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4
Manifolds, Vector Fields, and
Differential Forms

In preparation for later chapters, it will be necessary for the reader to
learn a little bit about manifold theory. We recall a few basic facts here,
beginning with the finite-dimensional case. (See Abraham, Marsden, and
Ratiu [1988] for a full account.) The reader need not master all of this
material now, but it suffices to read through it for general sense and come
back to it repeatedly as our development of mechanics proceeds.

4.1 Manifolds

Our first goal is to define the notion of a manifold. Manifolds are, roughly
speaking, abstract surfaces that locally look like linear spaces. We shall
assume at first that the linear spaces are Rn for a fixed integer n, which
will be the dimension of the manifold.

Coordinate Charts. Given a set M , a chart on M is a subset U of M
together with a bijective map ϕ : U → ϕ(U) ⊂ Rn. Usually, we denote ϕ(m)
by (x1, . . . , xn) and call the xi the coordinates of the point m ∈ U ⊂ M .

Two charts (U, ϕ) and (U ′, ϕ′) such that U ∩U ′ �= ∅ are called compat-
ible if ϕ(U ∩ U ′) and ϕ′(U ′ ∩ U) are open subsets of Rn and the maps

ϕ′ ◦ ϕ−1|ϕ(U ∩ U ′) : ϕ(U ∩ U ′) −→ ϕ′(U ∩ U ′)

and

ϕ ◦ (ϕ′)−1|ϕ′(U ∩ U ′) : ϕ′(U ∩ U ′) −→ ϕ(U ∩ U ′)
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are C∞. Here, ϕ′◦ϕ−1|ϕ(U∩U ′) denotes the restriction of the map ϕ′◦ϕ−1

to the set ϕ(U ∩ U ′). See Figure 4.1.1.
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Figure 4.1.1. Overlapping charts on a manifold.

We call M a differentiable n-manifold if the following hold:

M1. The set M is covered by a collection of charts, that is, every point is
represented in at least one chart.

M2. M has an atlas; that is, M can be written as a union of compatible
charts.

If a chart is compatible with a given atlas, then it can be included into
the atlas itself to produce a new, larger, atlas. One wants to allow such
charts, thereby enlarging a given atlas, and so one really wants to define a
differentiable structure as a maximal atlas. We will assume that this
is done and resist the temptation to make this process overly formal.

A simple example will make what we have in mind clear. Suppose one
considers Euclidean three-space R3 as a manifold with simply one (iden-
tity) chart. Certainly, we want to allow other charts such as those defined
by spherical coordinates. Allowing all possible charts whose changes of co-
ordinates with the standard Euclidean coordinates are smooth then gives
us a maximal atlas.

A neighborhood of a point m in a manifold M is defined to be the
inverse image of a Euclidean space neighborhood of the point ϕ(m) under
a chart map ϕ : U → Rn. Neighborhoods define open sets, and one checks
that the open sets in M define a topology. Usually, we assume without
explicit mention that the topology is Hausdorff: Two different points m, m′

in M have nonintersecting neighborhoods.
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Tangent Vectors. Two curves t �→ c1(t) and t �→ c2(t) in an n-manifold
M are called equivalent at the point m if

c1(0) = c2(0) = m and (ϕ ◦ c1)′(0) = (ϕ ◦ c2)′(0)

in some chart ϕ. Here the prime denotes the differentiation of curves in
Euclidean space. It is easy to check that this definition is chart indepen-
dent and that it defines an equivalence relation. A tangent vector v to a
manifold M at a point m ∈ M is an equivalence class of curves at m.

It is a theorem that the set of tangent vectors to M at m forms a vector
space. It is denoted by TmM and is called the tangent space to M at
m ∈ M .

Given a curve c(t), we denote by c′(s) the tangent vector at c(s) defined
by the equivalence class of t �→ c(s + t) at t = 0. We have set things up
so that tangent vectors to manifolds are thought of intuitively as tangent
vectors to curves in M .

Let ϕ : U ⊂ M → Rn be a chart for the manifold M , so that we get as-
sociated coordinates (x1, . . . , xn) for points in U . Let v be a tangent vector
to M at m; i.e., v ∈ TmM , and let c be a curve that is a representative of
the equivalence class v. The components of v are the numbers v1, . . . , vn

defined by taking the derivatives of the components, in Euclidean space, of
the curve ϕ ◦ c:

vi =
d

dt
(ϕ ◦ c)i

∣∣∣∣
t=0

,

where i = 1, . . . , n. From the definition, the components are independent
of the representative curve chosen, but they do, of course, depend on the
chart chosen.

Tangent Bundles. The tangent bundle of M , denoted by TM , is
the set that is the disjoint union of the tangent spaces to M at the points
m ∈ M , that is,

TM =
⋃

m∈M

TmM.

Thus, a point of TM is a vector v that is tangent to M at some point
m ∈ M .

If M is an n-manifold, then TM is a 2n-manifold. To define the dif-
ferentiable structure on TM , we need to specify how to construct local
coordinates on TM . To do this, let x1, . . . , xn be local coordinates on M
and let v1, . . . , vn be components of a tangent vector in this coordinate
system. Then the 2n numbers x1, . . . , xn, v1, . . . , vn give a local coordi-
nate system on TM . This is the basic idea one uses to prove that indeed
TM is a 2n-manifold.

The natural projection is the map τM : TM → M that takes a tangent
vector v to the point m ∈ M at which the vector v is attached (that is,
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v ∈ TmM). The inverse image τ−1
M (m) of a point m ∈ M under the natural

projection τM is the tangent space TmM . This space is called the fiber of
the tangent bundle over the point m ∈ M .

Differentiable Maps and the Chain Rule. Let f : M → N be a map
of a manifold M to a manifold N . We call f differentiable (resp. Ck) if in
local coordinates on M and N , the map f is represented by differentiable
(resp. Ck) functions. Here, by “represented” we simply mean that coor-
dinate charts are chosen on both M and N so that in these coordinates
f , suitably restricted, becomes a map between Euclidean spaces. One of
course has to check that this notion of smoothness is independent of the
charts chosen—this follows from the chain rule.

The derivative of a differentiable map f : M → N at a point m ∈ M
is defined to be the linear map

Tmf : TmM → Tf(m)N

constructed in the following way. For v ∈ TmM , choose a curve c : ]−ε, ε[ →
M with c(0) = m, and associated velocity vector dc/dt |t=0 = v . Then
Tmf · v is the velocity vector at t = 0 of the curve f ◦ c : R → N , that is,

Tmf · v =
d

dt
f(c(t))

∣∣∣∣
t=0

.

