spin(n). We shall, in effect, show below
that Spin(3) = SU(2).
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Define the Lie group homomorphism π : SU(2) → GL(3, R) by

(π(A)x) · σ = A(x · σ)A† = A(x · σ)A−1. (9.2.16)

A straightforward computation, using the expression (9.2.15), shows that
ker π = {±I}. Therefore, π(A) = π(B) if and only if A = ±B. Since

‖π(A)x‖2 = −det((π(A)x) · σ)

= −det(A(x · σ)A−1)

= −det(x · σ) = ‖x‖2,

it follows that
π(SU(2)) ⊂ O(3).

But π(SU(2)) is connected, being the continuous image of a connected
space, and so

π(SU(2)) ⊂ SO(3).

Let us show that π : SU(2) → SO(3) is a local diffeomorphism. Indeed, if
α̃ ∈ su(2), then

(Teπ(α̃)x) · σ = (x · σ)α̃† + α̃(x · σ)
= [α̃,x · σ] = 2i[α̃, x̃]

= 2i(α̃ × x)˜= (α̃ × x) · σ
= (α̂x) · σ,

that is, Teπ(α̃) = α̂. Thus,

Teπ : su(2) −→ so(3)

is a Lie algebra isomorphism and hence π is a local diffeomorphism in a
neighborhood of the identity. Since π is a Lie group homomorphism, it is
a local diffeomorphism around every point.

In particular, π(SU(2)) is open and hence closed (its complement is a
union of open cosets in SO(3)). Since it is nonempty and SO(3) is connected,
we have π(SU(2)) = SO(3). Therefore,

π : SU(2) → SO(3)

is a 2 to 1 surjective submersion. Summarizing, we have the commutative
diagram in Figure 9.2.3.

Proposition 9.2.19. The Lie group SU(2) is the simply connected 2 to
1 covering group of SO(3).



304 9. An Introduction to Lie Groups

S3 SU(2)

RP3 SO(3)

≈

≈

2 : 1 2 : 1

�

�

 


Figure 9.2.3. The link between SU(2) and SO(3).

Quaternions. The division ring H (or, by abuse of language, the non-
commutative field) of quaternions is generated over the reals by three ele-
ments i, j, k with the relations

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.

Quaternionic multiplication is performed in the usual manner (like polyno-
mial multiplication) taking the above relations into account. If a ∈ H, we
write

a = (as,av) = as + a1
vi + a2

vj + a3
vk

for the scalar and vectorial part of the quaternion , where as, a1
v, a2

v,
a3

v ∈ R. Quaternions having zero scalar part are also called pure quater-
nions. With this notation, quaternionic multiplication has the expression

ab = (asbs − av · bv, asbv + bsav + av × bv) .

In addition, every quaternion a = (as,av) has a conjugate a := (as,−av),
that is, the real numbers are fixed by the conjugation and i = −i, j = −j,
and k = −k. Note that ab = ba. Every quaternion a �= 0 has an inverse
given by a−1 = a/|a|2, where

|a|2 := aa = aa = a2
s + ‖av‖2.

In particular, the unit quaternions, which, as a set, equal the unit sphere
S3 in R4, form a group under quaternionic multiplication.

Proposition 9.2.20. The unit quaternions S3 = { a ∈ H | |a| = 1 } form
a Lie group isomorphic to SU(2) via the isomorphism (9.2.15).

Proof. We already noted that (9.2.15) is a diffeomorphism of S3 with
SU(2), so all that remains to be shown is that it is a group homomorphism,
which is a straightforward computation. �

Since the Lie algebra of S3 is the tangent space at 1, it follows that it
is isomorphic to the pure quaternions R3. We begin by determining the
adjoint action of S3 on its Lie algebra.
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If a ∈ S3 and bv is a pure quaternion, the derivative of the conjugation
is given by

Ada bv = abva−1 = abv
a

|a|2 =
1

|a|2 (−av · bv, asbv + av × bv)(as,−av)

=
1

|a|2
(
0, 2as(av × bv) + 2(av · bv)av + (a2

s − ‖av‖2)bv

)
.

Therefore, if a(t) = (1, tav), we have a(0) = 1, a′(0) = av, so that the Lie
bracket on the pure quaternions R3 is given by

[av,bv] =
d

dt

∣∣∣∣
t=0

Ada(t) bv

=
d

dt

∣∣∣∣
t=0

1
1 + t2‖av‖2

(2t(av × bv) + 2t2(av · bv)av

+
(
1 − t2‖av‖2)bv

)
= 2av × bv.

Thus, the Lie algebra of S3 is R3 relative to the Lie bracket given by twice
the cross product of vectors.

The derivative of the Lie group isomorphism (9.2.15) is given by

x ∈ R
3 �→

[
−ix3 −ix1 − x2

−ix1 + x2 ix3

]
= 2x̃ ∈ su(2),

and is thus a Lie algebra isomorphism from R3 with twice the cross product
as bracket to su(2), or equivalently to (R3,×).

Let us return to the commutative diagram in Figure 9.2.3 and determine
explicitly the 2 to 1 surjective map S3 → SO(3) that associates to a quater-
nion a ∈ S3 ⊂ H the rotation matrix A ∈ SO(3). To compute this map, let
a ∈ S3 and associate to it the matrix

U =
[
as − ia3

v −a2
v − ia1

v

a2
v − ia1

v as + ia3
v

]
,
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where a = (as,av) = (as, a
1
v, a2

v, a3
v). By (9.2.16), the rotation matrix is

given by A = π(U), namely,

(Ax) · σ = (π(U)x) · σ = U(x · σ)U†

=
[
as − ia3

v −a2
v − ia1

v

a2
v − ia1

v as + ia3
v

] [
x3 x1 − ix2

x1 + ix2 −x3

]
×

[
as + ia3

v a2
v + ia1

v

−a2
v + ia1

v as − ia3
v

]
=

[(
a2

s + (a1
v)2 − (a2

v)2 − (a3
v)2

)
x1 + 2(a1

va2
v − asa

3
v)x2

+2(asa
2
v + a1

va3
v)x3

]
σ1

+
[
2

(
a1

va2
v + asa

3
v

)
x1 +

(
a2

s − (a1
v)2 + (a2

v)2 − (a3
v)2

)
x2

+2
(
a2

va3
v − asa

1
v

)
x3

]
σ2

+
[
2

(
a1

va3
v − asa

2
v

)
x1 + 2

(
asa

1
v + a2

va3
v

)
x2

+
(
a2

s − (a1
v)2 − (a2

v)2 + (a3
v)2

)
x3

]
σ3.

