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10
Poisson Manifolds

The dual g∗ of a Lie algebra g carries a Poisson bracket given by

{F, G} (µ) =
〈

µ,

[
δF

δµ
,
δG

δµ

]〉
for µ ∈ g∗, a formula found by Lie, [1890, Section 75]. As we saw in the In-
troduction, this Lie–Poisson bracket plays an important role in the Hamil-
tonian description of many physical systems. This bracket is not the bracket
associated with any symplectic structure on g∗, but is an example of the
more general concept of a Poisson manifold. On the other hand, we do want
to understand how this bracket is associated with a symplectic structure
on coadjoint orbits and with the canonical symplectic structure on T ∗G.
These facts are developed in Chapters 13 and 14. Chapter 15 shows how
this works in detail for the rigid body.

10.1 The Definition of Poisson Manifolds

This section generalizes the notion of a symplectic manifold by keeping
just enough of the properties of Poisson brackets to describe Hamiltonian
systems. The history of Poisson manifolds is complicated by the fact that
the notion was rediscovered many times under different names; they occur
in the works of Lie [1890], Dirac [1930,1964], Pauli [1953], Martin [1959],
Jost [1964], Arens [1970], Hermann [1973], Sudarshan and Mukunda [1974],
Vinogradov and Krasilshchik [1975], and Lichnerowicz [1975b]. The name
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Poisson manifold was coined by Lichnerowicz. Further historical comments
are given in §10.3.

Definition 10.1.1. A Poisson bracket (or a Poisson structure) on
a manifold P is a bilinear operation { , } on F(P ) = C∞(P ) such that:

(i) (F(P ), { , }) is a Lie algebra; and

(ii) { , } is a derivation in each factor, that is,

{FG, H} = {F, H}G + F {G, H}

for all F , G, and H ∈ F(P ).

A manifold P endowed with a Poisson bracket on F(P ) is called a Poisson
manifold.

A Poisson manifold is denoted by (P, { , }), or simply by P if there is
no danger of confusion. Note that any manifold has the trivial Poisson
structure, which is defined by setting {F, G} = 0, for all F, G ∈ F(P ).
Occasionally, we consider two different Poisson brackets { , }1 and { , }2 on
the same manifold; the two distinct Poisson manifolds are then denoted by
(P, { , }1) and (P, { , }2). The notation { , }P for the bracket on P is also
used when confusion might arise.

Examples

(a) Symplectic Bracket. Any symplectic manifold is a Poisson mani-
fold . The Poisson bracket is defined by the symplectic form, as was shown
in §5.5. Condition (ii) of the definition is satisfied as a consequence of the
derivation property of vector fields:

{FG, H} = XH [FG] = FXH [G] + GXH [F ] = F{G, H} + G{F, H}. �

(b) Lie–Poisson Bracket. If g is a Lie algebra, then its dual g∗ is a
Poisson manifold with respect to each of the Lie–Poisson brackets { , }+

and { , }− defined by

{F, G}±(µ) = ±
〈

µ,

[
δF

δµ
,
δG

δµ

]〉
(10.1.1)

for µ ∈ g∗ and F, G ∈ F(g∗). The properties of a Poisson bracket can
be easily verified. Bilinearity and skew-symmetry are obvious. The deriva-
tion property of the bracket follows from the Leibniz rule for functional
derivatives

δ(FG)
δµ

= F (µ)
δG

δµ
+

δF

δµ
G(µ).
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The Jacobi identity for the Lie–Poisson bracket follows from the Jacobi
identity for the Lie algebra bracket and the formula

± δ

δµ
{F, G}± =

[
δF

δµ
,
δG

δµ

]
− D2F (µ)

(
ad∗

δG/δµ µ, ·
)

+ D2G(µ)
(
ad∗

δF/δµ µ, ·
)

, (10.1.2)

where we recall from the preceding chapter that for each ξ ∈ g, adξ : g → g

denotes the map adξ(η) = [ξ, η] and ad∗
ξ : g∗ → g∗ is its dual. We give a

different proof that (10.1.1) is a Poisson bracket in Chapter 13. �

(c) Rigid-Body Bracket. Specializing Example (b) to the Lie algebra
of the rotation group so(3) ∼= R3 and identifying R3 and (R3)∗ via the
standard inner product, we get the following Poisson structure on R3:

{F, G}−(Π) = −Π · (∇F ×∇G), (10.1.3)

where Π ∈ R3 and ∇F , the gradient of F , is evaluated at Π. The Poisson
bracket properties can be verified by direct computation in this case; see
Exercise 1.2-1. We call (10.1.3) the rigid-body bracket . �

(d) Ideal Fluid Bracket. Specialize the Lie–Poisson bracket to the Lie
algebra Xdiv(Ω) of divergence-free vector fields defined in a region Ω of R3

and tangent to ∂Ω, with the Lie bracket being the negative of the Jacobi–
Lie bracket. Identify X∗

div(Ω) with Xdiv(Ω) using the L2 pairing

〈v,w〉 =
∫

Ω

v · w d3x, (10.1.4)

where v · w is the ordinary dot product in R3. Thus, the (+)-Lie–Poisson
bracket is

{F, G}(v) = −
∫

Ω

v ·
[
δF

δv
,
δG

δv

]
d3x, (10.1.5)

where the functional derivative δF/δv is the element of Xdiv(Ω) defined by

lim
ε→0

1
ε

[F (v + εδv) − F (v)] =
∫

Ω

δF

δv
· δv d3x. �

(e) Poisson–Vlasov Bracket. Let (P, { , }P ) be a Poisson manifold and
let F(P ) be the Lie algebra of functions under the Poisson bracket. Iden-
tify F(P )∗ with densities f on P . Then the Lie–Poisson bracket has the
expression

{F, G}(f) =
∫

P

f

{
δF

δf
,
δG

δf

}
P

. (10.1.6)

�
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(f) Frozen Lie–Poisson Bracket. Fix (or “freeze”) ν ∈ g∗ and define
for any F, G ∈ F(g∗) the bracket

{F, G}ν
±(µ) = ±

〈
ν,

[
δF

δµ
,
δG

δµ

]〉
. (10.1.7)

The properties of a Poisson bracket are verified as in the case of the
Lie–Poisson bracket, the only difference being that (10.1.2) is replaced by

± δ

δµ
{F, G}ν

± = −D2F (µ)
(
ad∗

δG/δµ ν, ·
)

+ D2G(µ)
(
ad∗

δF/δµ ν, ·
)

.

(10.1.8)

This bracket is useful in the description of the Lie–Poisson equations lin-
earized at an equilibrium point.1 �

(g) KdV Bracket. Let S = [Sij ] be a symmetric matrix. On F(Rn, Rn),
set

{F, G}(u) =
∫ ∞

−∞

n∑
i,j=1

Sij

[
δF

δui

d

dx

(
δG

δuj

)
− d

dx

(
δG

δuj

)
δF

δui

]
dx (10.1.9)

for functions F, G satisfying δF/δu and δG/δu → 0 as x → ±∞. This is a
Poisson structure that is useful for the KdV equation and for gas dynamics
(see Benjamin [1984]).2 If S is invertible and S−1 = [Sij ], then (10.1.9) is
the Poisson bracket associated with the weak symplectic form

Ω(u, v) =
1
2

∫ ∞

−∞

n∑
i,j=l

Sij

[(∫ y

−∞
ui(x) dx

)
vj(y)

−
(∫ y

−∞
vj(x) dx

)
ui(y)

]
dy. (10.1.10)

This is easily seen by noting that XH(u) is given by

Xi
H(u) = Sij d

dx

δH

δuj
. �

(h) Toda Lattice Bracket. Let

P =
{

(a,b) ∈ R
2n | ai > 0, i = 1, . . . , n

}
1See, for example, Abarbanel, Holm, Marsden, and Ratiu [1986].
2This is a particular case of Example (f), the Lie algebra being the pseudo-differential

operators on the line of order ≤ −1 and ν = dS/dx.
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and consider the bracket

{F, G}(a,b) =

[(
∂F

∂a

)T

,

(
∂F

∂b

)T
]
W

 ∂G

∂a
∂G

∂b

 , (10.1.11)

where (∂F/∂a)T is the row vector
(
∂F/∂a1, . . . , ∂F/∂an

)
, etc., and

W =
[

0 A
−A 0

]
, where A =

 a1 0
. . .

