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3
An Introduction to
Infinite-Dimensional Systems

A common choice of configuration space for classical field theory is an
infinite-dimensional vector space of functions or tensor fields on space or
spacetime, the elements of which are called fields. Here we relate our
treatment of infinite-dimensional Hamiltonian systems discussed in §2.1
to classical Lagrangian and Hamiltonian field theory and then give exam-
ples. Classical field theory is a large subject with many aspects not covered
here; we treat only a few topics that are basic to subsequent developments;
see Chapters 6 and 7 for additional information and references.

3.1 Lagrange’s and Hamilton’s Equations
for Field Theory

As with finite-dimensional systems, one can begin with a Lagrangian and
a variational principle, and then pass to the Hamiltonian via the Legendre
transformation. At least formally, all the constructions we did in the finite-
dimensional case go over to the infinite-dimensional one.

For instance, suppose we choose our configuration space Q = F(R3) to
be the space of fields ϕ on R3. Our Lagrangian will be a function L(ϕ, ϕ̇)
from Q × Q to R. The variational principle is

δ

∫ b

a

L(ϕ, ϕ̇) dt = 0, (3.1.1)
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which is equivalent to the Euler–Lagrange equations

d

dt

δL

δϕ̇
=

δL

δϕ
(3.1.2)

in the usual way. Here,

π =
δL

δϕ̇
(3.1.3)

is the conjugate momentum, which we regard as a density on R3 as in
Chapter 2. The corresponding Hamiltonian is

H(ϕ, π) =
∫

πϕ̇ − L(ϕ, ϕ̇), (3.1.4)

in accordance with our general theory. We also know that the Hamiltonian
should generate the canonical Hamilton equations. We verify this now.

Proposition 3.1.1. Let Z = F(R3) × Den(R3), with Ω defined as in
Example (b) of §2.2. Then the Hamiltonian vector field XH : Z → Z
corresponding to a given energy function H : Z → R is given by

XH =
(

δH

δπ
,−δH

δϕ

)
. (3.1.5)

Hamilton’s equations on Z are

∂ϕ

∂t
=

δH

δπ
,

∂π

∂t
= −δH

δϕ
. (3.1.6)

Remarks.
1. The symbols F and Den stand for function spaces included in the space
of all functions and densities, chosen to be appropriate to the functional-
analytic needs of the particular problem. In practice this often means,
among other things, that appropriate conditions at infinity are imposed
to permit integration by parts.
2. The equations of motion for a curve z(t) = (ϕ(t), π(t)) written in the
form Ω(dz/dt, δz) = dH(z(t)) · δz for all δz ∈ Z with compact support are
called the weak form of the equations of motion . They can still be
valid when there is not enough smoothness or decay at infinity to justify
the literal equality dz/dt = XH(z); this situation can occur, for example,
if one is considering shock waves. �

Proof of Proposition 3.1.1. To derive the partial functional deriva-
tives, we use the natural pairing

〈 , 〉 : F(R3) × Den(R3) → R, where 〈ϕ, π〉 =
∫

ϕπ′ d3x, (3.1.7)
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where we write π = π′d3x ∈ Den. Recalling that δH/δϕ is a density, let

X =
(

δH

δπ
,−δH

δϕ

)
.

We need to verify that Ω(X(ϕ, π), (δϕ, δπ)) = dH(ϕ, π) · (δϕ, δπ). Indeed,

Ω(X(ϕ, π), (δϕ, δπ)) = Ω
((

δH

δπ
,−δH

δϕ

)
, (δϕ, δπ)

)
=

∫
δH

δπ
(δπ)′d3x +

∫
δϕ

(
δH

δϕ

)′
d3x

=
〈

δH

δπ
, δπ

〉
+

〈
δϕ,

δH

δϕ

〉
= DπH(ϕ, π) · δπ + DϕH(ϕ, π) · δϕ
= dH(ϕ, π) · (δϕ, δπ). �

3.2 Examples: Hamilton’s Equations

(a) The Wave Equation. Consider Z = F(R3) × Den(R3) as above.
Let ϕ denote the configuration variable, that is, the first component in
the phase space F(R3) × Den(R3), and interpret ϕ as a measure of the
displacement from equilibrium of a homogeneous elastic medium. Writing
π′ = ρ dϕ/dt, where ρ is the mass density, the kinetic energy is

T =
1
2

∫
1
ρ
[π′]2 d3x.