Thus, taking into account that a2
s + (a1

v)2 + (a2
v)2 + (a3

v)2 = 1, we get the
expression of the matrix A as2a2

s + 2(a1
v)2 − 1 2(−asa

3
v + a1

va2
v) 2(asa

2
v + a1

va3
v)

2(asa
3
v + a1

va2
v) 2a2

s + 2(a2
v)2 − 1 2(−asa

1
v + a2

va3
v)

2(−asa
1
v + a2

va3
v) 2(asa

1
v + a2

va3
v) 2a2

s + (a3
v)2 − 1


= (2a2

s − 1)I + 2asâv + 2av ⊗ av, (9.2.17)

where av ⊗ av is the symmetric matrix whose (i, j) entry equals ai
vaj

v. The
map

a ∈ S3 �→ (2a2
s − 1)I + 2asâv + 2av ⊗ av

is called the Euler–Rodrigues parametrization. It has the advantage,
as opposed to the Euler angles parametrization, which has a coordinate
singularity, of being global. This is of crucial importance in computational
mechanics (see, for example, Marsden and Wendlandt [1997]).

Finally, let us rewrite Rodrigues’ formula (9.2.8) in terms of unit quater-
nions. Let

a = (as,av) =
(
cos

ω

2
,
(
sin

ω

2

)
n
)

,

where ω > 0 is an angle and n is a unit vector. Since n̂2 = n⊗n− I, from
(9.2.8) we get

exp(ωn) = I + (sinω)n̂ + 2
(
sin2 ω

2

)
(n ⊗ n − I)

=
(
1 − 2 sin2 ω

2

)
I + 2 cos

ω

2
sin

ω

2
n̂ + 2

(
sin2 ω

2

)
n ⊗ n

=
(
2a2

s − 1
)
I + 2asâv + 2av ⊗ av.
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This expression then produces a rotation associated to each unit quaternion
a. In addition, using this parametrization, in 1840 Rodrigues found a beau-
tiful way of expressing the product of two rotations exp(ω1n1) · exp(ω2n2)
in terms of the given data. In fact, this was an early exploration of the
spin group! We refer to Whittaker [1927, Section 7], Altmann [1986], Enos
[1993], Lewis and Simo [1995], and references therein for further informa-
tion.

SU(2) Conjugacy Classes and the Hopf Fibration. We next deter-
mine all conjugacy classes of S3 ∼= SU(2). If a ∈ S3, then a−1 = a, and a
straightforward computation gives

aba−1 = (bs, 2(av · bv)av + 2as(av × bv) + (2a2
s − 1)bv)

for any b ∈ S3. If bs = ±1, that is, bv = 0, then the above formula shows
that aba−1 = b for all a ∈ S3, that is, the classes of I and −I, where
I = (1,0), each consist of one element, and the center of SU(2) ∼= S3 is
{±I}.

In what follows, assume that bs �= ±1, or, equivalently, that bv �= 0, and
fix this b ∈ S3 throughout the following discussion. We shall prove that
given x ∈ R3 with ‖x‖ = ‖bv‖, we can find a ∈ S3 such that

2(av · bv)av + 2as(av × bv) + (2a2
s − 1)bv = x. (9.2.18)

If x = cbv for some c �= 0, then the choice av = 0 and 2a2
s = 1 + c satisfies

(9.2.18). Now assume that x and bv are not collinear. Take the dot product
of (9.2.18) with bv and get

2(av · bv)2 + 2a2
s‖bv‖2 = ‖bv‖2 + x · bv.

If ‖bv‖2 + x · bv = 0, since bv �= 0, it follows that av · bv = 0 and as = 0.
Returning to (9.2.18) it follows that −bv = x, which is excluded. Therefore,
x · bv + ‖bv‖2 �= 0, and searching for av ∈ R3 such that av · bv = 0, it
follows that

a2
s =

x · bv + ‖bv‖2

2‖bv‖2
�= 0.

Now take the cross product of (9.2.18) with bv and recall that we assumed
av · bv = 0 to get

2as‖bv‖2av = bv × x,

whence
av =

bv × x
2as‖bv‖2

,

which is allowed, since bv �= 0 and as �= 0. Note that a = (as,av) just
determined satisfies av · bv = 0 and

|a|2 = a2
s + ‖av‖2 = 1,

since ‖x‖ = ‖bv‖.
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Proposition 9.2.21. The conjugacy classes of S3 ∼= SU(2) are the two-
spheres {

bv ∈ R
3 | ‖bv‖2 = 1 − b2

s

}
for each bs ∈ [−1, 1], which degenerate to the north and south poles (±1, 0, 0, 0)
comprising the center of SU(2).

The above proof shows that any unit quaternion is conjugate in S3 to a
quaternion of the form as + a3

vk, as, a3
v ∈ R, which in terms of matrices

and the isomorphism (9.2.15) says that any SU(2) matrix is conjugate to a
diagonal matrix .

The conjugacy class of k is the unit sphere S2, and the orbit map

π : S3 → S2, π(a) = aka,

is the Hopf fibration.
The subgroup

H =
{

as + a3
vk ∈ S3 | as, a

3
v ∈ R

}
⊂ S3

is a closed, one-dimensional Abelian Lie subgroup of S3 isomorphic via
(9.2.15) to the set of diagonal matrices in SU(2) and is hence the circle S1.
Note that the isotropy of k in S3 consists of H, as an easy computation
using (9.2.18) shows. Therefore, since the orbit of k is diffeomorphic to
S3/H, it follows that the fibers of the Hopf fibration equal the left cosets
aH for a ∈ S3.

Finally, we shall give an expression of the Hopf fibration in terms of
complex variables. In the representation (9.2.15), set

w1 = x2 + ix1, w2 = x0 + ix3,

and note that if
a = (x0, x1, x2, x3) ∈ S3 ⊂ H,

then aka corresponds to[
x0 − ix3 −x2 − ix1

x2 − ix1 x0 + ix3

] [
−i 0
0 i

] [
x0 + ix3 x2 + ix1

−x2 + ix1 x0 − ix3

]
=

[
−i

(
|x0 + ix3|2 − |x2 + ix1|2

)
−2i

(
x2 + ix1

)
(x0 − ix3)

−2i(x2 − ix1)(x0 + ix3) i
(
|x0 + ix3|2 − |x2 + ix1|2

)] .