0 an

 . (10.1.12)

In terms of the coordinate functions ai, bj , the bracket (10.1.11) is given by{
ai, aj

}
= 0,{

bi, bj
}

= 0, (10.1.13){
ai, bj

}
= 0 if i �= j,{

ai, bj
}

= ai if i = j.

This Poisson bracket is determined by the symplectic form

Ω = −
n∑

i=1

1
ai

dai ∧ dbi (10.1.14)

as an easy verification shows. The mapping (a,b) �→ (log a−1,b) is a sym-
plectic diffeomorphism of P with R2n endowed with the canonical sym-
plectic structure. This symplectic structure is known as the first Poisson
structure of the non-periodic Toda lattice. We shall not study this example
in any detail in this book, but we point out that its bracket is the restric-
tion of a Lie–Poisson bracket to a certain coadjoint orbit of the group of
lower triangular matrices; we refer the interested reader to §14.5 of Kostant
[1979] and Symes [1980, 1982a, 1982b] for further information. �

Exercises

� 10.1-1. If P1 and P2 are Poisson manifolds, show how to make P1 × P2

into a Poisson manifold.

� 10.1-2. Verify directly that the Lie–Poisson bracket satisfies Jacobi’s
identity.

� 10.1-3 (A Quadratic Bracket). Let A =
[
Aij

]
be a skew-symmetric ma-

trix. On Rn, define Bij = Aijxixj (no sum). Show that the following defines
a Poisson structure:

{F, G} =
n∑

i,j=1

Bij ∂F

∂xi

∂G

∂xj
.
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� 10.1-4 (A Cubic Bracket). For x = (x1, x2, x3) ∈ R3, put{
x1, x2

}
= ‖x‖2x3,

{x2, x3} = ‖x‖2x1,

{x3, x1} = ‖x‖2x2.

Let Bij =
{
xi, xj

}
, for i < j and i, j = 1, 2, 3. Set Bji = −Bij and define

{F, G} =
n∑

i,j=1

Bij ∂F

∂xi

∂G

∂xj
.

Check that this makes R3 into a Poisson manifold.

� 10.1-5. Let Φ : g∗ → g∗ be a smooth map and define for F, H : g∗ → R,

{F, H}Φ (µ) =
〈

Φ(µ),
[
δF

δµ
,
δH

δµ

]〉
.

(a) Show that this rule defines a Poisson bracket on g∗ if and only if Φ
satisfies the following identity:〈

DΦ(µ) · ad∗
ζ(µ), [η, ξ]

〉
+

〈
DΦ(µ) · ad∗

η Φ(µ), [ξ, ζ]
〉

+
〈
DΦ(µ) · ad∗

ξ Φ(µ), [ζ, η]
〉

= 0,

for all ξ, η, ζ ∈ g and all µ ∈ g∗.

(b) Show that this relation holds if Φ(µ) = µ or Φ(µ) = ν, a fixed element
of g∗, thereby obtaining the Lie–Poisson structure (10.1.1) and the
linearized Lie–Poisson structure (10.1.7) on g∗. Show that it also holds
if Φ(µ) = aµ + ν for fixed a ∈ R and ν ∈ g∗.

(c) Assume that g has a weakly nondegenerate bilinear form κ : g× g →
R. Assume that κ is invariant under the Ad action and identify g∗

with g using κ. If Ψ : g → g is smooth, show that

{F, H}Ψ (ξ) = κ(Ψ(ξ), [∇F (ξ),∇H(ξ)])

is a Poisson bracket if and only if

κ(DΨ(λ) · [Ψ(λ), ζ], [η, ξ]) + κ(DΨ(λ) · [Ψ(λ), η], [ξ, ζ])
+ κ(DΨ(λ) · [Ψ(λ), ξ], [ζ, η]) = 0,

for all λ, ξ, η, ζ ∈ g. Here, ∇F (ξ),∇H(ξ) ∈ g are the gradients of F
and H at ξ ∈ g relative to κ.

Conclude as in (b) that this relation holds if Ψ(λ) = aλ+χ for a ∈ R

and χ ∈ g.
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(d) Under the hypothesis of (c), let Ψ(λ) = ∇ψ(λ) for some smooth
ψ : g → R. Show that { , }Ψ is a Poisson bracket if and only if

D2ψ(λ)([∇ψ(λ), ζ], [η, ξ]) − D2ψ(λ)(∇ψ(λ), [ζ, [η, ξ]])

+ D2ψ(λ)([∇ψ(λ), η], [ξ, ζ]) − D2ψ(λ)(∇ψ(λ), [η, [ξ, ζ]])

+ D2ψ(λ)([∇ψ(λ), ξ], [ζ, η]) − D2ψ(λ)(∇ψ(λ), [ξ, [ζ, η]]) = 0,

for all λ, ξ, η, ζ ∈ g. In particular, if D2ψ(λ) is an invariant bilinear
form for all λ, this condition holds. However, if g = so(3) and ψ is
arbitrary, then this condition also holds (see Exercise 1.3-2).

10.2 Hamiltonian Vector Fields and Casimir
Functions

Hamiltonian Vector Fields. We begin by extending the notion of a
Hamiltonian vector field from the symplectic to the Poisson context.

Proposition 10.2.1. Let P be a Poisson manifold. If H ∈ F(P ), then
there is a unique vector field XH on P such that

XH [G] = {G, H} (10.2.1)

for all G ∈ F(P ). We call XH the Hamiltonian vector field of H.

Proof. This is a consequence of the fact that any derivation on F(P )
is represented by a vector field. Fixing H, the map G �→ {G, H} is a
derivation, and so it uniquely determines XH satisfying (10.2.1). (In infi-
nite dimensions some technical conditions are needed for this proof, which
are deliberately ignored here; see Abraham, Marsden, and Ratiu [1988,
Section 4.2].) �

Notice that (10.2.1) agrees with our definition of Poisson brackets in the
symplectic case, so if the Poisson manifold P is symplectic, XH defined
here agrees with the definition in §5.5.

Proposition 10.2.2. The map H �→ XH of F(P ) to X(P ) is a Lie alge-
bra antihomomorphism; that is,

[XH , XK ] = −X{H,K}.

Proof. Using Jacobi’s identity, we find that

[XH , XK ][F ] = XH [XK [F ]] − XK [XH [F ]]
= {{F, K} , H} − {{F, H} , K}
= − {F, {H, K}}
= − X{H,K}[F ]. �
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Equations of Motion in Poisson Bracket Form. Next, we establish
the equation Ḟ = {F, H} in the Poisson context.