The vector Tmf · v does not depend on the curve c but only on the vector
v, as is seen using the chain rule. If f : M → N is of class Ck, then
Tf : TM → TN is a mapping of class Ck−1. Note that

dc

dt

∣∣∣∣
t=0

= T0c · 1.

If f : M → N and g : N → P are differentiable maps (or maps of class
Ck), then g ◦ f : M → P is differentiable (or of class Ck), and the chain
rule holds:

T (g ◦ f) = Tg ◦ Tf.

Diffeomorphisms. A differentiable (or of class Ck) map f : M → N is
called a diffeomorphism if it is bijective and its inverse is also differen-
tiable (or of class Ck).

If Tmf : TmM → Tf(m)N is an isomorphism, the inverse function
theorem states that f is a local diffeomorphism around m ∈ M , that
is, there are open neighborhoods U of m in M and V of f(m) in N such
that f |U : U → V is a diffeomorphism. The set of all diffeomorphisms
f : M → M forms a group under composition, and the chain rule shows
that T (f−1) = (Tf)−1.
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Submanifolds and Submersions. A submanifold of M is a subset
S ⊂ M with the property that for each s ∈ S there is a chart (U, ϕ) in M
with the submanifold property, namely,

SM. ϕ : U → Rk × Rn−k and ϕ(U ∩ S) = ϕ(U) ∩ (Rk × {0}).

The number k is called the dimension of the submanifold S.
This latter notion is in agreement with the definition of dimension for a

general manifold, since S is a manifold in its own right all of whose charts
are of the form (U ∩ S, ϕ|(U ∩ S)) for all charts (U, ϕ) of M having the
submanifold property. Note that any open subset of M is a submanifold
and that a submanifold is necessarily locally closed, that is, every point
s ∈ S admits an open neighborhood U of s in M such that U ∩ S is closed
in U .

There are convenient ways to construct submanifolds using smooth map-
pings. If f : M → N is a smooth map, a point m ∈ M is a regular point
if Tmf is surjective; otherwise, m is a critical point of f . If C ⊂ M is the
set of critical points of f , then f(C) ⊂ N is the set of critical values of
f and N\f(C) is the set of regular values of f .1

The submersion theorem states that if f : M → N is a smooth map
and n is a regular value of f , then f−1(n) is a smooth submanifold of M
of dimension dimM − dimN and

Tm

(
f−1(n)

)
= kerTmf.

The local onto theorem states that Tmf : TmM → Tf(m)N is surjective
if and only if there are charts ϕ : U ⊂ M → U ′ at m in M and ψ :
V ⊂ N → V ′ at f(m) in N such that ϕ maps into the product space
Rdim M−dim N × Rdim N ; the image of U ′ correspondingly has the form of a
product U ′ = U ′′×V ′; the point m gets mapped to the origin ϕ(m) = (0,0),
as does f(m), namely, ψ(f(m)) = 0; and the local representative of f is a
projection:

(ψ ◦ f ◦ ϕ−1)(x, y) = x.

In particular, f |U : U → V is onto. If Tmf is onto for every m ∈ M , then
f is called a submersion. It follows that submersions are open mappings
(the images of open sets are open).

Immersions and Embeddings. A Ck map f : M → N is called an im-
mersion if Tmf is injective for every m ∈ M . The local 1-to-1 theorem
states that Tmf is injective if and only if there are charts ϕ : U ⊂ M → U ′

at m in M and ψ : V ⊂ N → V ′ at f(m) in N such that V ′ is a product

1Sard’s theorem states that if f : M → N is a Ck-map, k ≥ 1, and if M
has the property that every open covering has a countable subcovering, then if k >
max(0, dim M − dim N), the set of regular values of f is residual and hence dense in N .
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V ′ = U ′×V ′′ ⊂ Rdim M ×Rdim N−dim M ; both m and f(m) get sent to zero,
i.e., ϕ(m) = 0 and ψ(f(m)) = (0,0); and the local representative of f is
the inclusion

(ψ ◦ f ◦ ϕ−1)(x) = (x,0).

In particular, f |U : U → V is injective. The immersion theorem states
that Tmf is injective if and only if there is a neighborhood U of m in M such
that f(U) is a submanifold of N and f |U : U → f(U) is a diffeomorphism.

It should be noted that this theorem does not say that f(M) is a sub-
manifold of N . For example, f may not be injective and f(M) may thus
have self-intersections. Even if f is an injective immersion, the image f(M)
may not be a submanifold of N . An example is indicated in Figure 4.1.2.

f
y

x

r = cos 2θ

R2

π/4 π 7π/4

Figure 4.1.2. An injective immersion.

The map indicated in the figure (explicitly given by f : ]π/4, 7π/4 [→
R2; θ �→ (sin θ cos 2θ, cos θ cos 2θ)) is an injective immersion, but the topol-
ogy induced from R2 onto its image does not coincide with the usual topol-
ogy of the open interval: Any neighborhood of the origin in the relative
topology consists, in the domain interval, of the union of an open interval
about π with two open segments ]π/4, π/4 + ε[ , ]7π/4 − ε, 7π/4[ . Thus,
the image of f is not a submanifold of R2, but an injectively immersed
submanifold.

An immersion f : M → N that is a homeomorphism onto f(M) with
the relative topology induced from N is called an embedding. In this case
f(M) is a submanifold of N and f : M → f(M) is a diffeomorphism. For
example, if f : M → N is an injective immersion and if M is compact,
then f is an embedding. Thus, the example given in the preceding figure
is an example of an injective immersion that is not an embedding (and of
course, M is not compact).

Another example of an injective immersion that is not an embedding
is the linear flow on the torus T2 = R2/Z2 with irrational slope: f(t) =
(t, αt) (mod Z2). However, there is a difference between this injective im-
mersion and the “figure eight” example above: In some sense, the second
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example is better behaved; it has some “uniformity” about its lack of being
an embedding.

An injective immersion f : M → N is called regular if the following
property holds: If g : L → M is any map of the manifold L into M , then
g is Ck if and only if f ◦ g : L → N is Ck for any k ≥ 1. It is easy to see
that all embeddings satisfy this property but that the previous example
also satisfies it, without being an embedding, and that the “figure eight”
example (see Figure 4.1.2) does not satisfy it. Varadarajan [1974] calls such
maps quasi-regular embeddings; they appear below in the Frobenius
theorem and in the study of Lie subgroups.