Thus, if we consider the diffeomorphisms

(x0, x1, x2, x3) ∈ S3 ⊂ H �→
[
x0 − ix3 −x2 − ix1

x2 − ix1 x0 + ix3

]
∈ SU(2)

�→
(
−i(x2 + ix1),−i(x0 + ix3)

)
∈ S3 ⊂ C

2,

the above orbit map, that is, the Hopf fibration, becomes

(w1, w2) ∈ S3 �→
(
2w1w2, |w2|2 − |w1|2

)
∈ S2.
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Exercises

� 9.2-1. Describe the set of matrices in SO(3) that are also symmetric.

� 9.2-2. If A ∈ Sp(2n, R), show that AT ∈ Sp(2n, R) as well.

� 9.2-3. Show that sp(2n, R) is isomorphic, as a Lie algebra, to the space
of homogeneous quadratic functions on R2n under the Poisson bracket.

� 9.2-4. A map f : Rn → Rn preserving the distance between any two
points, that is, ‖f(x) − f(y)‖ = ‖x − y‖ for all x,y ∈ Rn, is called an
isometry. Show that f is an isometry preserving the origin if and only if
f ∈ O(n).

9.3 Actions of Lie Groups

In this section we develop some basic facts about actions of Lie groups on
manifolds. One of our main applications later will be the description of
Hamiltonian systems with symmetry groups.

Basic Definitions. We begin with the definition of the action of a Lie
group G on a manifold M .

Definition 9.3.1. Let M be a manifold and let G be a Lie group. A (left)
action of a Lie group G on M is a smooth mapping Φ : G×M → M such
that:

(i) Φ(e, x) = x for all x ∈ M ; and

(ii) Φ(g,Φ(h, x)) = Φ(gh, x) for all g, h ∈ G and x ∈ M .

A right action is a map Ψ : M ×G → M that satisfies Ψ(x, e) = x and
Ψ(Ψ(x, g), h) = Ψ(x, gh). We sometimes use the notation g ·x = Φ(g, x) for
left actions, and x ·g = Ψ(x, g) for right actions. In the infinite-dimensional
case there are important situations where care with the smoothness is
needed. For the formal development we assume that we are in the Banach–
Lie group context.

For every g ∈ G let Φg : M → M be given by x �→ Φ(g, x). Then (i)
becomes Φe = idM , while (ii) becomes Φgh = Φg ◦ Φh. Definition 9.3.1
can now be rephrased by saying that the map g �→ Φg is a homomorphism
of G into Diff(M), the group of diffeomorphisms of M . In the special but
important case where M is a Banach space V and each Φg : V → V is
a continuous linear transformation, the action Φ of G on V is called a
representation of G on V .

Examples

(a) SO(3) acts on R3 by (A,x) �→ Ax. This action leaves the two-sphere
S2 invariant, so the same formula defines an action of SO(3) on S2. �
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(b) GL(n, R) acts on Rn by (A,x) �→ Ax. �

(c) Let X be a complete vector field on M , that is, one for which the
flow Ft of X is defined for all t ∈ R. Then Ft : M → M defines an action
of R on M . �

Orbits and Isotropy. If Φ is an action of G on M and x ∈ M , the orbit
of x is defined by

Orb(x) = {Φg(x) | g ∈ G } ⊂ M.

In finite dimensions one can show that Orb(x) is an immersed submanifold
of M (Abraham and Marsden [1978, p. 265]). For x ∈ M , the isotropy (or
stabilizer or symmetry) group of Φ at x is given by

Gx := { g ∈ G | Φg(x) = x } ⊂ G.

Since the map Φx : G → M defined by Φx(g) = Φ(g, x) is continuous,
Gx = (Φx)−1(x) is a closed subgroup and hence a Lie subgroup of G.
The manifold structure of Orb(x) is defined by requiring the bijective map
[g] ∈ G/Gx �→ g · x ∈ Orb(x) to be a diffeomorphism. That G/Gx is a
smooth manifold follows from Proposition 9.3.2, which is discussed below.

An action is said to be:

1. transitive if there is only one orbit or, equivalently, if for every x, y ∈
M there is a g ∈ G such that g · x = y;

2. effective (or faithful) if Φg = idM implies g = e; that is, g �→ Φg is
one-to-one; and

3. free if it has no fixed points, that is, Φg(x) = x implies g = e or,
equivalently, if for each x ∈ M , g �→ Φg(x) is one-to-one. Note that
an action is free iff Gx = {e}, for all x ∈ M and that every free action
is faithful.

Examples

(a) Left translation. Lg : G → G, h �→ gh, defines a transitive and free
action of G on itself. Note that right multiplication Rg : G → G, h �→ hg,
does not define a left action because Rgh = Rh ◦ Rg, so that g �→ Rg is
an antihomomorphism. However, g �→ Rg does define a right action, while
g �→ Rg−1 defines a left action of G on itself. �

(b) Conjugation. G acts on G by conjugation, as follows: g �→ Ig =
Rg−1 ◦ Lg. The map Ig : G → G given by h �→ ghg−1 is the inner auto-
morphism associated with g. Orbits of this action are called conjugacy
classes or, in the case of matrix groups, similarity classes. �
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(c) Adjoint Action. Differentiating conjugation at e, we get the ad-
joint representation of G on g:

Adg := TeIg : TeG = g → TeG = g.

Explicitly, the adjoint action of G on g is given by

Ad : G × g → g, Adg(ξ) = Te(Rg−1 ◦ Lg)ξ.

For example, for SO(3) we have IA(B) = ABA−1, so differentiating with
respect to B at B = identity gives AdA v̂ = Av̂A−1. However,

(AdA v̂)(w) = Av̂(A−1w) = A(v × A−1w) = Av × w,

so
(AdA v̂) = (Av) .̂

Identifying so(3) ∼= R3, we get AdA v = Av. �

(d) Coadjoint Action. The coadjoint action of G on g∗, the dual of
the Lie algebra g of G, is defined as follows. Let Ad∗

g : g∗ → g∗ be the dual
of Adg, defined by 〈

Ad∗
g α, ξ

〉
= 〈α,Adg ξ〉

for α ∈ g∗ and ξ ∈ g. Then the map

Φ∗ : G × g∗ → g∗ given by (g, α) �→ Ad∗
g−1 α

is the coadjoint action of G on g∗. The corresponding coadjoint repre-
sentation of G on g∗ is denoted by

Ad∗ : G → GL(g∗, g∗), Ad∗
g−1 =

(
Te(Rg ◦ Lg−1)

)∗
.