Proposition 10.2.3. Let ϕt be a flow on a Poisson manifold P and let
H : P → R be a smooth function on P . Then

(i) for any F ∈ F(U), U open in P ,

d

dt
(F ◦ ϕt) = {F, H} ◦ ϕt = {F ◦ ϕt, H},

or, for short,

Ḟ = {F, H}, for any F ∈ F(U), U open in P,

if and only if ϕt is the flow of XH .

(ii) If ϕt is the flow of XH , then H ◦ ϕt = H.

Proof. (i) Let z ∈ P . Then

d

dt
F (ϕt(z)) = dF (ϕt(z)) · d

dt
ϕt(z)

and
{F, H}(ϕt(z)) = dF (ϕt(z)) · XH(ϕt(z)).

The two expressions are equal for any F ∈ F(U), U open in P , if and only
if

d

dt
ϕt(z) = XH(ϕt(z)),

by the Hahn–Banach theorem. This is equivalent to t �→ ϕt(z) being the
integral curve of XH with initial condition z, that is, ϕt is the flow of XH .

On the other hand, if ϕt is the flow of XH , then we have

XH(ϕt(z)) = Tzϕt(XH(z)),

so that by the chain rule,

d

dt
F (ϕt(z)) = dF (ϕt(z)) · XH(ϕt(z))

= dF (ϕt(z)) · Tzϕt(XH(z))
= d(F ◦ ϕt)(z) · XH(z)
= {F ◦ ϕt, H}(z).

(ii) For the proof of (ii), let H = F in (i). �

Corollary 10.2.4. Let G, H ∈ F(P ). Then G is constant along the inte-
gral curves of XH if and only if {G, H} = 0. Either statement is equivalent
to H being constant along the integral curves of XG.
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Among the elements of F(P ) are functions C such that {C, F} = 0 for
all F ∈ F(P ), that is, C is constant along the flow of all Hamiltonian vector
fields, or, equivalently, XC = 0, that is, C generates trivial dynamics. Such
functions are called Casimir functions of the Poisson structure. They
form the center of the Poisson algebra.3 This terminology is used in, for
example, Sudarshan and Mukunda [1974]. H. B. G. Casimir is a prominent
physicist who wrote his thesis (Casimir [1931]) on the quantum mechanics
of the rigid body, under the direction of Paul Ehrenfest. Recall that it was
Ehrenfest who, in his thesis, worked on the variational structure of ideal
flow in Lagrangian or material representation.

Examples

(a) Symplectic Case. On a symplectic manifold P , any Casimir func-
tion is constant on connected components of P . This holds, since in the
symplectic case, XC = 0 implies dC = 0, and hence C is locally con-
stant. �

(b) Rigid-Body Casimirs. In the context of Example (c) of §10.1, let
C(Π) = ‖Π‖2/2. Then ∇C(Π) = Π, and by the properties of the triple
product, we have for any F ∈ F(R3),

{C, F} (Π) = −Π · (∇C ×∇F ) = − Π · (Π ×∇F )
= −∇F · (Π × Π) = 0.

This shows that C(Π) = ‖Π‖2/2 is a Casimir function. A similar argument
shows that

CΦ(Π) = Φ
(

1
2‖Π‖2

)
(10.2.2)

is a Casimir function, where Φ is an arbitrary (differentiable) function of
one variable; this is proved by noting that

∇CΦ(Π) = Φ′ ( 1
2‖Π‖2

)
Π. �

(c) Helicity. In Example (d) of §10.1, the helicity

C(v) =
∫

Ω

v · (∇× v) d3x (10.2.3)

can be checked to be a Casimir function if ∂Ω = ∅. �

3The center of a group (or algebra) is the set of elements that commute with all
elements of the group (or algebra).
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(d) Poisson–Vlasov Casimirs. In Example (e) of §10.1, given a differ-
entiable function Φ : R → R, the map C : F(P ) → R defined by

C(f) =
∫

Φ(f(q, p)) dq dp (10.2.4)

is a Casimir function. Here we choose P to be symplectic, have written
dq dp = dz for the Liouville measure, and have used it to identify functions
and densities. �

Some History of Poisson Structures.4 Following from the work of
Lagrange and Poisson discussed at the end of §8.1, the general concept of a
Poisson manifold should be credited to Sophus Lie in his treatise on trans-
formation groups written around 1880 in the chapter on “function groups.”
Lie uses the word “group” for both “group” and “algebra.” For example,
a “function group” should really be translated as “function algebra.”

On page 237, Lie defines what today is called a Poisson structure. The
title of Chapter 19 is The Coadjoint Group, which is explicitly identified
on page 334. Chapter 17, pages 294–298, defines a linear Poisson structure
on the dual of a Lie algebra, today called the Lie–Poisson structure, and
“Lie’s third theorem” is proved for the set of regular elements. On page
349, together with a remark on page 367, it is shown that the Lie–Poisson
structure naturally induces a symplectic structure on each coadjoint orbit.
As we shall point out in §11.2, Lie also had many of the ideas of momentum
maps. For many years this work appears to have been forgotten.

Because of the above history, Marsden and Weinstein [1983] coined the
phrase “Lie–Poisson bracket” for this object, and this terminology is now
in common use. However, it is not clear that Lie understood the fact that
the Lie–Poisson bracket is obtained by a simple reduction process, namely,
that it is induced from the canonical cotangent Poisson bracket on T ∗G
by passing to g∗ regarded as the quotient T ∗G/G, as will be explained in
Chapter 13. The link between the closedness of the symplectic form and
the Jacobi identity is a little harder to trace explicitly; some comments in
this direction are given in Souriau [1970], who gives credit to Maxwell.

Lie’s work starts by taking functions F1, . . . , Fr on a symplectic manifold
M , with the property that there exist functions Gij of r variables such that

{Fi, Fj} = Gij(F1, . . . , Fr).

In Lie’s time, all functions in sight are implicitly assumed to be analytic.
The collection of all functions φ of F1, . . . , Fr is the “function group”; it is

4We thank Hans Duistermaat and Alan Weinstein for their help with the comments
in this section; the paper of Weinstein [1983a] should also be consulted by the interested
reader.
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provided with the bracket

[φ, ψ] =
∑
ij

Gijφiψj , (10.2.5)

where

φi =
∂φ

∂Fi
and ψj =

∂ψ

∂Fj
.

Considering F = (F1, . . . , Fr) as a map from M to an r-dimensional
space P , and φ and ψ as functions on P , one may formulate this as saying
that [φ, ψ] is a Poisson structure on P , with the property that

F ∗[φ, ψ] = {F ∗φ, F ∗ψ}.

Lie writes down the equations for the Gij that follow from the antisym-
metry and the Jacobi identity for the bracket { , } on M . He continues
with the question, If a given system of functions Gij in r variables satisfies
these equations, is it induced, as above, from a function group of functions
of 2n variables? He shows that under suitable rank conditions the answer
is yes. As we shall see below, this result is the precursor to many of the
fundamental results about the geometry of Poisson manifolds.

It is obvious that if Gij is a system that satisfies the equations that Lie
writes down, then (10.2.5) is a Poisson structure in r-dimensional space.
Conversely, for any Poisson structure [φ, ψ], the functions

Gij = [Fi, Fj ]

satisfy Lie’s equations.
Lie continues with more remarks, that are not always stated as explicitly

as one would like, on local normal forms of function groups (i.e., of Poisson
structures) under suitable rank conditions. These amount to the following:
A Poisson structure of constant rank is the same as a foliation with sym-
plectic leaves. It is this characterization that Lie uses to get the symplectic
form on the coadjoint orbits. On the other hand, Lie does not apply the
symplectic form on the coadjoint orbits to representation theory.