Vector Fields and Flows. A vector field X on a manifold M is a map
X : M → TM that assigns a vector X(m) at the point m ∈ M ; that is,
τM ◦ X = identity. The real vector space of vector fields on M is denoted
by X(M). An integral curve of X with initial condition m0 at t = 0
is a (differentiable) map c : ]a, b[ → M such that ]a, b[ is an open interval
containing 0, c(0) = m0, and

c′(t) = X(c(t))

for all t ∈ ]a, b[. In formal presentations we usually suppress the domain of
definition, even though this is technically important.

The flow of X is the collection of maps ϕt : M → M such that t �→
ϕt(m) is the integral curve of X with initial condition m. Existence and
uniqueness theorems from ordinary differential equations guarantee that ϕ
is smooth in m and t (where defined) if X is. From uniqueness, we get the
flow property

ϕt+s = ϕt ◦ ϕs

along with the initial condition ϕ0 = identity. The flow property generalizes
the situation where M = V is a linear space, X(m) = Am for a (bounded)
linear operator A, and where

ϕt(m) = etAm

to the nonlinear case.
A time-dependent vector field is a map X : M ×R → TM such that

X(m, t) ∈ TmM for each m ∈ M and t ∈ R. An integral curve of X is
a curve c(t) in M such that c′(t) = X(c(t), t). In this case, the flow is the
collection of maps

ϕt,s : M → M

such that t �→ ϕt,s(m) is the integral curve c(t) with initial condition
c(s) = m at t = s. Again, the existence and uniqueness theorem from ODE
theory applies, and in particular, uniqueness gives the time-dependent
flow property

ϕt,s ◦ ϕs,r = ϕt,r.
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If X happens to be time independent, the two notions of flows are related
by ϕt,s = ϕt−s.

Differentials and Covectors. If f : M → R is a smooth function,
we can differentiate it at any point m ∈ M to obtain a map Tmf :
TmM → Tf(m)R. Identifying the tangent space of R at any point with
itself (a process we usually do in any vector space), we get a linear map
df(m) : TmM → R. That is, df(m) ∈ T ∗

mM , the dual of the vector space
TmM . We call df the differential of f . For v ∈ TmM , we call df(m) · v
the directional derivative of f in the direction v. In a coordinate chart or
in linear spaces, this notion coincides with the usual notion of a directional
derivative learned in vector calculus.

Explicitly, in coordinates, the directional derivative is given by

df(m) · v =
n∑

i=1

∂(f ◦ ϕ−1)
∂xi

vi,

where ϕ is a chart at m. We will employ the summation convention
and drop the summation sign when there are repeated indices.

One can show that specifying the directional derivatives completely de-
termines a vector, and so we can identify a basis of TmM using the operators
∂/∂xi. We write

{e1, . . . , en} =
{

∂

∂x1
, . . . ,

∂

∂xn

}
for this basis, so that v = vi∂/∂xi.

If we replace each vector space TmM with its dual T ∗
mM , we obtain a

new 2n-manifold called the cotangent bundle and denoted by T ∗M . The
dual basis to ∂/∂xi is denoted by dxi. Thus, relative to a choice of local
coordinates we get the basic formula

df(x) =
∂f

∂xi
dxi

for any smooth function f : M → R.

Exercises

� 4.1-1. Show that the two-sphere S2 ⊂ R3 is a 2-manifold.

� 4.1-2. If ϕt : S2 → S2 rotates points on S2 about a fixed axis through
an angle t, show that ϕt is the flow of a certain vector field on S2.

� 4.1-3. Let f : S2 → R be defined by f(x, y, z) = z. Compute df relative
to spherical coordinates (θ, ϕ).
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4.2 Differential Forms

We next review some of the basic definitions, properties, and operations
on differential forms, without proofs (see Abraham, Marsden, and Ratiu
[1988] and references therein).

The main idea of differential forms is to provide a generaliza-
tion of the basic operations of vector calculus, div, grad, and
curl, and the integral theorems of Green, Gauss, and Stokes to
manifolds of arbitrary dimension.

Basic Definitions. We have already met one-forms, a term that is used
in two ways—they are either members of a particular cotangent space T ∗

mM
or else, analogous to a vector field, an assignment of a covector in T ∗

mM
to each m ∈ M . A basic example of a one-form is the differential of a
real-valued function.

A 2-form Ω on a manifold M is a function Ω(m) : TmM × TmM → R

that assigns to each point m ∈ M a skew-symmetric bilinear form on the
tangent space TmM to M at m. More generally, a k-form α (sometimes
called a differential form of degree k) on a manifold M is a function
α(m) : TmM × · · · × TmM (there are k factors) → R that assigns to each
point m ∈ M a skew-symmetric k-multilinear map on the tangent space
TmM to M at m. Without the skew-symmetry assumption, α would be
called a (0, k)-tensor . A map α : V × · · · × V (there are k factors) → R is
multilinear when it is linear in each of its factors, that is,

α(v1, . . . , avj + bv′j , . . . , vk)

= aα(v1, . . . , vj , . . . , vk) + bα(v1, . . . , v′j , . . . , vk)

for all j with 1 ≤ j ≤ k. A k-multilinear map α : V × . . .× V → R is skew
(or alternating) when it changes sign whenever two of its arguments are
interchanged, that is, for all v1, . . . , vk ∈ V ,

α(v1, . . . , vi, . . . , vj , . . . , vk) = −α(v1, . . . , vj , . . . , vi, . . . , vk).

Let x1, . . . , xn denote coordinates on M , let

{e1, . . . , en} = {∂/∂x1, . . . , ∂/∂xn}

be the corresponding basis for TmM , and let

{e1, . . . , en} = {dx1, . . . , dxn}

be the dual basis for T ∗
mM . Then at each m ∈ M , we can write a 2-form as

Ωm(v, w) = Ωij(m)viwj , where Ωij(m) = Ωm

(
∂

∂xi
,

∂

∂xj

)
,
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and more generally, a k-form can be written

αm(v1, . . . , vk) = αi1...ik
(m)vi1

1 · · · vik

k ,

where there is a sum on i1, . . . , ik,

αi1...ik
(m) = αm

(
∂

∂xi1
, . . . ,

∂

∂xik

)
,

and vi = vj
i ∂/∂xj , with a sum on j understood.