We will avoid the introduction of yet another ∗ by writing (Adg−1)∗ or
simply Ad∗

g−1 , where ∗ denotes the usual linear-algebraic dual, rather than
Ad∗(g), in which ∗ is simply part of the name of the function Ad∗. Any
representation of G on a vector space V similarly induces a contragredient
representation of G on V ∗. �

Quotient (Orbit) Spaces. An action of Φ of G on a manifold M defines
an equivalence relation on M by the relation of belonging to the same orbit;
explicitly, for x, y ∈ M , we write x ∼ y if there exists a g ∈ G such that
g ·x = y, that is, if y ∈ Orb(x) (and hence x ∈ Orb(y)). We let M/G be the
set of these equivalence classes, that is, the set of orbits, sometimes called
the orbit space. Let

π : M → M/G, x �→ Orb(x),

and give M/G the quotient topology by defining U ⊂ M/G to be open
if and only if π−1(U) is open in M . To guarantee that the orbit space
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M/G has a smooth manifold structure, further conditions on the action
are required.

An action Φ : G × M → M is called proper if the mapping

Φ̃ : G × M → M × M,

defined by
Φ̃(g, x) = (x,Φ(g, x)),

is proper. In finite dimensions this means that if K ⊂ M × M is compact,
then Φ̃−1(K) is compact. In general, this means that if {xn} is a convergent
sequence in M and {Φgn

(xn)} converges in M , then {gn} has a convergent
subsequence in G. For instance, if G is compact, this condition is auto-
matically satisfied. Orbits of proper Lie group actions are closed and hence
embedded submanifolds. The next proposition gives a useful sufficient con-
dition for M/G to be a smooth manifold.

Proposition 9.3.2. If Φ : G×M → M is a proper and free action, then
M/G is a smooth manifold and π : M → M/G is a smooth submersion.

For the proof, see Proposition 4.2.23 in Abraham and Marsden [1978].
(In infinite dimensions one uses these ideas, but additional technicalities
often arise; see Ebin [1970] and Isenberg and Marsden [1982].) The idea
of the chart construction for M/G is based on the following observation.
If x ∈ M , then there is an isomorphism ϕx of Tπ(x)(M/G) with the quo-
tient space TxM/Tx Orb(x). Moreover, if y = Φg(x), then TxΦg induces an
isomorphism

ψx,y : TxM/Tx Orb(x) → TyM/Ty Orb(y)

satisfying ϕy ◦ ψx,y = ϕx.

Examples

(a) G = R acts on M = R by translations; explicitly,

Φ : G × M → M, Φ(s, x) = x + s.

Then for x ∈ R, Orb(x) = R. Hence M/G is a single point, and the action
is transitive, proper, and free. �

(b) G = SO(3), M = R3 (∼= so(3)∗). Consider the action for x ∈ R3 and
A ∈ SO(3) given by ΦAx = Ax. Then

Orb(x) = {y ∈ R
3 | ‖y‖ = ‖x‖ } = a sphere of radius ‖x‖.

Hence M/G ∼= R+. The set

R
+ = { r ∈ R | r ≥ 0 }

is not a manifold because it includes the endpoint r = 0. Indeed, the action
is not free, since it has the fixed point 0 ∈ R3. �
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(c) Let G be Abelian. Then Adg = idg, Ad∗
g−1 = idg∗ , and the adjoint

and coadjoint orbits of ξ ∈ g and α ∈ g∗, respectively, are the one-point
sets {ξ} and {α}. �

We will see later that coadjoint orbits can be natural phase spaces for
some mechanical systems like the rigid body; in particular, they are always
even-dimensional.

Infinitesimal Generators. Next we turn to the infinitesimal description
of an action, which will be a crucial concept for mechanics.

Definition 9.3.3. Suppose Φ : G × M → M is an action. For ξ ∈ g, the
map Φξ : R × M → M , defined by

Φξ(t, x) = Φ(exp tξ, x),

is an R-action on M . In other words, Φexp tξ : M → M is a flow on M .
The corresponding vector field on M , given by

ξM (x) :=
d

dt

∣∣∣∣
t=0

Φexp tξ(x),

is called the infinitesimal generator of the action corresponding to ξ.

Proposition 9.3.4. The tangent space at x to an orbit Orb(x0) is

Tx Orb(x0) = { ξM (x) | ξ ∈ g } ,

where Orb(x0) is endowed with the manifold structure making G/Gx0 →
Orb(x0) into a diffeomorphism.

The idea is as follows: Let σξ(t) be a curve in G with σξ(0) = e that is
tangent to ξ at t = 0. Then the map Φx,ξ(t) = Φσξ(t)(x) is a smooth curve
in Orb(x0) with Φx,ξ(0) = x. Hence by the chain rule (see also Lemma
9.3.7 below),

d

dt

∣∣∣∣
t=0

Φx,ξ(t) =
d

dt

∣∣∣∣
t=0

Φσξ(t)(x) = ξM (x)

is a tangent vector at x to Orb(x0). Furthermore, each tangent vector is
obtained in this way, since tangent vectors are equivalence classes of such
curves.

The Lie algebra of the isotropy group Gx, x ∈ M , called the isotropy
(or stabilizer, or symmetry) algebra at x, equals, by Proposition 9.1.13,
gx = { ξ ∈ g | ξM (x) = 0 }.
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Examples

(a) The infinitesimal generators for the adjoint action are computed as
follows. Let

Ad : G × g → g, Adg(η) = Te(Rg−1 ◦ Lg)(η).

For ξ ∈ g, we compute the corresponding infinitesimal generator ξg. By
definition,

ξg(η) =
(

d

dt

)∣∣∣∣
t=0

Adexp tξ(η).

By (9.1.5), this equals [ξ, η]. Thus, for the adjoint action,

ξg(η) = [ξ, η]. (9.3.1)

This important operation deserves a special name. We define the ad op-
erator adξ : g → g by η �→ [ξ, η]. Thus,

ξg = adξ . �

(b) We illustrate (a) for the group SO(3) as follows. Let A(t) = exp(tC),
where C ∈ so(3); then A(0) = I and A′(0) = C. Thus, with B ∈ so(3),

d

dt

∣∣∣∣
t=0

(Adexp tC B) =
d

dt

∣∣∣∣
t=0

(exp(tC)B(exp(tC))−1)

=
d

dt

∣∣∣∣
t=0

(A(t)BA(t)−1)

= A′(0)BA−1(0) + A(0)BA−1′(0).

Differentiating A(t)A−1(t) = I, we obtain

d

dt
(A−1(t)) = −A−1(t)A′(t)A−1(t),

so that
A−1′(0) = −A′(0) = −C.