For small displacements ϕ, one assumes a linear restoring force such as the
one given by the potential energy

k

2

∫
‖∇ϕ‖2 d3x,

for an (elastic) constant k.
Because we are considering a homogeneous medium, ρ and k are con-

stants, so let us work in units in which they are unity. Nonlinear effects can
be modeled in a naive way by introducing a nonlinear term, U(ϕ), into the
potential. However, for an elastic medium one really should use constitu-
tive relations based on the principles of continuum mechanics; see Marsden
and Hughes [1983]. For the naive model, the Hamiltonian H : Z → R is
the total energy

H(ϕ, π) =
∫ [

1
2
(π′)2 +

1
2
‖∇ϕ‖2 + U(ϕ)

]
d3x. (3.2.1)
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Using the definition of the functional derivative, we find that

δH

δπ
= π′,

δH

δϕ
= (−∇2ϕ + U ′(ϕ))d3x. (3.2.2)

Therefore, the equations of motion are

∂ϕ

∂t
= π′,

∂π′

∂t
= ∇2ϕ − U ′(ϕ), (3.2.3)

or, in second-order form,

∂2ϕ

∂t2
= ∇2ϕ − U ′(ϕ). (3.2.4)

Various choices of U correspond to various physical applications. When
U ′ = 0, we get the linear wave equation, with unit propagation velocity.
Another choice, U(ϕ) = (1/2)m2ϕ2 + λϕ4, occurs in the quantum theory
of self-interacting mesons; the parameter m is related to the meson mass,
and ϕ4 governs the nonlinear part of the interaction. When λ = 0, we get

∇2ϕ − ∂2ϕ

∂t2
= m2ϕ, (3.2.5)

which is called the Klein–Gordon equation .
�

Technical Aside. For the wave equation, one appropriate choice of func-
tion space is Z = H1(R3) × L2

Den(R3), where H1(R3) denotes the H1-
functions on R3, that is, functions that, along with their first derivatives are
square integrable, and L2

Den(R3) denotes the space of densities π = π′ d3x,
where the function π′ on R3 is square integrable. Note that the Hamiltonian
vector field

XH(ϕ, π) = (π′, (∇2ϕ − U ′(ϕ))d3x)

is defined only on the dense subspace H2(R3) × H1
Den(R3) of Z. This is a

common occurrence in the study of Hamiltonian partial differential equa-
tions; we return to this in §3.3. �

In the preceding example, Ω was given by the canonical form with the
result that the equations of motion were in the standard form (3.1.5). In
addition, the Hamiltonian function was given by the actual energy of the
system under consideration. We now give examples in which these state-
ments require reinterpretation but that nevertheless fall into the framework
of the general theory developed so far.
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(b) The Schrödinger Equation. Let H be a complex Hilbert space,
for example, the space of complex-valued functions ψ on R3 with the Her-
mitian inner product

〈ψ1, ψ2〉 =
∫

ψ1(x)ψ2(x) d3x,

where the overbar denotes complex conjugation. For a self-adjoint complex-
linear operator Hop : H → H, the Schrödinger equation is

i�
∂ψ

∂t
= Hopψ, (3.2.6)

where � is Planck’s constant. Define

A =
−i

�
Hop,

so that the Schrödinger equation becomes

∂ψ

∂t
= Aψ. (3.2.7)

The symplectic form on H is given by Ω(ψ1, ψ2) = −2� Im 〈ψ1, ψ2〉 . Self-
adjointness of Hop is a condition stronger than symmetry and is essential
for proving well-posedness of the initial-value problem for (3.2.6); for an
exposition, see, for instance, Abraham, Marsden, and Ratiu [1988]. His-
torically, it was Kato [1950] who established self-adjointness for important
problems such as the hydrogen atom.