Tensor and Wedge Products. If α is a (0, k)-tensor on a manifold M
and β is a (0, l)-tensor, their tensor product α⊗β is the (0, k + l)-tensor
on M defined by

(α ⊗ β)m(v1, . . . , vk+l) = αm(v1, . . . , vk)βm(vk+1, . . . , vk+l) (4.2.1)

at each point m ∈ M .
If t is a (0, p)-tensor, define the alternation operator A acting on t by

A(t)(v1, . . . , vp) =
1
p!

∑
π∈Sp

sgn(π)t(vπ(1), . . . , vπ(p)), (4.2.2)

where sgn(π) is the sign of the permutation π,

sgn(π) =
{

+1 if π is even ,
−1 if π is odd ,

(4.2.3)

and Sp is the group of all permutations of the set {1, 2, . . . , p}. The operator
A therefore skew-symmetrizes p-multilinear maps.

If α is a k-form and β is an l-form on M , their wedge product α∧ β is
the (k + l)-form on M defined by2

α ∧ β =
(k + l)!

k! l!
A(α ⊗ β). (4.2.4)

For example, if α and β are one-forms, then

(α ∧ β)(v1, v2) = α(v1)β(v2) − α(v2)β(v1),

while if α is a 2-form and β is a 1-form,

(α ∧ β)(v1, v2, v3) = α(v1, v2)β(v3) + α(v3, v1)β(v2) + α(v2, v3)β(v1).

We state the following without proof:

2The numerical factor in (4.2.4) agrees with the convention of Abraham and Marsden
[1978], Abraham, Marsden, and Ratiu [1988], and Spivak [1976], but not that of Arnold
[1989], Guillemin and Pollack [1974], or Kobayashi and Nomizu [1963]; it is the Bourbaki
[1971] convention.
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Proposition 4.2.1. The wedge product has the following properties:

(i) α ∧ β is associative : α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

(ii) α ∧ β is bilinear in α, β :

(aα1 + bα2) ∧ β = a(α1 ∧ β) + b(α2 ∧ β),
α ∧ (cβ1 + dβ2) = c(α ∧ β1) + d(α ∧ β2).

(iii) α∧β is anticommutative : α∧β = (−1)klβ∧α, where α is a k-form
and β is an l-form.

In terms of the dual basis dxi, any k-form can be written locally as

α = αi1...ik
dxi1 ∧ · · · ∧ dxik ,

where the sum is over all ij satisfying i1 < · · · < ik.

Pull-Back and Push-Forward. Let ϕ : M → N be a C∞ map from
the manifold M to the manifold N and α be a k-form on N . Define the
pull-back ϕ∗α of α by ϕ to be the k-form on M given by

(ϕ∗α)m(v1, . . . , vk) = αϕ(m)(Tmϕ · v1, . . . , Tmϕ · vk). (4.2.5)

If ϕ is a diffeomorphism, the push-forward ϕ∗ is defined by ϕ∗ =
(ϕ−1)∗.

Here is another basic property.

Proposition 4.2.2. The pull-back of a wedge product is the wedge prod-
uct of the pull-backs:

ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β. (4.2.6)

Interior Products and Exterior Derivatives. Let α be a k-form on a
manifold M and X a vector field. The interior product iXα (sometimes
called the contraction of X and α and written, using the “hook” notation,
as X α) is defined by

(iXα)m(v2, . . . , vk) = αm(X(m), v2, . . . , vk). (4.2.7)

Proposition 4.2.3. Let α be a k-form and β a 1-form on a manifold M .
Then

iX(α ∧ β) = (iXα) ∧ β + (−1)kα ∧ (iXβ). (4.2.8)

In the “hook” notation, this proposition reads

X (α ∧ β) = (X α) ∧ β + (−1)kα ∧ (X β).

The exterior derivative dα of a k-form α on a manifold M is the (k+1)-
form on M determined by the following proposition:
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Proposition 4.2.4. There is a unique mapping d from k-forms on M to
(k + 1)-forms on M such that:

(i) If α is a 0-form (k = 0), that is, α = f ∈ F(M), then df is the
one-form that is the differential of f .

(ii) dα is linear in α, that is, for all real numbers c1 and c2,

d(c1α1 + c2α2) = c1dα1 + c2dα2.

(iii) dα satisfies the product rule, that is,

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,

where α is a k-form and β is an l-form.

(iv) d2 = 0, that is, d(dα) = 0 for any k-form α.

(v) d is a local operator , that is, dα(m) depends only on α restricted
to any open neighborhood of m; in fact, if U is open in M , then

d(α|U) = (dα)|U.

If α is a k-form given in coordinates by

α = αi1...ik
dxi1 ∧ · · · ∧ dxik (sum on i1 < · · · < ik),

then the coordinate expression for the exterior derivative is

dα =
∂αi1...ik

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik

(sum on all j and i1 < · · · < ik). (4.2.9)

Formula (4.2.9) can be taken as the definition of the exterior derivative,
provided that one shows that (4.2.9) has the above-described properties
and, correspondingly, is independent of the choice of coordinates.

Next is a useful proposition that in essence rests on the chain rule:

Proposition 4.2.5. Exterior differentiation commutes with pull-back, that
is,

d(ϕ∗α) = ϕ∗(dα), (4.2.10)

where α is a k-form on a manifold N and ϕ : M → N is a smooth map
between manifolds.

A k-form α is called closed if dα = 0 and exact if there is a (k−1)-form
β such that α = dβ. By Proposition 4.2.4(iv) every exact form is closed.
Exercise 4.4-2 gives an example of a closed nonexact one-form.
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Proposition 4.2.6 (Poincaré Lemma). A closed form is locally exact;
that is, if dα = 0, there is a neighborhood about each point on which
α = dβ.

See Exercise 4.2-5 for the proof.
The definition and properties of vector-valued forms are direct extensions

of those for usual forms on vector spaces and manifolds. One can think of
a vector-valued form as an array of usual forms (see Abraham, Marsden,
and Ratiu [1988]).

Vector Calculus. The table below entitled “Vector Calculus and Dif-
ferential Forms” summarizes how forms are related to the usual operations
of vector calculus. We now elaborate on a few items in this table. In item
4, note that

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz = (grad f)� = (∇f)�,

which is equivalent to ∇f = (df)�.
The Hodge star operator on R3 maps k-forms to (3 − k)-forms and

is uniquely determined by linearity and the properties in item 2. (This
operator can be defined on general Riemannian manifolds; see Abraham,
Marsden, and Ratiu [1988].)