Then the preceding equation becomes

d

dt

∣∣∣∣
t=0

(Adexp tC B) = CB − BC = [C, B],

as expected. �
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(c) Let Ad∗ : G × g∗ → g∗ be the coadjoint action (g, α) �→ Ad∗
g−1 α. If

ξ ∈ g, we compute for α ∈ g∗ and η ∈ g

〈ξg∗(α), η〉 =
〈

d

dt

∣∣∣∣
t=0

Ad∗
exp(−tξ)(α), η

〉
=

d

dt

∣∣∣∣
t=0

〈
Ad∗

exp(−tξ)(α), η
〉

=
d

dt

∣∣∣∣
t=0

〈
α,Adexp(−tξ) η

〉
=

〈
α,

d

dt

∣∣∣∣
t=0

Adexp(−tξ) η

〉
= 〈α,−[ξ, η]〉 = −〈α, adξ(η)〉 = −

〈
ad∗

ξ(α), η
〉
.

Hence

ξg∗ = − ad∗
ξ , or ξg∗(α) = −〈α, [ξ, ·]〉 . (9.3.2)

�

(d) Identifying so(3) ∼= (R3,×) and so(3)∗ ∼= R3∗
, using the pairing given

by the standard Euclidean inner product, (9.3.2) reads

ξso(3)∗(l) = −l · (ξ × ·),

for l ∈ so(3)∗ and ξ ∈ so(3). For η ∈ so(3), we have〈
ξso(3)∗(l), η

〉
= −l · (ξ × η) = −(l × ξ) · η = −〈l × ξ, η〉,

so that
ξR3(l) = −l × ξ = ξ × l.

As expected, ξR3(l) ∈ Tl Orb(l) is tangent to Orb(l) (see Figure 9.3.1).
Allowing ξ to vary in so(3) ∼= R3, one obtains all of Tl Orb(l), consistent
with Proposition 9.3.4. �

ξ

ξ × l

l

Figure 9.3.1. ξR3(l) is tangent to Orb(l).
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Equivariance. A map between two spaces is equivariant when it respects
group actions on these spaces. We state this more precisely:

Definition 9.3.5. Let M and N be manifolds and let G be a Lie group
that acts on M by Φg : M → M , and on N by Ψg : N → N . A smooth
map f : M → N is called equivariant with respect to these actions if for
all g ∈ G,

f ◦ Φg = Ψg ◦ f, (9.3.3)

that is, if the diagram in Figure 9.3.2 commutes.

M N

M N

f

f

Φg Ψg

�

�

 


Figure 9.3.2. Commutative diagram for equivariance.

Setting g = exp(tξ) and differentiating (9.3.3) with respect to t at t = 0
gives Tf ◦ ξM = ξN ◦ f . In other words, ξM and ξN are f -related. In
particular, if f is an equivariant diffeomorphism, then f∗ξN = ξM .

Also note that if M/G and N/G are both smooth manifolds with the
canonical projections smooth submersions, an equivariant map f : M → N
induces a smooth map fG : M/G → N/G.

Averaging. A useful device for constructing invariant objects is by av-
eraging. For example, let G be a compact group acting on a manifold M
and let α be a differential form on M . Then we form

α =
∫

G

Φ∗
gα dµ(g),

where µ is Haar measure on G. One checks that α is invariant. One can do
the same with other tensors, such as Riemannian metrics on M , to obtain
invariant ones.

Brackets of Generators. Now we come to an important formula re-
lating the Jacobi–Lie bracket of two infinitesimal generators with the Lie
algebra bracket.

Proposition 9.3.6. Let the Lie group G act on the left on the manifold
M . Then the infinitesimal generator map ξ �→ ξM of the Lie algebra g
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of G into the Lie algebra X(M) of vector fields of M is a Lie algebra
antihomomorphism; that is,

(aξ + bη)M = aξM + bηM

and
[ξM , ηM ] = −[ξ, η]M

for all ξ, η ∈ g and a, b ∈ R.

To prove this, we use the following lemma:

Lemma 9.3.7. (i) Let c(t) be a curve in G, c(0) = e, c′(0) = ξ ∈ g.
Then

ξM (x) =
d

dt

∣∣∣∣
t=0

Φc(t)(x).

(ii) For every g ∈ G,
(Adg ξ)M = Φ∗

g−1ξM .

Proof. (i) Let Φx : G → M be the map Φx(g) = Φ(g, x). Since
Φx is smooth, the definition of the infinitesimal generator says that
TeΦx(ξ) = ξM (x). Thus, (i) follows by the chain rule.

(ii) We have

(Adg ξ)M (x) =
d

dt

∣∣∣∣
t=0

Φ(exp(t Adg ξ), x)

=
d

dt

∣∣∣∣
t=0

Φ(g(exp tξ)g−1, x) (by Corollary 9.1.8)

=
d

dt

∣∣∣∣
t=0

(Φg ◦ Φexp tξ ◦ Φg−1(x))

= TΦ−1
g (x)Φg

(
ξM

(
Φg−1(x)

))
=

(
Φ∗

g−1ξM

)
(x). �

Proof of Proposition 9.3.6. Linearity follows, since ξM (x) = TeΦx(ξ).
To prove the second relation, put g = exp tη in (ii) of the lemma to get

(Adexp tη ξ)M = Φ∗
exp(−tη)ξM .

But Φexp(−tη) is the flow of −ηM , so differentiating at t = 0 the right-hand
side gives [ξM , ηM ]. The derivative of the left-hand side at t = 0 equals
[η, ξ]M by the preceding Example (a). �
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In view of this proposition one defines a left Lie algebra action of a
manifold M as a Lie algebra antihomomorphism ξ ∈ g �→ ξM ∈ X(M),
such that the mapping (ξ, x) ∈ g × M �→ ξM (x) ∈ TM is smooth.

Let Φ : G × G → G denote the action of G on itself by left translation:
Φ(g, h) = Lgh. For ξ ∈ g, let Yξ be the corresponding right-invariant vector
field on G. Then

ξG(g) = Yξ(g) = TeRg(ξ),

and similarly, the infinitesimal generator of right translation is the left-
invariant vector field g �→ TeLg(ξ).

Derivatives of Curves. It is convenient to have formulas for the deriva-
tives of curves associated with the adjoint and coadjoint actions. For ex-
ample, let g(t) be a (smooth) curve in G and η(t) a (smooth) curve in g.
Let the action be denoted by concatenation:

g(t)η(t) = Adg(t) η(t).