From §2.5 we know that since Hop is symmetric, A is Hamiltonian. The
Hamiltonian is

H(ψ) = � 〈iAψ, ψ〉 = 〈Hopψ, ψ〉 , (3.2.8)

which is the expectation value of Hop at ψ, defined by 〈Hop〉 (ψ) =
〈Hopψ, ψ〉. �

(c) The Korteweg–de Vries (KdV) Equation. Denote by Z the vec-
tor subspace F(R) consisting of those functions u with |u(x)| decreasing
sufficiently fast as x → ±∞ that the integrals we will write are defined and
integration by parts is justified. As we shall see later, the Poisson brackets
for the KdV equation are quite simple, and historically they were found
before the symplectic structure (see Gardner [1971] and Zakharov [1971,
1974]). To be consistent with our exposition, we begin with the somewhat
more complicated symplectic structure. Pair Z with itself using the L2

inner product. Let the KdV symplectic structure Ω be defined by

Ω(u1, u2) =
1
2

(∫ ∞

−∞
[û1(x)u2(x) − û2(x)u1(x)] dx

)
, (3.2.9)
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where û denotes a primitive of u, that is,

û =
∫ x

−∞
u(y) dy.

In §8.5 we shall see a way to construct this form. The form Ω is clearly
skew-symmetric. Note that if u1 = ∂v/∂x for some v ∈ Z, then∫ ∞

−∞
û2(x)u1(x) dx

=
∫ ∞

−∞
û2(x)

∂û1(x)
∂x

dx

= û1(x)û2(x)
∣∣∣∞
−∞

−
∫ ∞

−∞
û1(x)u2(x) dx

=
(∫ ∞

−∞

∂v(x)
∂x

dx

) (∫ ∞

−∞
u2(x) dx

)
−

∫ ∞

−∞
û1(x)u2(x) dx

=
(

v(x)
∣∣∣∞
−∞

) (∫ ∞

−∞
u2(x) dx

)
−

∫ ∞

−∞
û1(x)u2(x) dx

= −
∫ ∞

−∞
û1(x)u2(x) dx.

Thus, if u1(x) = ∂v(x)/∂x, then Ω can be written as

Ω(u1, u2) =
∫ ∞

−∞
û1(x)u2(x) dx =

∫ ∞

−∞
v(x)u2(x) dx. (3.2.10)

To prove weak nondegeneracy of Ω, we check that if v �= 0, there is a w
such that Ω(w, v) �= 0. Indeed, if v �= 0 and we let w = ∂v/∂x, then w �= 0
because v(x) → 0 as |x| → ∞. Hence by (3.2.10),

Ω(w, v) = Ω
(

∂v

∂x
, v

)
=

∫ ∞

−∞
(v(x))2 dx �= 0.

Suppose that a Hamiltonian H : Z → R is given. We claim that the
corresponding Hamiltonian vector field XH is given by

XH(u) =
∂

∂x

(
δH

δu

)
. (3.2.11)

Indeed, by (3.2.10),

Ω(XH(v), w) =
∫ ∞

−∞

δH

δv
(x)w(x) dx = dH(v) · w.

It follows from (3.2.11) that the corresponding Hamilton equations are

ut =
∂

∂x

(
δH

δu

)
, (3.2.12)
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where, in (3.2.12) and in the following, subscripts denote derivatives with
respect to the subscripted variable. As a special case, consider the function

H1(u) = −1
6

∫ ∞

−∞
u3 dx.