In item 5, if we let F = F1e1+F2e2+F3e3, so F � = F1 dx+F2 dy+F3 dz,
then

d(F �) = dF1 ∧ dx + F1d(dx) + dF2 ∧ dy + F2d(dy)
+ dF3 ∧ dz + F3d(dz)

=
(

∂F1

∂x
dx +

∂F1

∂y
dy +

∂F1

∂z
dz

)
∧ dx

+
(

∂F2

∂x
dx +

∂F2

∂y
dy +

∂F2

∂z
dz

)
∧ dy

+
(

∂F3

∂x
dx +

∂F3

∂y
dy +

∂F3

∂z
dz

)
∧ dz

= −∂F1

∂y
dx ∧ dy +

∂F1

∂z
dz ∧ dx +

∂F2

∂x
dx ∧ dy − ∂F2

∂z
dy ∧ dz

− ∂F3

∂x
dz ∧ dx +

∂F3

∂y
dy ∧ dz

=
(

∂F2

∂x
− ∂F1

∂y

)
dx ∧ dy +

(
∂F1

∂z
− ∂F3

∂x

)
dz ∧ dx

+
(

∂F3

∂y
− ∂F2

∂z

)
dy ∧ dz.
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Hence, using item 2,

∗(d(F �)) =
(

∂F2

∂x
− ∂F1

∂y

)
dz +

(
∂F1

∂z
− ∂F3

∂x

)
dy +

(
∂F3

∂y
− ∂F2

∂z

)
dx,

(∗(d(F �)))� =
(

∂F3

∂y
− ∂F2

∂z

)
e1 +

(
∂F1

∂z
− ∂F3

∂x

)
e2 +

(
∂F2

∂x
− ∂F1

∂y

)
e3

= curlF = ∇× F.

With reference to item 6, let F = F1e1 + F2e2 + F3e3, so

F � = F1 dx + F2 dy + F3 dz.

Thus ∗(F �) = F1 dy ∧ dz + F2(−dx ∧ dz) + F3 dx ∧ dy, and so

d(∗(F �)) = dF1 ∧ dy ∧ dz − dF2 ∧ dx ∧ dz + dF3 ∧ dx ∧ dy

=
(

∂F1

∂x
dx +

∂F1

∂y
dy +

∂F1

∂z
dz

)
∧ dy ∧ dz

−
(

∂F2

∂x
dx +

∂F2

∂y
dy +

∂F2

∂z
dz

)
∧ dx ∧ dz

+
(

∂F3

∂x
dx +

∂F3

∂y
dy +

∂F3

∂z
dz

)
∧ dx ∧ dy

=
∂F1

∂x
dx ∧ dy ∧ dz +

∂F2

∂y
dx ∧ dy ∧ dz +

∂F3

∂z
dx ∧ dy ∧ dz

=
(

∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)
dx ∧ dy ∧ dz = (div F ) dx ∧ dy ∧ dz.

Therefore, ∗(d(∗(F �))) = div F = ∇ · F .

Vector Calculus and Differential Forms

1. Sharp and Flat (Using standard coordinates in R3)

(a) v� = v1 dx + v2 dy + v3 dz, the one-form corresponding to the
vector v = v1e1 + v2e2 + v3e3.

(b) α� = α1e1 + α2e2 + α3e3, the vector corresponding to the one-
form α = α1 dx + α2 dy + α3 dz.

2. Hodge Star Operator

(a) ∗1 = dx ∧ dy ∧ dz.

(b) ∗dx = dy ∧ dz, ∗dy = −dx ∧ dz, ∗dz = dx ∧ dy,
∗(dy ∧ dz) = dx, ∗(dx ∧ dz) = −dy, ∗(dx ∧ dy) = dz.
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(c) ∗(dx ∧ dy ∧ dz) = 1.

3. Cross Product and Dot Product

(a) v × w = [∗(v� ∧ w�)]�.

(b) (v · w)dx ∧ dy ∧ dz = v� ∧ ∗(w�).

4. Gradient ∇f = grad f = (df)�.

5. Curl ∇× F = curlF = [∗(dF �)]�.

6. Divergence ∇ · F = div F = ∗d(∗F �).

Exercises

� 4.2-1. Let ϕ : R3 → R2 be given by ϕ(x, y, z) = (x + z, xy). For

α = ev du + u dv ∈ Ω1(R2) and β = u du ∧ dv,

compute α ∧ β, ϕ∗α, ϕ∗β, and ϕ∗α ∧ ϕ∗β.

� 4.2-2. Given

α = y2 dx ∧ dz + sin(xy) dx ∧ dy + ex dy ∧ dz ∈ Ω2(R3)

and

X = 3∂/∂x + cos z∂/∂y − x2∂/∂z ∈ X(R3),

compute dα and iXα.

� 4.2-3.

(a) Denote by
∧k(Rn) the vector space of all skew-symmetric k-linear

maps on Rn. Prove that this space has dimension n!/(k! (n − k)!) by
showing that a basis is given by { ei1 ∧· · ·∧eik | i1 < . . . < ik }, where
{e1, . . . , en} is a basis of Rn and {e1, . . . , en} is its dual basis, that
is, ei(ej) = δi

j .

(b) If µ ∈
∧n(Rn) is nonzero, prove that the map v ∈ Rn �→ ivµ ∈∧n−1(Rn) is an isomorphism.

(c) If M is a smooth n-manifold and µ ∈ Ωn(M) is nowhere-vanishing
(in which case it is called a volume form), show that the map X ∈
X(M) �→ iXµ ∈ Ωn−1(M) is an isomorphism.
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� 4.2-4. Let α = αi dxi be a closed one-form in a ball around the origin in
Rn. Show that α = df for

f(x1, . . . , xn) =
∫ 1

0

αj(tx1, . . . , txn)xj dt.

� 4.2-5.

(a) Let U be an open ball around the origin in Rn and α ∈ Ωk(U) a
closed form. Verify that α = dβ, where

β(x1, . . . , xn)

=
(∫ 1

0

tk−1αji1...ik−1(tx
1, . . . , txn)xj dt

)
dxi1 ∧ · · · ∧ dxik−1 ,

and where the sum is over i1 < · · · < ik−1. Here,

α = αj1...jk
dxj1 ∧ · · · ∧ dxjk ,

where j1 < · · · < jk and where α is extended to be skew-symmetric
in its lower indices.

(b) Deduce the Poincaré lemma from (a).