Proposition 9.3.8. The following holds:

d

dt
g(t)η(t) = g(t)

{
[ξ(t), η(t)] +

dη

dt

}
, (9.3.4)

where
ξ(t) = g(t)−1ġ(t) := Tg(t)L

−1
g(t)

dg

dt
∈ g.

Proof. We have

d

dt

∣∣∣∣
t=t0

Adg(t) η(t) =
d

dt

∣∣∣∣
t=t0

{
g(t0)[g(t0)−1g(t)]η(t)

}
= g(t0)

d

dt

∣∣∣∣
t=t0

{
[g(t0)−1g(t)]η(t)

}
,

where the first g(t0) denotes the Ad-action, which is linear . Now, g(t0)−1g(t)
is a curve through the identity at t = t0 with tangent vector ξ(t0), so the
above becomes

g(t0)
{

[ξ(t0), η(t0)] +
dη(t0)

dt

}
.

�

Similarly, for the coadjoint action we write

g(t)µ(t) = Ad∗
g(t)−1 µ(t),

and then, as above, one proves that

d

dt
[g(t)µ(t)] = g(t)

{
− ad∗

ξ(t) µ(t) +
dµ

dt

}
,
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which we could write, extending our concatenation notation to Lie algebra
actions as well,

d

dt
[g(t)µ(t)] = g(t)

{
ξ(t)µ(t) +

dµ

dt

}
, (9.3.5)

where ξ(t) = g(t)−1ġ(t). For right actions, these become

d

dt
[η(t)g(t)] =

{
η(t)ζ(t) +

dη

dt

}
g(t) (9.3.6)

and

d

dt
[µ(t)g(t)] =

{
µ(t)ζ(t) +

dµ

dt

}
g(t), (9.3.7)

where ζ(t) = ġ(t)g(t)−1,

η(t)g(t) = Adg(t)−1 η(t), and η(t)ζ(t) = −[ζ(t), η(t)],

and where

µ(t)g(t) = Ad∗
g(t) µ(t) and µ(t)ζ(t) = ad∗

ζ(t) µ(t).

Connectivity of Some Classical Groups. First we state two facts
about homogeneous spaces:

1. If H is a closed normal subgroup of the Lie group G (that is, if
h ∈ H and g ∈ G, then ghg−1 ∈ H), then the quotient G/H is
a Lie group and the natural projection π : G → G/H is a smooth
group homomorphism. (This follows from Proposition 9.3.2; see also
Theorem 2.9.6 in Varadarajan [1974, p. 80].) Moreover, if H and
G/H are connected, then G is connected. Similarly, if H and G/H
are simply connected, then G is simply connected.

2. Let G, M be finite-dimensional and second countable and let Φ :
G×M → M be a transitive action of G on M , and for x ∈ M , let Gx

be the isotropy subgroup of x. Then the map gGx �→ Φg(x) is a dif-
feomorphism of G/Gx onto M . (This follows from Proposition 9.3.2;
see also Theorem 2.9.4 in Varadarajan [1974, p. 77].)

The action

Φ : GL(n, R) × R
n → R

n, Φ(A, x) = Ax,

restricted to O(n)×Sn−1 induces a transitive action. The isotropy subgroup
of O(n) at en ∈ Sn−1 is O(n − 1). Clearly, O(n − 1) is a closed subgroup
of O(n) by embedding any A ∈ O(n − 1) as

Ã =
[

A 0
0 1

]
∈ O(n),



320 9. An Introduction to Lie Groups

and the elements of O(n−1) leave en fixed. On the other hand, if A ∈ O(n)
and Aen = en, then A ∈ O(n − 1). It follows from fact 2 above that the
map

O(n)/ O(n − 1) → Sn−1, A · O(n − 1) �→ Aen,

is a diffeomorphism. By a similar argument, there is a diffeomorphism

Sn−1 ∼= SO(n)/ SO(n − 1).

The natural action of GL(n, C) on Cn similarly induces a diffeomorphism
of S2n−1 ⊂ R2n with the homogeneous space U(n)/ U(n−1). Moreover, we
get S2n−1 ∼= SU(n)/ SU(n − 1). In particular, since SU(1) consists only of
the 1 × 1 identity matrix, S3 is diffeomorphic with SU(2), a fact already
proved at the end of §9.2.

Proposition 9.3.9. Each of the Lie groups SO(n), SU(n), and U(n) is
connected for n ≥ 1, and O(n) has two components. The group SU(n) is
simply connected.

Proof. The groups SO(1) and SU(1) are connected, since both consist
only of the 1 × 1 identity matrix, and U(1) is connected, since

U(1) = { z ∈ C | |z| = 1 } = S1.

That SO(n), SU(n), and U(n) are connected for all n now follows from
fact 1 above, using induction on n and the representation of the spheres as
homogeneous spaces. Since every matrix A in O(n) has determinant ±1,
the orthogonal group can be written as the union of two nonempty disjoint
connected open subsets as follows:

O(n) = SO(n) ∪ A · SO(n),

where A = diag(−1, 1, 1, . . . , 1). Thus, O(n) has two components. �

Here is a general strategy for proving the connectivity of the classical
groups; see, for example Knapp [1996, p 72]. This works, in particular,
for Sp(2n, R) (and the groups Sp(2n, C), SP∗(2n) discussed in the Internet
supplement). Let G be a subgroup of GL(n, R) (resp. GL(n, C)) defined
as the zero set of a collection of real-valued polynomials in the (real and
imaginary parts) of the matrix entries. Assume also that G is closed under
taking adjoints (see Exercise 9.2-2 for the case of Sp(2n, R)). Let K =
G∩O(n) (resp. U(n)) and let p be the set of Hermitian matrices in g. The
polar decomposition says that

(k, ξ) ∈ K × p �→ k exp(ξ) ∈ G

is a homeomorphism. It follows that since ξ lies in a connected space, G is
connected iff K is connected. For Sp(2m, R) our results above show that
U(m) is connected, so Sp(2m, R) is connected.
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Examples

(a) Isometry groups. Let E be a finite-dimensional vector space with
a bilinear form 〈 , 〉. Let G be the group of isometries of E, that is, F is
an isomorphism of E onto E and 〈Fe, Fe′〉 = 〈e, e′〉, for all e and e′ ∈ E.
Then G is a subgroup and a closed submanifold of GL(E). The Lie algebra
of G is

{K ∈ L(E) | 〈Ke, e′〉 + 〈e, Ke′〉 = 0 for all e, e′ ∈ E }. �

(b) Lorentz group. If 〈 , 〉 denotes the Minkowski metric on R4, that is,

〈x, y〉 =
3∑

i=1

xiyi − x4y4,

then the group of linear isometries is called the Lorentz group L. The
dimension of L is six, and L has four connected components. If

S =
[

I3 0
0 −1

]
∈ GL(4, R),

then

L = {A ∈ GL(4, R) | AT SA = S },

and so the Lie algebra of L is

l = {A ∈ L(R4, R4) | SA + AT S = 0 }.