Then

∂

∂x

δH1

δu
= −uux,

and so (3.2.12) becomes the one-dimensional transport equation

ut + uux = 0. (3.2.13)

Next, let

H2(u) =
∫ ∞

−∞

(
1
2
u2

x − u3

)
dx; (3.2.14)

then (3.2.12) becomes

ut + 6uux + uxxx = 0. (3.2.15)

This is the Korteweg–deVries (KdV ) equation that describes shal-
low water waves. For a concise presentation of its famous complete set of
integrals, see Abraham and Marsden [1978], §6.5, and for more information,
see Newell [1985]. The first few of its integrals are given in Exercise 3.3-1.
We will return to this example from time to time in the text, but for now
we will find traveling wave solutions of the KdV equation.

Traveling Waves. If we look for traveling wave solutions of (3.2.15),
that is, u(x, t) = ϕ(x − ct), for a constant c > 0 and a positive function ϕ,
we see that u satisfies the KdV equation if and only if ϕ satisfies

cϕ′ − 6ϕϕ′ − ϕ′′′ = 0. (3.2.16)

Integrating once gives

cϕ − 3ϕ2 − ϕ′′ = C, (3.2.17)

where C is a constant. This equation is Hamiltonian in the canonical vari-
ables (ϕ, ϕ′) with Hamiltonian function

h(ϕ, ϕ′) =
1
2
(ϕ′)2 − c

2
ϕ2 + ϕ3 + Cϕ. (3.2.18)

From conservation of energy, h(ϕ, ϕ′) = D, it follows that

ϕ′ = ±
√

cϕ2 − 2ϕ3 − 2Cϕ + 2D, (3.2.19)
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or, writing s = x − ct, we get

s = ±
∫

dϕ√
cϕ2 − 2ϕ3 − 2Cϕ + 2D

. (3.2.20)

We seek solutions that together with their derivatives vanish at ±∞. Then
(3.2.17) and (3.2.19) give C = D = 0, so

s = ±
∫

dϕ√
cϕ2 − 2ϕ3

= ± 1√
c
log

∣∣∣∣√c − 2ϕ −√
c√

c − 2ϕ +
√

c

∣∣∣∣ + K (3.2.21)

for some constant K that will be determined below.
For C = D = 0, the Hamiltonian (3.2.18) becomes

h(ϕ, ϕ′) =
1
2
(ϕ′)2 − c

2
ϕ2 + ϕ3, (3.2.22)

and thus the two equilibria given by ∂h/∂ϕ = 0 and ∂h/∂ϕ′ = 0 are (0, 0)
and (c/3, 0). The matrix of the linearized Hamiltonian system at these
equilibria is [

0 1
±c 0

]
,

which shows that (0, 0) is a saddle and (c/3, 0) is spectrally stable. The
second variation criterion on the potential energy (see §1.10) −cϕ2/2 + ϕ3

at (c/3, 0) shows that this equilibrium is stable. Thus, if (ϕ(s), ϕ′(s)) is a
homoclinic orbit emanating and ending at (0, 0), the value of the Hamil-
tonian function (3.2.22) on it is H(0, 0) = 0. From (3.2.22) it follows that
(c/2, 0) is a point on this homoclinic orbit, and thus (3.2.20) for C = D = 0
is its expression. Taking the initial condition of this orbit at s = 0 to be
ϕ(0) = c/2, ϕ′(0) = 0, (3.2.21) forces K = 0, and so∣∣∣∣√c − 2ϕ −√

c√
c − 2ϕ +

√
c

∣∣∣∣ = e±
√

cs.

Since ϕ ≥ 0 by hypothesis, the expression in the absolute value is negative,
and thus

√
c − 2ϕ −√

c√
c − 2ϕ +

√
c

= −e±
√

cs,

whose solution is

ϕ(s) =
2ce±

√
cs

(1 + e±
√

cs)2
=

c

2 cosh2(
√

cs/2)
.