� 4.2-6 (Construction of a homotopy operator for a retraction). Let M be
a smooth manifold and N ⊂ M a smooth submanifold. A family of smooth
maps rt : M → M, t ∈ [0, 1], is called a retraction of M onto N
if rt|N = identity on N for all t ∈ [0, 1], r1 = identity on M , rt is a
diffeomorphism of M with rt(M) for every t �= 0, and r0(M) = N . Let Xt

be the time-dependent vector field generated by rt, t �= 0. Show that the
operator H : Ωk(M) → Ωk−1(M) defined by

H =
∫ 1

0

(r∗t iXt
α) dt

satisfies
α − (r∗0α) = dHα + Hdα.

(a) Deduce the relative Poincaré lemma from this formula: If α ∈
Ωk(M) is closed and α|N = 0, then there is a neighborhood U of N
such that α|U = dβ for some β ∈ Ωk−1(U) and β|N = 0. (Hint: Use
the existence of a tubular neighborhood of N in M .)

(b) Deduce the global Poincaré lemma for contractible manifolds: If
M is contractible, that is, there is a retraction of M to a point, and
if α ∈ Ωk(M) is closed, then α is exact.
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4.3 The Lie Derivative

Lie Derivative Theorem. The dynamic definition of the Lie derivative
is as follows. Let α be a k-form and let X be a vector field with flow ϕt.
The Lie derivative of α along X is given by

£Xα = lim
t→0

1
t
[(ϕ∗

t α) − α] =
d

dt
ϕ∗

t α

∣∣∣∣
t=0

. (4.3.1)

This definition together with properties of pull-backs yields the following.

Theorem 4.3.1 (Lie Derivative Theorem).

d

dt
ϕ∗

t α = ϕ∗
t £Xα. (4.3.2)

This formula holds also for time-dependent vector fields in the sense that

d

dt
ϕ∗

t,sα = ϕ∗
t,s£Xα,

and in the expression £Xα the vector field X is evaluated at time t.
If f is a real-valued function on a manifold M and X is a vector field on

M , the Lie derivative of f along X is the directional derivative

£Xf = X[f ] := df · X. (4.3.3)

If M is finite-dimensional, then

£Xf = Xi ∂f

∂xi
. (4.3.4)

For this reason one often writes

X = Xi ∂

∂xi
.

If Y is a vector field on a manifold N and ϕ : M → N is a diffeomorphism,
the pull-back ϕ∗Y is a vector field on M defined by

(ϕ∗Y )(m) =
(
Tmϕ−1 ◦ Y ◦ ϕ

)
(m). (4.3.5)

Two vector fields X on M and Y on N are said to be ϕ-related if

Tϕ ◦ X = Y ◦ ϕ. (4.3.6)

Clearly, if ϕ : M → N is a diffeomorphism and Y is a vector field on N ,
then ϕ∗Y and Y are ϕ-related. For a diffeomorphism ϕ, the push-forward
is defined, as for forms, by ϕ∗ = (ϕ−1)∗.
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Jacobi–Lie Brackets. If M is finite-dimensional and C∞, then the set of
vector fields on M coincides with the set of derivations on F(M). The same
result is true for Ck manifolds and vector fields if k ≥ 2. This property is
false for infinite-dimensional manifolds; see Abraham, Marsden, and Ratiu
[1988]. If M is C∞ (that is, smooth), then the derivation f �→ X[Y [f ]] −
Y [X[f ]], where X[f ] = df ·X, determines a unique vector field denoted by
[X, Y ] and called the Jacobi–Lie bracket of X and Y . Defining £XY =
[X, Y ] gives the Lie derivative of Y along X. Then the Lie derivative
formula (4.3.2) holds with α replaced by Y , and the pull-back operation
given by (4.3.5).

If M is infinite-dimensional, then one defines the Lie derivative of Y
along X by

d

dt

∣∣∣∣
t=0

ϕ∗
t Y = £XY, (4.3.7)

where ϕt is the flow of X. Then formula (4.3.2) with α replaced by Y
holds, and the action of the vector field £XY on a function f is given by
X[Y [f ]] − Y [X[f ]], which is denoted, as in the finite-dimensional case, by
[X, Y ][f ]. As before [X, Y ] = £XY is also called the Jacobi–Lie bracket of
vector fields.

If M is finite-dimensional, then

(£XY )j = Xi ∂Y j

∂xi
− Y i ∂Xj

∂xi
= (X · ∇)Y j − (Y · ∇)Xj , (4.3.8)

and in general, where we identify X, Y with their local representatives, we
have

[X, Y ] = DY · X − DX · Y. (4.3.9)

The formula for [X, Y ] = £XY can be remembered by writing[
Xi ∂

∂xi
, Y j ∂

∂xj

]
= Xi ∂Y j

∂xi

∂

∂xj
− Y j ∂Xi

∂xj

∂

∂xi
.

Algebraic Definition of the Lie Derivative. The algebraic approach
to the Lie derivative on forms or tensors proceeds as follows. Extend the
definition of the Lie derivative from functions and vector fields to differen-
tial forms, by requiring that the Lie derivative be a derivation; for example,
for one-forms α, write

£X〈α, Y 〉 = 〈£Xα, Y 〉 + 〈α,£XY 〉 , (4.3.10)

where X, Y are vector fields and 〈α, Y 〉 = α(Y ). More generally,

£X(α(Y1, . . . , Yk)) = (£Xα)(Y1, . . . , Yk) +
k∑

i=1

α(Y1, . . . ,£XYi, . . . , Yk),

(4.3.11)

where X, Y1, . . . , Yk are vector fields and α is a k-form.
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Proposition 4.3.2. The dynamic and algebraic definitions of the Lie
derivative of a differential k-form are equivalent.

Cartan’s Magic Formula. A very important formula for the Lie deriva-
tive is given by the following.

Theorem 4.3.3. For X a vector field and α a k-form on a manifold M ,
we have

£Xα = diXα + iXdα, (4.3.12)

or, in the “hook” notation,

£Xα = d(X α) + X dα.

This is proved by a lengthy but straightforward calculation.
Another property of the Lie derivative is the following: If ϕ : M → N is

a diffeomorphism, then

ϕ∗£Y β = £ϕ∗Y ϕ∗β

for Y ∈ X(N) and β ∈ Ωk(M). More generally, if X ∈ X(M) and Y ∈ X(N)
are ψ related, that is, Tψ ◦X = Y ◦ψ for ψ : M → N a smooth map, then
£Xψ∗β = ψ∗£Y β for all β ∈ Ωk(N).