Representation theory of Lie groups started only later with Schur on
GL(n), and was continued by Elie Cartan with representations of semisim-
ple Lie algebras, and in the 1930s by Weyl with the representation of com-
pact Lie groups. The coadjoint orbit symplectic structure was connected
with representation theory in the work of Kirillov and Kostant. On the
other hand, Lie did apply the Poisson structure on the dual of the Lie alge-
bra to prove that every abstract Lie algebra can be realized as a Lie algebra
of Hamiltonian vector fields, or as a Lie subalgebra of the Poisson algebra
of functions on some symplectic manifold. This is “Lie’s third fundamental
theorem” in the form given by Lie.
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In geometry, people like Engel, Study, and, in particular, Elie Cartan
studied Lie’s work intensely and propagated it very actively. However,
through the tainted glasses of retrospection, Lie’s work on Poisson struc-
tures did not appear to receive as much attention in mechanics as it de-
served; for example, even though Cartan himself did very important work
in mechanics (such as Cartan [1923, 1928a, 1928b]), he did not seem to
realize that the Lie–Poisson bracket was central to the Hamiltonian de-
scription of some of the rotating fluid systems he was studying. However,
others, such as Hamel [1904, 1949], did study Lie intensively and used
his work to make substantial contributions and extensions (such as to the
study of nonholonomic systems, including rolling constraints), but many
other active schools seem to have missed it. Even more surprising in this
context is the contribution of Poincaré [1901b, 1910] to the Lagrangian side
of the story, a tale to which we shall come in Chapter 13.

Exercises

� 10.2-1. Verify the relation [XH , XK ] = −X{H,K} directly for the rigid-
body bracket.

� 10.2-2. Verify that

C(f) =
∫

Φ(f(q, p)) dq dp,

defines a Casimir function for the Poisson–Vlasov bracket.

� 10.2-3. Let P be a Poisson manifold and let M ⊂ P be a connected sub-
manifold with the property that for each v ∈ TxM there is a Hamiltonian
vector field XH on P such that v = XH(x); that is, TxM is spanned by
Hamiltonian vector fields. Prove that any Casimir function is constant on
M .

10.3 Properties of Hamiltonian Flows

Hamiltonian Flows Are Poisson. Now we establish the Poisson ana-
logue of the symplectic nature of the flows of Hamiltonian vector fields.

Proposition 10.3.1. If ϕt is the flow of XH , then

ϕ∗
t {F, G} = {ϕ∗

t F, ϕ∗
t G} ;

in other words,
{F, G} ◦ ϕt = {F ◦ ϕt, G ◦ ϕt} .

Thus, the flows of Hamiltonian vector fields preserve the Poisson structure.
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Proof. This is actually true even for time-dependent Hamiltonian sys-
tems (as we will see later), but here we will prove it only in the time-
independent case. Let F, K ∈ F(P ) and let ϕt be the flow of XH . Let

u = {F ◦ ϕt, K ◦ ϕt} − {F, K} ◦ ϕt.

Because of the bilinearity of the Poisson bracket,

du

dt
=

{
d

dt
F ◦ ϕt, K ◦ ϕt

}
+

{
F ◦ ϕt,

d

dt
K ◦ ϕt

}
− d

dt
{F, K} ◦ ϕt.

Using Proposition 10.2.3, this becomes

du

dt
= {{F ◦ ϕt, H} , K ◦ ϕt} + {F ◦ ϕt, {K ◦ ϕt, H}} − {{F, K} ◦ ϕt, H} ,

which, by Jacobi’s identity, gives

du

dt
= {u, H} = XH [u].

The unique solution of this equation is ut = u0 ◦ ϕt. Since u0 = 0, we get
u = 0, which is the result. �

As in the symplectic case, with which this is, of course, consistent, this
argument shows how Jacobi’s identity plays a crucial role.

Poisson Maps. A smooth mapping f : P1 → P2 between the two Poisson
manifolds (P1, { , }1) and (P2, { , }2) is called canonical or Poisson if

f∗ {F, G}2 = {f∗F, f∗G}1 ,

for all F, G ∈ F(P2). Proposition 10.3.1 shows that flows of Hamiltonian
vector fields are canonical maps. We saw already in Chapter 5 that if P1

and P2 are symplectic manifolds, a map f : P1 → P2 is canonical if and
only if it is symplectic.

Properties of Poisson Maps. The next proposition shows that Poisson
maps push Hamiltonian flows to Hamiltonian flows.

Proposition 10.3.2. Let f : P1 → P2 be a Poisson map and let H ∈
F(P2). If ϕt is the flow of XH and ψt is the flow of XH◦f , then

ϕt ◦ f = f ◦ ψt and Tf ◦ XH◦f = XH ◦ f.

Conversely, if f is a map from P1 to P2 and for all H ∈ F(P2) the Hamil-
tonian vector fields XH◦f ∈ X(P1) and XH ∈ X(P2) are f-related, that
is,

Tf ◦ XH◦f = XH ◦ f,

then f is canonical.
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Proof. For any G ∈ F(P2) and z ∈ P1, Proposition 10.2.3(i) and the
definition of Poisson maps yield

d

dt
G((f ◦ ψt)(z)) =

d

dt
(G ◦ f)(ψt(z))

= {G ◦ f, H ◦ f} (ψt(z)) = {G, H} (f ◦ ψt)(z),

that is, (f ◦ψt)(z) is an integral curve of XH on P2 through the point f(z).
Since (ϕt◦f)(z) is another such curve, uniqueness of integral curves implies
that

(f ◦ ψt)(z) = (ϕt ◦ f)(z).

The relation Tf ◦ XH◦f = XH ◦ f follows from f ◦ ψt = ϕt ◦ f by taking
the time-derivative.

Conversely, assume that for any H ∈ F(P2) we have Tf ◦XH◦f = XH ◦f .
Therefore, by the chain rule,

XH◦f [F ◦ f ] (z) = dF (f(z)) · Tzf(XH◦f (z))
= dF (f(z)) · XH(f(z)) = XH [F ] (f(z)),

that is, XH◦f [f∗F ] = f∗(XH [F ]). Thus, for G ∈ F(P2),

{G, H} ◦ f = f∗(XH [G]) = XH◦f [f∗G] = {G ◦ f, H ◦ f} ,

and so f is canonical. �

Exercises

� 10.3-1. Verify directly that a rotation R : R3 → R3 is a Poisson map for
the rigid-body bracket.

� 10.3-2. If P1 and P2 are Poisson manifolds, show that the projection
π1 : P1 × P2 → P1 is a Poisson map. Is the corresponding statement true
for symplectic maps?

10.4 The Poisson Tensor

Definition of the Poisson Tensor. By the derivation property of the
Poisson bracket, the value of the bracket {F, G} at z ∈ P (and thus XF (z)
as well) depends on F only through dF (z) (see Theorem 4.2.16 in Abraham,
Marsden, and Ratiu [1988] for this type of argument). Thus, there is a
contravariant antisymmetric two-tensor

B : T ∗P × T ∗P → R

such that
B(z)(αz, βz) = {F, G} (z),
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where dF (z) = αz and dG(z) = βz ∈ T ∗
z P . This tensor B is called a

cosymplectic or Poisson structure. In local coordinates (z1, . . . , zn), B
is determined by its matrix elements

{
zI , zJ

}
= BIJ(z), and the bracket

becomes

{F, G} = BIJ(z)
∂F

∂zI

∂G

∂zJ
. (10.4.1)

Let B� : T ∗P → TP be the vector bundle map associated to B, that is,

B(z)(αz, βz) =
〈
αz, B

�(z)(βz)
〉
.