This produces the soliton solution

u(x, t) =
c

2
sech2

[√
c

2
(x − ct)

]
. �
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(d) Sine–Gordon Equation. For functions u(x, t), where x and t are
real variables, the sine–Gordon equation is utt = uxx + sinu. Equation
(3.2.4) shows that it is Hamiltonian with the momentum density π = ut dx
(and associated function π′ = ut),

H(u) =
∫ ∞

−∞

(
1
2
u2

t +
1
2
u2

x + cos u

)
dx, (3.2.23)

and the canonical bracket structure, as in the wave equation. This equation
also has a complete set of integrals; see again Newell [1985]. �

(e) Abstract Wave Equation. Let H be a real Hilbert space and B :
H → H a linear operator. On H×H put the symplectic structure Ω given
by (2.2.6). One can check that:

(i) A =
[

0 I
−B 0

]
is Ω-skew if and only if B is a symmetric operator

on H; and

(ii) if B is symmetric, then a Hamiltonian for A is

H(x, y) =
1
2
(‖y‖2 + 〈Bx, x〉). (3.2.24)

The equations of motion (2.4.10) give the abstract wave equation

ẍ + Bx = 0. �

(f) Linear Elastodynamics. On R3 consider the equations

ρutt = div(c · ∇u),

that is,

ρui
tt =

∂

∂xj

[
cijkl ∂uk

∂xl

]
, (3.2.25)

where ρ is a positive function and c is a fourth-order tensor field (the
elasticity tensor) on R3 with the symmetries cijkl = cklij = cjikl.

On F(R3; R3) ×F(R3; R3) (or, more precisely, on

H1(R3; R3) × L2(R3; R3)

with suitable decay properties at infinity) define

Ω((u, u̇), (v, v̇)) =
∫

R3
ρ(v̇ · u − u̇ · v) d3x. (3.2.26)
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The form Ω is the canonical symplectic form (2.2.3) for fields u and their
conjugate momenta π = ρu̇.

On the space of functions u : R3 → R3, consider the ρ-weighted L2-inner
product

〈u,v〉ρ =
∫

R3
ρu · v d3x. (3.2.27)

Then the operator Bu = −(1/ρ) div(c · ∇u) is symmetric with respect to
this inner product, and thus by Example (e) above, the operator A(u, u̇) =
(u̇, (1/ρ) div(c · ∇u)) is Ω-skew.

The equations (3.2.25) of linear elastodynamics are checked to be Hamil-
tonian with respect to Ω given by (3.2.26), and with energy

H(u, u̇) =
1
2

∫
ρ‖u̇‖2 d3x +

1
2

∫
cijkleijekl d

3x, (3.2.28)

where

eij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. �

Exercises

� 3.2-1.

(a) Let ϕ : Rn+1 → R. Show directly that the sine–Gordon equation

∂2ϕ

∂t2
−∇2ϕ + sinϕ = 0

is the Euler–Lagrange equation of a suitable Lagrangian.

(b) Let ϕ : Rn+1 → C. Write the nonlinear Schrödinger equation

i
∂ϕ

∂t
+ ∇2ϕ + βϕ|ϕ|2 = 0

as a Hamiltonian system.

� 3.2-2. Find a “soliton” solution for the sine–Gordon equation

∂2ϕ

∂t2
− ∂2ϕ

∂x2
+ sinϕ = 0

in one spatial dimension.
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� 3.2-3. Consider the complex nonlinear Schrödinger equation in one spa-
tial dimension:

i
∂ϕ

∂t
+

∂2ϕ

∂x2
+ βϕ|ϕ|2 = 0, β �= 0.

(a) Show that the function ψ : R → C defining the traveling wave so-
lution ϕ(x, t) = ψ(x − ct) for c > 0 satisfies a second-order complex
differential equation equivalent to a Hamiltonian system in R4 rela-
tive to the noncanonical symplectic form whose matrix is given by

Jc =


0 c 1 0
−c 0 0 1
−1 0 0 0
0 −1 0 0

 .

(See Exercise 2.4-1.)

(b) Analyze the equilibria of the resulting Hamiltonian system in R4 and
determine their linear stability properties.

(c) Let ψ(s) = eics/2a(s) for a real function a(s) and determine a second-
order equation for a(s). Show that the resulting equation is Hamilto-
nian and has heteroclinic orbits for β < 0. Find them.