There are a number of valuable identities relating the Lie derivative, the
exterior derivative, and the interior product that we record at the end of
this chapter. For example, if Θ is a one-form and X and Y are vector fields,
identity 6 in the table at the end of §4.4 gives the useful identity

dΘ(X, Y ) = X[Θ(Y )] − Y [Θ(X)] − Θ([X, Y ]). (4.3.13)

Volume Forms and Divergence. An n-manifold M is said to be ori-
entable if there is a nowhere-vanishing n-form µ on it; µ is called a vol-
ume form , and it is a basis of Ωn(M) over F(M). Two volume forms
µ1 and µ2 on M are said to define the same orientation if there is an
f ∈ F(M) with f > 0 and such that µ2 = fµ1. Connected orientable
manifolds admit precisely two orientations. A basis {v1, . . . , vn} of TmM
is said to be positively oriented relative to the volume form µ on M
if µ(m)(v1, . . . , vn) > 0. Note that the volume forms defining the same
orientation form a convex cone in Ωn(M), that is, if a > 0 and µ is a
volume form, then aµ is again a volume form, and if t ∈ [0, 1] and µ1, µ2

are volume forms defining the same orientation, then tµ1 + (1 − t)µ2 is
again a volume form defining the same orientation as µ1 or µ2. The first
property is obvious. To prove the second, let m ∈ M and let {v1, . . . , vn}
be a positively oriented basis of TmM relative to the orientation defined
by µ1, or equivalently (by hypothesis) by µ2. Then µ1(m)(v1, . . . , vn) > 0,
µ2(m)(v1, . . . , vn) > 0, so that their convex combination is again strictly
positive.
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If µ ∈ Ωn(M) is a volume form, since £Xµ ∈ Ωn(M), there is a function,
called the divergence of X relative to µ and denoted by divµ(X) or simply
div(X), such that

£Xµ = divµ(X)µ. (4.3.14)

From the dynamic approach to Lie derivatives it follows that divµ(X) = 0
if and only if F ∗

t µ = µ, where Ft is the flow of X. This condition says that
Ft is volume preserving . If ϕ : M → M , since ϕ∗µ ∈ Ωn(M) there is a
function, called the Jacobian of ϕ and denoted by Jµ(ϕ) or simply J(ϕ),
such that

ϕ∗µ = Jµ(ϕ)µ. (4.3.15)

Thus, ϕ is volume preserving if and only if Jµ(ϕ) = 1. From the inverse
function theorem, we see that ϕ is a local diffeomorphism if and only if
Jµ(ϕ) �= 0 on M .

Frobenius’ Theorem. We also mention a basic result called Frobenius’
theorem . If E ⊂ TM is a vector subbundle, it is said to be involutive
if for any two vector fields X, Y on M with values in E, the Jacobi–Lie
bracket [X, Y ] is also a vector field with values in E. The subbundle E is
said to be integrable if for each point m ∈ M there is a local submanifold
of M containing m such that its tangent bundle equals E restricted to this
submanifold. If E is integrable, the local integral manifolds can be extended
to get, through each m ∈ M , a connected maximal integral manifold, which
is unique and is a regularly immersed submanifold of M . The collection of
all maximal integral manifolds through all points of M is said to form a
foliation.

The Frobenius theorem states that the involutivity of E is equivalent to
the integrability of E.

Exercises

� 4.3-1. Let M be an n-manifold, µ ∈ Ωn(M) a volume form, X, Y ∈
X(M), and f, g : M → R smooth functions such that f(m) �= 0 for all m.
Prove the following identities:

(a) divfµ(X) = divµ(X) + X[f ]/f ;

(b) divµ(gX) = g divµ(X) + X[g]; and

(c) divµ([X, Y ]) = X[divµ(Y )] − Y [divµ(X)].

� 4.3-2. Show that the partial differential equation

∂f

∂t
=

n∑
i=1

Xi(x1, . . . , xn)
∂f

∂xi



4.4 Stokes’ Theorem 141

with initial condition f(x, 0) = g(x) has the solution f(x, t) = g(Ft(x)),
where Ft is the flow of the vector field (X1, . . . , Xn) in Rn whose flow is
assumed to exist for all time. Show that the solution is unique. Generalize
this exercise to the equation

∂f

∂t
= X[f ]

for X a vector field on a manifold M .

� 4.3-3. Show that if M and N are orientable manifolds, so is M × N .

4.4 Stokes’ Theorem

The basic idea of the definition of the integral of an n-form µ on an oriented
n-manifold M is to pick a covering by coordinate charts and to sum up the
ordinary integrals of f(x1, . . . , xn) dx1 · · · dxn, where

µ = f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn

is the local representative of µ, being careful not to count overlaps twice.
The change of variables formula guarantees that the result, denoted by∫

M
µ, is well-defined.

If one has an oriented manifold with boundary, then the boundary, ∂M ,
inherits a compatible orientation. This proceeds in a way that generalizes
the relation between the orientation of a surface and its boundary in the
classical Stokes’ theorem in R3.

Theorem 4.4.1 (Stokes’ Theorem). Suppose that M is a compact, ori-
ented k-dimensional manifold with boundary ∂M . Let α be a smooth (k−1)-
form on M . Then ∫

M

dα =
∫

∂M

α. (4.4.1)

Special cases of Stokes’ theorem are as follows:

The Integral Theorems of Calculus. Stokes’ theorem generalizes and
synthesizes the classical theorems of calculus:

(a) Fundamental Theorem of Calculus.∫ b

a

f ′(x) dx = f(b) − f(a). (4.4.2)

(b) Green’s Theorem. For a region Ω ⊂ R2,∫ ∫
Ω

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫
∂Ω

P dx + Q dy. (4.4.3)
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(c) Divergence Theorem. For a region Ω ⊂ R3,∫ ∫ ∫
Ω

div F dV =
∫ ∫

∂Ω

F · n dA. (4.4.4)

(d) Classical Stokes’ Theorem. For a surface S ⊂ R3,∫ ∫
S

{(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz

+
(

∂P

∂z
− ∂R

∂x

)
dz ∧ dx +

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy

}
=

∫ ∫
S

n · curl F dA =
∫

∂S

P dx + Q dy + R dz, (4.4.5)

where F = (P, Q,R).

Notice that the Poincaré lemma generalizes the vector calculus theorems
in R3, saying that if curlF = 0, then F = ∇f , and if div F = 0, then
F = ∇ × G. Recall that it states that if α is closed, then locally α is
exact; that is, if dα = 0, then locally α = dβ for some β. On contractible
manifolds these statements hold globally.