Consistent with our conventions, Ḟ = {F, H}, the Hamiltonian vector
field, is given by XH(z) = B�

z · dH(z). Indeed, Ḟ (z) = dF (z) · XH(z) and

{F, H} (z) = B(z)(dF (z),dH(z)) = 〈dF (z), B�(z)(dH(z))〉.

Comparing these expressions gives the stated result.

Coordinate Representation. A convenient way to specify a bracket in
finite dimensions is by giving the coordinate relations

{
zI , zJ

}
= BIJ(z).

The Jacobi identity is then implied by the special cases{{
zI , zJ

}
, zK

}
+

{{
zK , zI

}
, zJ

}
+

{{
zJ , zK

}
, zI

}
= 0,

which are equivalent to the differential equations

BLI ∂BJK

∂zL
+ BLJ ∂BKI

∂zL
+ BLK ∂BIJ

∂zL
= 0 (10.4.2)

(the terms are cyclic in I, J, K). Writing XH [F ] = {F, H} in coordinates
gives

XI
H

∂F

∂zI
= BJK ∂F

∂zJ

∂H

∂zK
,

and so

XI
H = BIJ ∂H

∂zJ
. (10.4.3)

This expression tells us that BIJ should be thought of as the negative
inverse of the symplectic matrix, which is literally correct in the nondegen-
erate case. Indeed, if we write out

Ω(XH , v) = dH · v

in coordinates, we get

ΩIJXI
HvJ =

∂H

∂zJ
vJ , i.e., ΩIJXI

H =
∂H

∂zJ
.
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If [ΩIJ ] denotes the inverse of [ΩIJ ], we get

XI
H = ΩJI ∂H

∂zJ
, (10.4.4)

so comparing (10.4.3) and (10.4.4), we see that

BIJ = −ΩIJ .

Recalling that the matrix of Ω� is the inverse of that of Ω� and that the
matrix of Ω� is the negative of that of Ω, we see that B� = Ω�.

Let us prove this abstractly. The basic link between the Poisson tensor
B and the symplectic form Ω is that they give the same Poisson bracket:

{F, H} = B(dF,dH) = Ω(XF , XH),

that is, 〈
dF, B�dH

〉
= 〈dF, XH〉 .

But

Ω(XH , v) = dH · v,

and so 〈
Ω�XH , v

〉
= 〈dH, v〉 ,

whence

XH = Ω�dH,

since Ω� = (Ω�)−1. Thus, B�dH = Ω�dH, for all H, and thus

B� = Ω�.

Coordinate Representation of Poisson Maps. We have seen that
the matrix [BIJ ] of the Poisson tensor B converts the differential

dH =
∂H

∂zI
dzI

of a function to the corresponding Hamiltonian vector field; this is consis-
tent with our treatment in the Introduction and Overview. Another basic
concept, that of a Poisson map, is also worthwhile to work out in coordi-
nates.

Let f : P1 → P2 be a Poisson map, so {F ◦ f, G ◦ f}1 = {F, G}2 ◦ f .
In coordinates zI on P1 and wK on P2, and writing wK = wK(zI) for the
map f , this reads

∂

∂zI
(F ◦ f)

∂

∂zJ
(G ◦ f)BIJ

1 (z) =
∂F

∂wK

∂G

∂wL
BKL

2 (w).
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By the chain rule, this is equivalent to

∂F

∂wK

∂wK

∂zI

∂G

∂wL

∂wL

∂zJ
BIJ

1 (z) =
∂F

∂wK

∂G

∂wL
BKL

2 (w).

Since F and G are arbitrary, f is Poisson iff

BIJ
1 (z)

∂wK

∂zI

∂wL

∂zJ
= BKL

2 (w).

Intrinsically, regarding B1(z) as a map B1(z) : T ∗
z P1 × T ∗

z P1 → R, this
reads

B1(z)(T ∗
z f · αw, T ∗

z f · βw) = B2(w)(αw, βw), (10.4.5)

where αw, βw ∈ T ∗
wP2 and f(z) = w. In analogy with the case of vector

fields, we shall say that if equation (10.4.5) holds, then B1 and B2 are
f -related and denote it by B1 ∼f B2. In other words, f is Poisson iff

B1 ∼f B2. (10.4.6)

Lie Derivative of the Poisson Tensor. The next proposition is equiv-
alent to the fact that the flows of Hamiltonian vector fields are Poisson
maps.

Proposition 10.4.1. For any function H ∈ F(P ), we have £XH
B = 0.

Proof. By definition, we have

B(dF,dG) = {F, G} = XG[F ]

for any locally defined functions F and G on P . Therefore,

£XH
(B(dF,dG)) = £XH

{F, G} = {{F, G} , H} .

However, since the Lie derivative is a derivation,

£XH
(B(dF,dG))
= (£XH

B)(dF,dG) + B(£XH
dF,dG) + B(dF,£XH

dG)
= (£XH

B)(dF,dG) + B(d {F, H} ,dG) + B(dF,d {G, H})
= (£XH

B)(dF,dG) + {{F, H} , G} + {F, {G, H}}
= (£XH

B)(dF,dG) + {{F, G} , H} ,

by the Jacobi identity. It follows that (£XH
B)(dF,dG) = 0 for any locally

defined functions F, G ∈ F(U). Since any element of T ∗
z P can be written

as dF (z) for some F ∈ F(U), U open in P , it follows that £XH
B = 0. �
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Pauli–Jost Theorem. Suppose that the Poisson tensor B is strongly
nondegenerate, that is, it defines an isomorphism B� : dF (z) �→ XF (z) of
T ∗

z P with TzP , for all z ∈ P . Then P is symplectic, and the symplectic
form Ω is defined by the formula Ω(XF , XG) = {F, G} for any locally
defined Hamiltonian vector fields XF and XG. One gets dΩ = 0 from
Jacobi’s identity—see Exercise 5.5-1. This is the Pauli–Jost theorem ,
due to Pauli [1953] and Jost [1964].

One may be tempted to formulate the above nondegeneracy assumption
in a slightly weaker form involving only the Poisson bracket: Suppose that
for every open subset V of P , if F ∈ F(V ) and {F, G} = 0 for all G ∈ F(U)
and all open subsets U of V , then dF = 0 on V , that is, F is constant on
the connected components of V . This condition does not imply that P
is symplectic, as the following counterexample shows. Let P = R2 with
Poisson bracket

{F, G} (x, y) = y

(
∂F

∂x

∂G

∂y
− ∂F

∂y

∂G

∂x

)
.

If {F, G} = 0 for all G, then F must be constant on both the upper and
lower half-planes, and hence by continuity it must be constant on R2. How-
ever, R2 with this Poisson structure is clearly not symplectic.