(d) Find “soliton” solutions for the complex nonlinear Schrödinger equa-
tion.

3.3 Examples: Poisson Brackets and
Conserved Quantities

Before proceeding with infinite-dimensional examples, it is first useful to
recall some basic facts about angular momentum of particles in R3. (The
reader should supply a corresponding discussion for linear momentum.)
Consider a particle moving in R3 under the influence of a potential V . Let
the position coordinate be denoted by q, so that Newton’s second law reads

mq̈ = −∇V (q).

Let p = mq̇ be the linear momentum and J = q × p be the angular
momentum. Then

d

dt
J = q̇ × p + q × ṗ = −q ×∇V (q).

If V is radially symmetric, it is a function of ‖q‖ alone: assume

V (q) = f(‖q‖2),
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where f is a smooth function (exclude q = 0 if necessary). Then

∇V (q) = 2f ′(‖q‖2)q,

so that q ×∇V (q) = 0. Thus, in this case, dJ/dt = 0, so J is conserved.
Alternatively, with

H(q,p) =
1

2m
‖p‖2 + V (q),

we can check directly that {H, Jl} = 0 for l = 1, 2, 3, where J = (J1, J2, J3).
This also shows that each component Jl is conserved by the Hamiltonian
dynamics determined by H.

Additional insight is gained by looking at the components of J more
closely. For example, consider the scalar function

F (q,p) = J(q,p) · ωk,

where ω is a constant and k = (0, 0, 1). We find that

F (q,p) = ω(q1p2 − p1q
2).

The Hamiltonian vector field of F is

XF (q,p) =
(

∂F

∂p1
,
∂F

∂p2
,
∂F

∂p3
,− ∂F

∂q1
,− ∂F

∂q2
,− ∂F

∂q3

)
= (−ωq2, ωq1, 0,−ωp2, ωp1, 0).

Note that XF is just the vector field corresponding to the flow in the (q1, q2)
plane and the (p1, p2) plane given by rotations about the origin with angular
velocity ω. More generally, the Hamiltonian vector field associated with the
scalar function defined by Jω := J ·ω, where ω is a vector in R3, has a flow
consisting of rotations about the axis ω. As we shall see in Chapters 11
and 12, this is the basis for understanding the link between conservation
laws and symmetry more generally.

Another identity is worth noting. Namely, for two vectors ω1 and ω2,

{Jω1 , Jω2} = Jω1×ω2 ,

which, as we shall see later, is an important link between the Poisson
bracket structure and the structure of the Lie algebra of the rotation group.

(a) The Schrödinger Bracket. In Example (b) of §3.2, we saw that if
Hop is a self-adjoint complex linear operator on a Hilbert space H, then
A = Hop/(i�) is Hamiltonian, and the corresponding energy function HA

is the expectation value 〈Hop〉 of Hop. Letting Hop and Kop be two such
operators, and applying the Poisson bracket–commutator correspondence
(2.7.10), or a direct calculation, we get

{〈Hop〉 , 〈Kop〉} = 〈[Hop, Kop]〉 . (3.3.1)
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In other words, the expectation value of the commutator is the Poisson
bracket of the expectation values.

Results like this lead one to statements like “Commutators in quantum
mechanics are not only analogous to Poisson brackets, they are Poisson
brackets.” Even more striking are true statements like this: “Don’t tell me
that quantum mechanics is right and classical mechanics is wrong—after
all, quantum mechanics is a special case of classical mechanics.”

Notice that if we take Kopψ = ψ, the identity operator, the corresponding
Hamiltonian function is p(ψ) = ‖ψ‖2, and from (3.3.1) we see that p is a
conserved quantity for any choice of Hop, a fact that is central to the
probabilistic interpretation of quantum mechanics. Later, we shall see that
p is the conserved quantity associated to the phase symmetry ψ �→ eiθψ.