Cohomology. The failure of closed forms to be globally exact leads to
the study of a very important topological invariant of M , the de Rham
cohomology. The kth de Rham cohomology group, denoted by Hk(M), is
defined by

Hk(M) :=
ker(d : Ωk(M) → Ωk+1(M))

range (d : Ωk−1(M) → Ωk(M))
.

The de Rham theorem states that these Abelian groups are isomorphic to
the so-called singular cohomology groups of M defined in algebraic topology
in terms of simplices and that depend only on the topological structure of
M and not on its differentiable structure. The isomorphism is provided
by integration; the fact that the integration map drops to the preceding
quotient is guaranteed by Stokes’ theorem. A useful particular case of this
theorem is the following: If M is an orientable compact boundaryless n-
manifold, then

∫
M

µ = 0 if and only if the n-form µ is exact. This statement
is equivalent to Hn(M) = R for M compact and orientable.

Change of Variables. Another basic result in integration theory is the
global change of variables formula.

Theorem 4.4.2 ( Change of Variables). Let M and N be oriented n-
manifolds and let ϕ : M → N be an orientation-preserving diffeomorphism.
If α is an n-form on N (with, say, compact support), then∫

M

ϕ∗α =
∫

N

α.
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Identities for Vector Fields and Forms

1. Vector fields on M with the bracket [X, Y ] form a Lie algebra; that
is, [X, Y ] is real bilinear, skew-symmetric, and Jacobi’s identity
holds:

[[X, Y ], Z] + [[Z, X], Y ] + [[Y, Z], X] = 0.

Locally,

[X, Y ] = DY · X − DX · Y = (X · ∇)Y − (Y · ∇)X,

and on functions,

[X, Y ][f ] = X[Y [f ]] − Y [X[f ]].

2. For diffeomorphisms ϕ and ψ,

ϕ∗[X, Y ] = [ϕ∗X, ϕ∗Y ] and (ϕ ◦ ψ)∗X = ϕ∗ψ∗X.

3. The forms on a manifold comprise a real associative algebra with ∧
as multiplication. Furthermore, α∧β = (−1)klβ∧α for k- and l-forms
α and β, respectively.

4. For maps ϕ and ψ,

ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β and (ϕ ◦ ψ)∗α = ψ∗ϕ∗α.

5. d is a real linear map on forms, ddα = 0, and

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ

for α a k-form.

6. For α a k-form and X0, . . . , Xk vector fields,

(dα)(X0, . . . , Xk) =
k∑

i=0

(−1)iXi[α(X0, . . . , X̂i, . . . , Xk)]

+
∑

0≤i<j≤k

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk),

where X̂i means that Xi is omitted. Locally,

dα(x)(v0, . . . , vk) =
k∑

i=0

(−1)iDα(x) · vi(v0, . . . , v̂i, . . . , vk).
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7. For a map ϕ,
ϕ∗dα = dϕ∗α.

8. Poincaré Lemma. If dα = 0, then the k-form α is locally exact;
that is, there is a neighborhood U about each point on which α = dβ.
This statement is global on contractible manifolds or more generally
if Hk(M) = 0.

9. iXα is real bilinear in X, α, and for h : M → R,

ihXα = hiXα = iXhα.

Also, iX iXα = 0 and

iX(α ∧ β) = iXα ∧ β + (−1)kα ∧ iXβ

for α a k-form.

10. For a diffeomorphism ϕ,

ϕ∗(iXα) = iϕ∗X(ϕ∗α), i.e., ϕ∗(X α) = (ϕ∗X) (ϕ∗α).

If f : M → N is a mapping and Y is f -related to X, that is,

Tf ◦ X = Y ◦ f,

then
iXf∗α = f∗iY α; i.e., X (f∗α) = f∗(Y α).

11. £Xα is real bilinear in X, α and

£X(α ∧ β) = £Xα ∧ β + α ∧ £Xβ.

12. Cartan’s Magic Formula:

£Xα = diXα + iXdα = d(X α) + X dα.

13. For a diffeomorphism ϕ,

ϕ∗£Xα = £ϕ∗Xϕ∗α.

If f : M → N is a mapping and Y is f -related to X, then

£Y f∗α = f∗£Xα.
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14. (£Xα)(X1, . . . , Xk) = X[α(X1, . . . , Xk)]

−
k∑

i=0

α(X1, . . . , [X, Xi], . . . , Xk).

Locally,

(£Xα)(x) · (v1, . . . , vk) = (Dαx · X(x))(v1, . . . , vk)

+
k∑

i=0

αx(v1, . . . ,DXx · vi, . . . , vk).

15. The following identities hold:

(a) £fXα = f£Xα + df ∧ iXα;

(b) £[X,Y ]α = £X£Y α − £Y £Xα;

(c) i[X,Y ]α = £X iY α − iY £Xα;

(d) £Xdα = d£Xα;

(e) £X iXα = iX£Xα;

(f) £X(α ∧ β) = £Xα ∧ β + α ∧ £Xβ.

16. If M is a finite-dimensional manifold, X = X l∂/∂xl, and

α = αi1...ik
dxi1 ∧ · · · ∧ dxik ,

where i1 < · · · < ik, then the following formulas hold:

dα =
(

∂αi1...ik

∂xl

)
dxl ∧ dxi1 ∧ · · · ∧ dxik ,

iXα = X lαli2...ik
dxi2 ∧ · · · ∧ dxik ,

£Xα = X l

(
∂αi1...ik

∂xl

)
dxi1 ∧ · · · ∧ dxik

+ αli2...ik

(
∂X l

∂xi1

)
dxi1 ∧ dxi2 ∧ · · · ∧ dxik + . . . .

Exercises

� 4.4-1. Let Ω be a closed bounded region in R2. Use Green’s theorem to
show that the area of Ω equals the line integral

1
2

∫
∂Ω

(x dy − y dx).
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� 4.4-2. On R2\{(0, 0)} consider the one-form

α =
x dy − y dx

x2 + y2
.

(a) Show that this form is closed.

(b) Using the angle θ as a variable on S1, compute i∗α, where i : S1 → R2

is the standard embedding.

(c) Show that α is not exact.

� 4.4-3 (The Magnetic Monopole). Let B = gr/r3 be a vector field on Eu-
clidean three-space minus the origin where r = ‖r‖. Show that B cannot
be written as the curl of something.