Characteristic Distribution. The subset B�(T ∗P ) of TP is called the
characteristic field or distribution of the Poisson structure; it need not
be a subbundle of TP in general. Note that skew-symmetry of the tensor
B is equivalent to (B�)∗ = −B�, where (B�)∗ : T ∗P → TP is the dual of
B�. If P is finite-dimensional, the rank of the Poisson structure at a point
z ∈ P is defined to be the rank of B�(z) : T ∗

z P → TzP ; in local coordinates,
it is the rank of the matrix

[
BIJ(z)

]
. Since the flows of Hamiltonian vector

fields preserve the Poisson structure, the rank is constant along such a
flow. A Poisson structure for which the rank is everywhere equal to the
dimension of the manifold is nondegenerate and hence symplectic.

Poisson Immersions and Submanifolds. An injectively immersed
submanifold i : S → P is called a Poisson immersion if any Hamil-
tonian vector field defined on an open subset of P containing i(S) is in the
range of Tzi at all points i(z) for z ∈ S. This is equivalent to the following
assertion:

Proposition 10.4.2. An immersion i : S → P is Poisson iff it satisfies
the following condition. If F, G : V ⊂ S → R, where V is open in S,
and if F , G : U → R are extensions of F ◦ i−1, G ◦ i−1 : i(V ) → R to
an open neighborhood U of i(V ) in P , then {F , G}|i(V ) is well-defined
and independent of the extensions. The immersed submanifold S is thus
endowed with an induced Poisson structure, and i : S → P becomes a
Poisson map.
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Proof. If i : S → P is an injectively immersed Poisson manifold, then

{F , G}(i(z)) = dF (i(z)) · XG(i(z)) = dF (i(z)) · Tzi(v)

= d(F ◦ i)(z) · v = dF (z) · v,

where v ∈ TzS is the unique vector satisfying XG(i(z)) = Tzi(v). Thus,
{F , G}(i(z)) is independent of the extension F of F ◦ i−1. By skew-sym-
metry of the bracket, it is also independent of the extension G of G ◦ i−1.
Then one can define a Poisson structure on S by setting

{F, G} = {F , G}|i(V )

for any open subset V of S. In this way i : S → P becomes a Poisson map,
since by the computation above we have XG(i(z)) = Tzi(XG).

Conversely, assume that the condition on the bracket stated above holds
and let H : U → P be a Hamiltonian defined on an open subset U of P
intersecting i(S). Then by what was already shown, S is a Poisson manifold,
and i : S → P is a Poisson map. Because i is Poisson, if z ∈ S is such that
i(z) ∈ U , we have

XH(i(z)) = Tzi(XH◦i(z)),

and thus XH(i(z)) ∈ range Tzi, thereby showing that i : S → P is a Poisson
immersion. �

If S ⊂ P is a submanifold of P and the inclusion i is Poisson, we say that
S is a Poisson submanifold of P . Note that the only immersed Poisson
submanifolds of a symplectic manifold are those whose range in P is open,
since for any (weak) symplectic manifold P , we have

TzP = {XH(z) | H ∈ F(U), U open in P }.

Note that any Hamiltonian vector field must be tangent to a Poisson sub-
manifold. Also note that the only Poisson submanifolds of a symplectic
manifold P are its open sets.

Symplectic Stratifications. Now we come to an important result that
states that every Poisson manifold is a union of symplectic manifolds, each
of which is a Poisson submanifold.

Definition 10.4.3. Let P be a Poisson manifold. We say that z1, z2 ∈ P
are on the same symplectic leaf of P if there is a piecewise smooth
curve in P joining z1 and z2, each segment of which is a trajectory of a
locally defined Hamiltonian vector field. This is clearly an equivalence rela-
tion, and an equivalence class is called a symplectic leaf. The symplectic
leaf containing the point z is denoted by Σz.

Theorem 10.4.4 (Symplectic Stratification Theorem). Let P be a finite-
dimensional Poisson manifold. Then P is the disjoint union of its sym-
plectic leaves. Each symplectic leaf in P is an injectively immersed Poisson
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submanifold, and the induced Poisson structure on the leaf is symplectic.
The dimension of the leaf through a point z equals the rank of the Poisson
structure at that point, and the tangent space to the leaf at z equals

B#(z)(T ∗
z P ) = {XH(z) | H ∈ F(U), U open in P }.

The picture one should have in mind is shown in Figure 10.4.1. Note in
particular that the dimension of the symplectic leaf through a point can
change dimension as the point varies.

z

a two-dimensional symplectic leaf Σz

span of the Hamiltonian vector fields XH (z)

P

zero-dimensional symplectic leaves (points)

Figure 10.4.1. The symplectic leaves of a Poisson manifold.

The Poisson bracket on P can be alternatively described as follows.

To evaluate the Poisson bracket of F and G at z ∈ P , restrict
F and G to the symplectic leaf Σ through z, take their bracket
on Σ (in the sense of brackets on a symplectic manifold), and
evaluate at z.

Also note that since the Casimir functions have differentials that annihilate
the characteristic field, they are constant on symplectic leaves.

To get a feeling for the geometric content of the symplectic stratification
theorem, let us first prove it under the assumption that the characteristic
field is a smooth vector subbundle of TP , which is the case considered origi-
nally by Lie [1890]. In finite dimensions, this is guaranteed if the rank of the
Poisson structure is constant. Jacobi’s identity shows that the characteris-
tic field is involutive, and thus by the Frobenius theorem, it is integrable.
Therefore, P is foliated by injectively immersed submanifolds whose tan-
gent space at any point coincides with the subspace of all Hamiltonian
vector fields evaluated at z. Thus, each such leaf Σ is an immersed Poisson
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submanifold of P . Define the two-form Ω on Σ by

Ω(z)(XF (z), XG(z)) = {F, G} (z)

for any functions F, G defined on a neighborhood of z in P . Note that Ω is
closed by the Jacobi identity (Exercise 5.5-1). Also, if

0 = Ω(z)(XF (z), XG(z)) = dF (z) · XG(z)

for all locally defined G, then

dF (z)|TzΣ = d(F ◦ i)(z) = 0

by the Hahn–Banach theorem. Therefore,

0 = XF◦i(z) = Tzi(XF (z)) = XF (z),

since Σ is a Poisson submanifold of P and the inclusion i : Σ → P is a
Poisson map, thus showing that Ω is weakly nondegenerate and thereby
proving the theorem for the constant-rank case.

The general case, proved by Kirillov [1976a], is more subtle, since for
differentiable distributions that are not subbundles, integrability and invo-
lutivity are not equivalent. We shall prove this case in the Internet supple-
ment.

Proposition 10.4.5. If P is a Poisson manifold, Σ ⊂ P is a symplectic
leaf, and C is a Casimir function, then C is constant on Σ.