More generally, if F and G are two functions on H with δF/δψ = ∇F ,
the gradient of F taken relative to the real inner product Re 〈 , 〉 on H, one
finds that

XF =
1

2i�
∇F (3.3.2)

and

{F, G} = − 1
2�

Im 〈∇F,∇G〉 . (3.3.3)

Notice that (3.3.2), (3.3.3), and Im z = −Re(iz) give

dF · XG = Re 〈∇F, XG〉 =
1
2�

Re 〈∇F,−i∇G〉

=
1
2�

Re 〈i∇F,∇G〉

= − 1
2�

Im 〈∇F,∇G〉

= {F, G}

as expected. �

(b) KdV Bracket. Using the definition of the bracket (2.7.1), the sym-
plectic structure, and the Hamiltonian vector field formula from Exam-
ple (c) of §3.2, one finds that

{F, G} =
∫ ∞

−∞

δF

δu

∂

∂x

(
δG

δu

)
dx (3.3.4)

for functions F, G of u having functional derivatives that vanish at ±∞. �

(c) Linear and Angular Momentum for the Wave Equation. The
wave equation on R3 discussed in Example (a) of §3.2 has the Hamiltonian

H(ϕ, π) =
∫

R3

[
1
2
(π′)2 +

1
2
‖∇ϕ‖2 + U(ϕ)

]
d3x. (3.3.5)
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Define the linear momentum in the x-direction by

Px(ϕ, π) =
∫

π′ ∂ϕ

∂x
d3x. (3.3.6)

By (3.3.6), δPx/δπ = ∂ϕ/∂x, and δPx/δϕ = (−∂π′/∂x) d3x, so we get from
(3.2.2)

{H, Px}(ϕ, π) =
∫

R3

(
δPx

δπ

δH

δϕ
− δH

δπ

δPx

δϕ

)
=

∫
R3

[
∂ϕ

∂x
(−∇2ϕ + U ′(ϕ)) + π′ ∂π′

∂x

]
d3x

=
∫

R3

[
−∇2ϕ

∂ϕ

∂x
+

∂

∂x

(
U(ϕ) +

1
2
(π′)2

)]
d3x

= 0, (3.3.7)

assuming that the fields and U vanish appropriately at ∞. (The first term
vanishes because it switches sign under integration by parts.) Thus, Px

is conserved. The conservation of Px is connected with invariance of H
under translations in the x-direction. Deeper insights into this connection
are explored later. Of course, similar conservation laws hold in the y- and
z-directions.

Likewise, the angular momenta J = (Jx, Jy, Jz), where, for example,

Jz(ϕ) =
∫

R3
π′

(
x

∂

∂y
− y

∂

∂x

)
ϕ d3x, (3.3.8)

are constants of the motion. This is proved in an analogous way. (For precise
function spaces in which these operations can be justified, see Chernoff and
Marsden [1974].) �

(d) Linear and Angular Momentum: The Schrödinger Equation.

Linear Momentum. In Example (b) of §3.2, assume that H is the space
of complex-valued L2-functions on R3 and that the self-adjoint linear oper-
ator Hop: H → H commutes with infinitesimal translations of the argument
by a fixed vector ξ ∈ R3, that is, Hop(Dψ(·) · ξ) = D(Hopψ(·)) · ξ for any
ψ whose derivative is in H. One checks, using (3.3.1), that

Pξ(ψ) =
〈

i

�
Dψ · ξ, ψ

〉
(3.3.9)

Poisson commutes with 〈Hop〉. If ξ is the unit vector along the x-axis, the
corresponding conserved quantity is

Px(ψ) =
〈

i

�

∂ψ

∂x
, ψ

〉
.
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Angular Momentum. Assume that Hop: H → H commutes with in-
finitesimal rotations by a fixed skew-symmetric 3 × 3 matrix ω̂, that is,

Hop(Dψ(x) · ω̂x) = D((Hopψ)(x)) · ω̂x (3.3.10)

for every ψ whose derivative is in H, where on the left-hand side, Hop is
thought of as acting on the function x �→ Dψ(x) · ω̂x. Then the angular
momentum function