The identity component of L is

{A ∈ L | detA > 0 and A44 > 0 } = L+
↑ ;

L and L+
↑ are not compact. �

(c) Galilean group. Consider the (closed) subgroup G of GL(5, R) that
consists of matrices with the following block structure:

{R,v,a, τ} :=

 R v a
0 1 τ
0 0 1

 ,

where R ∈ SO(3), v,a ∈ R3, and τ ∈ R. This group is called the Galilean
group. Its Lie algebra is a subalgebra of L(R5, R5) given by the set of
matrices of the form

{ω,u,α, θ} :=

 ω̂ u α
0 0 θ
0 0 0

 ,
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where ω,u,α ∈ R3 and θ ∈ R. Obviously the Galilean group acts naturally
on R5; moreover, it acts naturally on R4, embedded as the following G-
invariant subset of R5:

[
x
t

]
�→

x
t
1

 ,

where x ∈ R3 and t ∈ R. Concretely, the action of {R,v,a, τ} on (x, t) is
given by

(x, t) �→ (Rx + tv + a, t + τ).

Thus, the Galilean group gives a change of frame of reference (not affecting
the “absolute time” variable) by rotations (R), space translations (a), time
translations (τ), and going to a moving frame, or boosts (v). �

(d) Unitary Group of Hilbert Space. Another basic example of an
infinite-dimensional group is the unitary group U(H) of a complex Hilbert
space H. If G is a Lie group and ρ : G → U(H) is a group homomorphism,
we call ρ a unitary representation. In other words, ρ is an action of G
on H by unitary maps.

As with the diffeomorphism group, questions of smoothness regarding
U(H) need to be dealt with carefully, and in this book we shall give only
a brief indication of what is involved. The reason for care is, for one thing,
that one ultimately is dealing with PDEs rather than ODEs and the hy-
potheses made must be such that PDEs are not excluded. For example,
for a unitary representation one assumes that for each ψ, ϕ ∈ H, the map
g �→ 〈ψ, ρ(g)ϕ〉 of G to C is continuous. In particular, for G = R one has
the notion of a continuous one-parameter group U(t) of unitary operators4

so that U(0) = identity and

U(t + s) = U(t) ◦ U(s).

Stone’s theorem says that in an appropriate sense we can write U(t) =
etA, where A is an (unbounded) skew-adjoint operator defined on a dense
domain D(A) ⊂ H. See, for example, Abraham, Marsden, and Ratiu [1988,
Section 7.4B] for the proof. Conversely each skew-adjoint operator defines
a one-parameter subgroup. Thus, Stone’s theorem gives precise meaning
to the statement that the Lie algebra u(H) of U(H) consists of the skew-
adjoint operators. The Lie bracket is the commutator, as long as one is
careful with domains.

4In Hilbert space, weak continuity and unitarity implies continuity in the operator
norm; see, for example, Riesz and Nagy [1990] §29.
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If ρ is a unitary representation of a finite-dimensional Lie group G on
H, then ρ(exp(tξ)) is a one-parameter subgroup of U(H), so Stone’s the-
orem guarantees that there is a map ξ �→ A(ξ) associating a skew-adjoint
operator A(ξ) to each ξ ∈ g. Formally, we have

[A(ξ), A(η)] = A[ξ, η].

Results like this are aided by a theorem of Nelson [1959] guaranteeing a
dense subspace DG ⊂ H such that

(i) A(ξ) is well-defined on DG,

(ii) A(ξ) maps DG to DG, and

(iii) for ψ ∈ DG, [exp tA(ξ)]ψ is C∞ in t with derivative at t = 0 given by
A(ξ)ψ.

This space is called an essential G-smooth part of H, and on DG the
above commutator relation and the linearity

A(αξ + βη) = αA(ξ) + βA(η)

become literally true. Moreover, we lose little by using DG, since A(ξ) is
uniquely determined by what it is on DG.

We identify U(1) with the unit circle in C, and each such complex number
determines an element of U(H) by multiplication. Thus, we regard U(1) ⊂
U(H). As such, it is a normal subgroup (in fact, elements of U(1) commute
with elements of U(H)), so the quotient is a group, called the projective
unitary group of H. We write it as U(PH) = U(H)/ U(1). We write
elements of U(PH) as [U ] regarded as an equivalence class of U ∈ U(H).
The group U(PH) acts on projective Hilbert space PH = H/C, as in §5.3,
by [U ][ϕ] = [Uϕ].

One-parameter subgroups of U(PH) are of the form [U(t)] for a one-
parameter subgroup U(t) of U(H). This is a particularly simple case of the
general problem considered by Bargmann and Wigner of lifting projective
representations, a topic we return to later. In any case, this means that we
can identify the Lie algebra as u(PH) = u(H)/iR, where we identify the
two skew-adjoint operators A and A + λi, for λ real.

A projective representation of a group G is a homomorphism τ :
G → U(PH); we require continuity of g ∈ G �→ |〈ψ, τ(g)ϕ〉| ∈ R, which
is well-defined for [ψ], [ϕ] ∈ PH. There is an analogue of Nelson’s theorem
that guarantees an essential G-smooth part PDG of PH with properties
like those of DG. �

Miscellany. We conclude this section with a variety of remarks.



324 9. An Introduction to Lie Groups

1. Coadjoint Isotropy. The first remark concerns coadjoint orbit isotro-
py groups. The main result here is the following theorem, due to Duflo and
Vergne [1969]. We give a proof following Rais [1972] in the Internet sup-
plement.

Theorem 9.3.10 (Duflo and Vergne). Letg be a finite-dimensional Lie
algebra with dual g∗ and let r = min {dim gµ | µ ∈ g∗ }. The set {µ ∈ g∗ |
dim gµ = r } is open and dense in g∗. If dim gµ = r, then gµ is Abelian.

A simple example is the rotation group SO(3) in which the coadjoint
isotropy at each nonzero point is the Abelian group S1, whereas at the
origin it is the nonabelian group SO(3).