Proof. If C were not locally constant on Σ, then there would exist a
point z ∈ Σ such that dC(z) · v �= 0 for some v ∈ TzΣ. But TzΣ is spanned
by Xk(z) for k ∈ F(P ), and hence dC(z) · Xk(z) = {C, K}(z) = 0, which
implies that dC(z) · v = 0, which is a contradiction. Thus C is locally
constant on Σ and hence constant by connectedness of the leaf Σ. �

Examples

(a) Let P = R3 with the rigid-body bracket. Then the symplectic leaves
are spheres centered at the origin. The single point at the origin is the
singular leaf in the sense that the Poisson structure has rank zero there.
As we shall see later, it is true more generally that the symplectic leaves in
g∗ with the Lie–Poisson bracket are the coadjoint orbits. �

(b) Symplectic leaves need not be submanifolds, and one cannot conclude
that if all the Casimir functions are constants then the Poisson structure is
nondegenerate. For example, consider the three torus T3 with a codimen-
sion 1 foliation with dense leaves, such as obtained by taking the leaves
to be the product of T1 with a leaf of the irrational flow on T2. Put the
usual area element on these leaves and define a Poisson structure on T3

by declaring these to be the symplectic leaves. Any Casimir function is
constant, yet the Poisson structure is degenerate. �
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Poisson–Darboux Theorem. Related to the stratification theorem is
an analogue of Darboux’ theorem. To state it, first recall from Exercise 10.3-
2 that we define the product Poisson structure on P1×P2 where P1, P2 are
Poisson manifolds by the requirements that the projections π1 : P1 ×P2 →
P and π2 : P1 × P2 → P2 be Poisson mappings, and π∗

1(F(P1)) and
π∗

2(F(P2)) be commuting subalgebras of F(P1 × P2). In terms of coordi-
nates, if bracket relations

{
zI , zJ

}
= BIJ(z) and

{
wI , wJ

}
= CIJ(w) are

given on P1 and P2, respectively, then these define a bracket on functions
of zI and wJ when augmented by the relations

{
zI , wJ

}
= 0.

Theorem 10.4.6 (Lie–Weinstein). Let z0 be a point in a Poisson man-
ifold P . There is a neighborhood U of z0 in P and an isomorphism ϕ =
ϕS × ϕN : U → S × N , where S is symplectic, N is Poisson, and the rank
of N at ϕN (z0) is zero. The factors S and N are unique up to local isomor-
phism. Moreover, if the rank of the Poisson manifold is constant near z0,
there are coordinates (q1, . . . , qk, p1, . . . , pk, y1, . . . , yl) near z0 satisfying
the canonical bracket relations{

qi, qj
}

= {pi, pj} =
{
qi, yj

}
=

{
pi, y

j
}

= 0,
{
qi, pj

}
= δi

j .

When one is proving this theorem, the manifold S can be taken to be the
symplectic leaf of P through z0, and N is, locally, any submanifold of P ,
transverse to S, and such that S ∩N = {z0}. In many cases the transverse
structure on N is of Lie–Poisson type. For the proof of this theorem and
related results, see Weinstein [1983b]; the second part of the theorem is due
to Lie [1890]. For the main examples in this book we shall not require a
detailed local analysis of their Poisson structure, so we shall forgo a more
detailed study of the local structure of Poisson manifolds.

Exercises

� 10.4-1. If H ∈ F(P ), where P is a Poisson manifold, show that the flow
ϕt of XH preserves the symplectic leaves of P .

� 10.4-2. Let (P, { , }) be a Poisson manifold with Poisson tensor B ∈
Ω2(P ). Let

B� : T ∗P → TP, B�(dH) = XH ,

be the induced bundle map. We shall denote by the same symbol B� :
Ω1(P ) → X(P ) the induced map on the sections. The definitions give

B(dF,dH) =
〈
dF, B�(dH)

〉
= {F, H} .

Define α� := B�(α). Define for any α, β ∈ Ω1(P ),

{α, β} = −£α�β + £β�α − d(B(α, β)).
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(a) Show that if the Poisson bracket on P is induced by a symplectic
form Ω, that is, if B� = Ω�, then

B(α, β) = Ω(α�, β�).

(b) Show that for any F, G ∈ F(P ), we have

{Fα, Gβ} = FG {α, β} − Fα�[G]β + Gβ�[F ]α.

(c) Show that for any F, G ∈ F(P ), we have

d {F, G} = {dF,dG} .

(d) Show that if α, β ∈ Ω1(P ) are closed, then {α, β} = d(B(α, β)).

(e) Use £XH
B = 0 to show that {α, β}� = −[α�, β�].

(f) Show that (Ω1(P ), { , }) is a Lie algebra; that is, prove Jacobi’s iden-
tity.

� 10.4-3 (Weinstein [1983b]). Let P be a manifold and X, Y be two lin-
early independent commuting vector fields. Show that

{F, K} = X[F ]Y [K] − Y [F ]X[K]

defines a Poisson bracket on P . Show that

XH = Y [H]X − X[H]Y.

Show that the symplectic leaves are two-dimensional and that their tangent
spaces are spanned by X and Y . Show how to get Example (b) preceding
Theorem 10.4.6 from this construction.

10.5 Quotients of Poisson Manifolds

Here we shall give the simplest version of a general construction of Poisson
manifolds based on symmetry. This construction represents the first steps
in a general procedure called reduction .

Poisson Reduction Theorem. Suppose that G is a Lie group that acts
on a Poisson manifold and that each map Φg : P → P is a Poisson map.
Let us also suppose that the action is free and proper, so that the quotient
space P/G is a smooth manifold and the projection π : P → P/G is a
submersion (see the discussion of this point in §9.3).

Theorem 10.5.1. Under these hypotheses, there is a unique Poisson
structure on P/G such that π is a Poisson map. (See Figure 10.5.1.)
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P/G

π

P

orbits of the group action

Figure 10.5.1. The quotient of a Poisson manifold by a group action is a Poisson
manifold in a natural way.

Proof. Let us first assume that P/G is Poisson and show uniqueness.
The condition that π be Poisson is that for two functions f, k : P/G → R,

{f, k} ◦ π = {f ◦ π, k ◦ π}, (10.5.1)

where the brackets are on P/G and P , respectively. The function f = f ◦π
is the unique G-invariant function that projects to f . In other words, if
[z] ∈ P/G is an equivalence class, whereby g1 ·z and g2 ·z are equivalent, we
let f(g · z) = f([z]) for all g ∈ G. Obviously, this defines f unambiguously,
so that f = f ◦ π. We can also characterize this as saying that f assigns
the value f([z]) to the whole orbit G · z. We can write (10.5.1) as

{f, k} ◦ π = {f, k}.
Since π is onto, this determines {f, k} uniquely.

We can also use (10.5.1) to define {f, k}. First, note that

{f, k}(g · z) =
(
{f, k} ◦ Φg

)
(z)

= {f ◦ Φg, k ◦ Φg}(z)

= {f, k}(z),

since Φg is Poisson and since f and k are constant on orbits. Thus, {f, k}
is constant on orbits, too, and so it defines {f, k} uniquely.

It remains to show that {f, k} so defined satisfies the properties of a
Poisson structure. However, these all follow from their counterparts on P .
For example, if we write Jacobi’s identity on P , namely

0 = {{f, k}, l} + {{l, f}, k} + {{k, l}, f},
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it gives, by construction,

0 = {{f, k} ◦ π, l ◦ π} + {{l, f} ◦ π, k ◦ π} + {{k, l} ◦ π, f ◦ π}
= {{f, k}, l} ◦ π + {{l, f}, k} ◦ π + {{k, l}, f} ◦ π,

and thus by surjectivity of π, Jacobi’s identity holds on P/G. �

This construction is just one of many that produce new Poisson and
symplectic manifolds from old ones. We refer to Marsden and Ratiu [1986]
and Vaisman [1996] for generalizations of the construction here.

Reduction of Dynamics. If H is a G-invariant Hamiltonian on P , it
defines a corresponding function h on P/G such that H = h ◦ π. Since π is
a Poisson map, it transforms XH on P to Xh on P/G; that is, Tπ ◦XH =
Xh ◦ π, or XH and Xh are π-related. We say that the Hamiltonian system
XH on P reduces to that on P/G.

As we shall see in the next chapter, G-invariance of H may be associ-
ated with a conserved quantity J : P → R. If it is also G-invariant, the
corresponding function j on P/G is conserved for Xh, since

{h, j} ◦ π = {H, J} = 0

and so {h, j} = 0.