J(ω̂) : x �→ 〈iDψ(x) · ω̂(x)/�, ψ(x)〉 (3.3.11)

Poisson commutes with H so is a conserved quantity. If we choose ω =
(0, 0, 1); that is,

ω̂ =

0 −1 0
1 0 0
0 0 0

 ,

this corresponds to an infinitesimal rotation around the z-axis. Explicitly,
the angular momentum around the xl-axis is given by

Jl(ψ) =
〈

i

�

(
xj ∂ψ

∂xk
− xk ∂ψ

∂xj

)
, ψ

〉
,

where (j, k, l) is a cyclic permutation of (1, 2, 3). �

(e) Linear and Angular Momentum for Linear Elastodynamics.
Consider again the equations of linear elastodynamics; see Example (f)
of §3.2. Observe that the Hamiltonian is invariant under translations if
the elasticity tensor c is homogeneous (independent of (x, y, z)); the corre-
sponding conserved linear momentum in the x-direction is

Px =
∫

R3
ρu̇ · ∂u

∂x
d3x. (3.3.12)

Likewise, the Hamiltonian is invariant under rotations if c is isotropic, that
is, invariant under rotations, which is equivalent to c having the form

cijkl = µ(δikδjl + δilδjk) + λδijδkl,

where µ and λ are constants (see Marsden and Hughes [1983, Section 4.3]
for the proof). The conserved angular momentum about the z-axis is

J =
∫

R3
ρu̇ ·

(
x

∂u
∂y

− y
∂u
∂x

)
d3x. �

In Chapter 11, we will gain a deeper insight into the significance and
construction of these conserved quantities.



120 3. An Introduction to Infinite-Dimensional Systems

Some Technicalities for Infinite-Dimensional Systems. In general,
unless the symplectic form on the Banach space Z is strong, the Hamil-
tonian vector field XH is not defined on the whole of Z but only on a
dense subspace. For example, in the case of the wave equation ∂2ϕ/∂t2 =
∇2ϕ − U ′(ϕ), a possible choice of phase space is H1(R3) × L2(R3), but
XH is defined only on the dense subspace H2(R3) × H1(R3). It can also
happen that the Hamiltonian H is not even defined on the whole of Z. For
example, if Hop = ∇2 +V for the Schrödinger equation on L2(R3), then H
could have domain containing H2(R3), that coincides with the domain of
the Hamiltonian vector field iHop. If V is singular, the domain need not be
exactly H2(R3). As a quadratic form, H might be extendable to H1(R3).
See Reed and Simon [1974, Volume II] or Kato [1984] for details.

The problem of existence and even uniqueness of solutions can be quite
delicate. For linear systems one often appeals to Stone’s theorem for the
Schrödinger and wave equations, and to the Hille–Yosida theorem in the
case of more general linear systems. We refer to Marsden and Hughes [1983,
Chapter 6], for the theory and examples. In the case of nonlinear Hamilto-
nian systems, the theorems of Segal [1962], Kato [1975], and Hughes, Kato,
and Marsden [1977] are relevant.

For infinite-dimensional nonlinear Hamiltonian systems, technical differ-
entiability conditions on their flows ϕt are needed to ensure that each ϕt is
a symplectic map; see Chernoff and Marsden [1974], and especially Mars-
den and Hughes [1983, Chapter 6]. These technicalities are needed in many
interesting examples. �

Exercises

� 3.3-1. Show that {Fi, Fj} = 0, i, j = 0, 1, 2, 3, where the Poisson bracket
is the KdV bracket and where

F0(u) =
∫ ∞

−∞
u dx,

F1(u) =
∫ ∞

−∞

1
2
u2 dx,

F2(u) =
∫ ∞

−∞

(
−u3 +

1
2
(ux)2

)
dx (the KdV Hamiltonian),

F3(u) =
∫ ∞

−∞

(
5
2
u4 − 5uu2

x +
1
2
(uxx)2

)
dx.