2. More on Infinite-Dimensional Groups. We can use a slight rein-
terpretation of the formulae in this section to calculate the Lie algebra
structure of some infinite-dimensional groups. Here we will treat this topic
only formally, that is, we assume that the spaces involved are manifolds and
do not specify the function-space topologies. For the formal calculations,
these structures are not needed, but the reader should be aware that there
is a mathematical gap here. (See Ebin and Marsden [1970] and Adams,
Ratiu, and Schmid [1986a, 1986b] for more information.)

Given a manifold M , let Diff(M) denote the group of all diffeomorphisms
of M . The group operation is composition. The Lie algebra of Diff(M), as
a vector space, consists of vector fields on M ; indeed, the flow of a vector
field is a curve in Diff(M), and its tangent vector at t = 0 is the given
vector field.

To determine the Lie algebra bracket, we consider the action of an arbi-
trary Lie group G on M . Such an action of G on M may be regarded as
a homomorphism Φ : G → Diff(M). By Proposition 9.1.5, its derivative at
the identity TeΦ should be a Lie algebra homomorphism. From the defini-
tion of infinitesimal generator, we see that TeΦ · ξ = ξM . Thus, Proposition
9.1.5 suggests that

[ξM , ηM ]Lie bracket = [ξ, η]M .

However, by Proposition 9.3.6, [ξ, η]M = −[ξM , ηM ]. Thus,

[ξM , ηM ]Lie bracket = −[ξM , ηM ].

This suggests that the Lie algebra bracket on X(M) is minus the Jacobi–Lie
bracket .

Another way to arrive at the same conclusion is to use the method of
computing brackets in the table in §9.1. To do this, we first compute, ac-
cording to step 1, the inner automorphism to be

Iη(ϕ) = η ◦ ϕ ◦ η−1.

By step 2, we differentiate with respect to ϕ to compute the Ad map.
Letting X be the time derivative at t = 0 of a curve ϕt in Diff(M) with
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ϕ0 = Identity, we have

Adη(X) = (TeIη)(X) = TeIη

[
d

dt

∣∣∣∣
t=0

ϕt

]
=

d

dt

∣∣∣∣
t=0

Iη(ϕt)

=
d

dt

∣∣∣∣
t=0

(η ◦ ϕt ◦ η−1) = Tη ◦ X ◦ η−1 = η∗X.

Hence Adη(X) = η∗X. Thus, the adjoint action of Diff(M) on its Lie
algebra is just the push-forward operation on vector fields. Finally, as in
step 3, we compute the bracket by differentiating Adη(X) with respect to
η. But by the Lie derivative characterization of brackets and the fact that
push-forward is the inverse of pull-back, we arrive at the same conclusion.
In summary, either method suggests that

The Lie algebra bracket on Diff(M) is minus the Jacobi–Lie
bracket of vector fields.

One can also say that the Jacobi–Lie bracket gives the right (as opposed
to left) Lie algebra structure on Diff(M).

If one restricts to the group of volume-preserving (or symplectic) diffeo-
morphisms, then the Lie bracket is again minus the Jacobi–Lie bracket on
the space of divergence-free (or locally Hamiltonian) vector fields.

Here are three examples of actions of Diff(M). Firstly, Diff(M) acts on M
by evaluation: The action Φ : Diff(M)×M → M is given by Φ(ϕ, x) = ϕ(x).
Secondly, the calculations we did for Adη show that the adjoint action of
Diff(M) on its Lie algebra is given by push-forward. Thirdly, if we identify
the dual space X(M)∗ with one-form densities by means of integration, then
the change-of-variables formula shows that the coadjoint action is given by
push-forward of one-form densities.

3. Equivariant Darboux Theorem. In Chapter 5 we studied the Dar-
boux theorem. It is natural to ask the sense in which this theorem holds in
the presence of a group action. That is, suppose that one has a Lie group
G (say compact) acting symplectically on a symplectic manifold (P,Ω)
and that, for example, the group action leaves a point x0 ∈ P fixed (one
can consider the more general case of an invariant manifold). We ask to
what extent one can put the symplectic form into a canonical form in an
equivariant way?

This question is best broken up into two parts. The first is whether or not
one can find a local equivariant representation in which the symplectic form
is constant. This is true and can be proved by establishing an equivariant
diffeomorphism between the manifold and its tangent space at x0 carrying
the constant symplectic form, which is just Ω evaluated at Tx0P . This
is done by checking that Moser’s proof given in Chapter 5 can be made
equivariant at each stage (see Exercise 9.3-5).

A more subtle question is that of putting the symplectic form into a
canonical form equivariantly. For this, one needs first to understand the
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equivariant classification of normal forms for symplectic structures. This
was done in Dellnitz and Melbourne [1993]. For the related question of
classifying equivariant normal forms for linear Hamiltonian systems, see
Williamson [1936], Melbourne and Dellnitz [1993], and Hörmander [1995].

Exercises

� 9.3-1. Let a Lie group G act linearly on a vector space V . Define a group
structure on G × V by

(g1, v1) · (g2, v2) = (g1g2, g1v2 + v1).

Show that this makes G× V into a Lie group—it is called the semidirect
product and is denoted by G � V . Determine its Lie algebra g� V .

� 9.3-2.

(a) Show that the Euclidean group E(3) can be written as O(3)� R3 in
the sense of the preceding exercise.

(b) Show that E(3) is isomorphic to the group of 4 × 4 matrices of the
form [

A b
0 1

]
,

where A ∈ O(3) and b ∈ R3.

� 9.3-3. Show that the Galilean group may be written as a semidirect prod-
uct G = (SO(3)� R3)� R4. Compute explicitly the inverse of a group
element, and the adjoint and the coadjoint actions.

� 9.3-4. If G is a Lie group, show that TG is isomorphic (as a Lie group)
with G � g (see Exercise 9.1-2).

� 9.3-5. In the relative Darboux theorem of Exercise 5.1-5, assume that a
compact Lie group G acts on P , that S is a G-invariant submanifold, and
that both Ω0 and Ω1 are G-invariant. Conclude that the diffeomorphism
ϕ : U −→ ϕ(U) can be chosen to commute with the G-action and that V ,
ϕ(U) can be chosen to be a G-invariant.

� 9.3-6. Verify, using standard vector notation, the four “derivative of
curves” formulas for SO(3).

� 9.3-7. Use the complex polar decomposition theorem (Proposition 9.2.15)
and simple connectedness of SU(n) to show that SL(n, C) is also simply
connected.

� 9.3-8. Show that SL(2, C) is the simply connected covering group of the
identity component L†

↑ of the Lorentz group.