Example. Consider the differential equations on C2 given by

ż1 = −iω1z1 + iεpz̄2 + iz1(s11|z1|2 + s12|z2|2),
ż2 = −iω2z2 + iεqz̄1 − iz2(s21|z1|2 + s22|z2|2). (10.5.2)

Use the standard Hamiltonian structure obtained by taking the real
and imaginary parts of zi as conjugate variables. For example, we write
z1 = q1 + ip1 and require q̇1 = ∂H/∂p1 and ṗ1 = −∂H/∂q1. Recall from
Chapter 5 that a useful trick in this regard that enables one to work in
complex notation is to write Hamilton’s equations as żk = −2i∂H/∂z̄k.
Using this, one readily finds that (see Exercise 5.4-3) the system (10.5.2)
is Hamiltonian if and only if s12 = −s21 and p = q. In this case we can
choose

H(z1, z2) =
1
2
(ω2|z2|2 + ω1|z1|2) − εp Re(z1z2) −

s11

4
|z1|4

− s12

2
|z1z2|2 +

s22

4
|z2|4. (10.5.3)

Note that for equation (10.5.2) with ε = 0 there are two copies of S1 acting
on z1 and z2 independently; corresponding conserved quantities are |z1|2
and |z2|2. However, for ε �= 0, the symmetry action is

(z1, z2) �→ (eiθz1, e
−iθz2) (10.5.4)
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with the conserved quantity (Exercise 5.5-4)

J(z1, z2) = 1
2 (|z1|2 − |z2|2). (10.5.5)

Let φ = (π/2)−θ1−θ2, where z1 = r1 exp(iθ1), z2 = r2 exp(iθ2). We know
that the Hamiltonian structure for (10.5.2) on C2 described above induces
one on C2/S1 (exclude points where r1 or r2 vanishes), and that the two
integrals (energy and the conserved quantity) descend to the quotient space,
as does the Poisson bracket. The quotient space C2/S1 is parametrized by
(r1, r2, φ), and H and J can be dropped to the quotient; concretely, this
means the following. If F (z1, z2) = F (r1, θ1, r2, θ2) is S1 invariant, then it
can be written (uniquely) as a function f of (r1, r2, φ).

By Theorem 10.5.1, one can also drop the Poisson bracket to the quo-
tient. Consequently, the equations in (r1, r2, φ) can be cast in Hamiltonian
form ḟ = {f, h} for the induced Poisson bracket. This bracket is obtained
by using the chain rule to relate the complex variables and the polar coor-
dinates. One finds that

{f, k}(r1, r2, φ)

= − 1
r1

(
∂f

∂r1

∂k

∂φ
− ∂f

∂φ

∂k

∂r1

)
− 1

r2

(
∂f

∂r2

∂k

∂φ
− ∂f

∂φ

∂k

∂r2

)
. (10.5.6)

The (noncanonical) Poisson bracket (10.5.6) is, of course, the reduction
of the original canonical Poisson bracket on the space of q and p variables,
written in the new polar coordinate variables. Theorem 10.5.1 shows that
Jacobi’s identity is automatic for this reduced bracket. (See Knobloch, Ma-
halov, and Marsden [1994] for further examples of this type.) �

As we shall see in Chapter 13, a key example of the Poisson reduction
given in 10.5.1 is that in which P = T ∗G and G acts on itself by left
translations. Then P/G ∼= g∗, and the reduced Poisson bracket is none
other than the Lie–Poisson bracket!

Exercises

� 10.5-1. Let R3 be equipped with the rigid-body bracket and let G = S1

act on P = R3\(z-axis) by rotation about the z-axis. Compute the induced
bracket on P/G.

� 10.5-2. Compute explicitly the reduced Hamiltonian h in the example in
the text and verify directly that the equations for ṙ1, ṙ2, φ̇ are Hamiltonian
on C2 with Hamiltonian h. Also check that the function j induced by J is
a constant of the motion.
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10.6 The Schouten Bracket

The goal of this section is to express the Jacobi identity for a Poisson struc-
ture in geometric terms analogous to the condition dΩ = 0 for symplectic
structures. This will be done in terms of a bracket defined on contravari-
ant antisymmetric tensors generalizing the Lie bracket of vector fields
(see, for example, Schouten [1940], Nijenhuis [1953], Lichnerowicz [1978],
Olver [1984, 1986], Koszul [1985], Libermann and Marle [1987], Bhaskara
and Viswanath [1988], Kosmann-Schwarzbach and Magri [1990], Vaisman
[1994], and references therein).

Multivectors. A contravariant antisymmetric q-tensor on a finite-
dimensional vector space V is a q-linear map

A : V ∗ × V ∗ × · · · × V ∗ (q times) → R

that is antisymmetric in each pair of arguments. The space of these ten-
sors will be denoted by

∧
q(V ). Thus, each element

∧
q(V ) is a finite lin-

ear combination of terms of the form v1 ∧ · · · ∧ vq, called a q-vector ,
for v1, . . . , vq ∈ V . If V is an infinite-dimensional Banach space, we de-
fine

∧
q(V ) to be the span of all elements of the form v1 ∧ · · · ∧ vq with

v1, . . . , vq ∈ V , where the exterior product is defined in the usual man-
ner relative to a weakly nondegenerate pairing 〈 , 〉 : V ∗ × V → R. Thus,∧

0(V ) = R and
∧

1(V ) = V . If P is a smooth manifold, let∧
q

(P ) =
⋃
z∈P

∧
q

(TzP ),

a smooth vector bundle with fiber over z ∈ P equal to
∧

q(TzP ). Let Ωq(P )
denote the smooth sections of

∧
q(P ), that is, the elements of Ωq(P ) are

smooth contravariant antisymmetric q-tensor fields on P . Let Ω∗(P ) be the
direct sum of the spaces Ωq(P ), where Ω0(P ) = F(P ). Note that

Ωq(P ) = 0 for q > dim(P ),

and that
Ω1(P ) = X(P ).

If X1, . . . , Xq ∈ X(P ), then X1 ∧ · · · ∧ Xq is called a q-vector field , or a
multivector field.

On the manifold P , consider a (q + p)-form α and a contravariant anti-
symmetric q-tensor A. The interior product iAα of A with α is defined as
follows. If q = 0, so A ∈ R, let iAα = Aα. If q ≥ 1 and if A = v1 ∧ · · · ∧ vq,
where vi ∈ TzP, i = 1, . . . , q, define iAα ∈ Ωp(P ) by

(iAα)(vq+1, . . . , vq+p) = α(v1, . . . , vq+p) (10.6.1)
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for arbitrary vq+1, . . . , vq+p ∈ TzP . One checks that the definition does not
depend on the representation of A as a q-vector, so iAα is well-defined on∧

q(P ) by linear extension. In local coordinates, for finite-dimensional P ,

(iAα)iq+1...iq+p
= Ai1...iqαi1...iq+p

, (10.6.2)

where all components are nonstrict; that is, the indices need not be written
in ascending order. If P is finite-dimensional and p = 0, then (10.6.1)
defines an isomorphism of Ωq(P ) with Ωq(P ). If P is a Banach manifold,
then (10.6.1) defines a weakly nondegenerate pairing of Ωq(P ) with Ωq(P ).
If A ∈ Ωq(P ), then q is called the degree of A and is denoted by deg A.
One checks that

iA∧Bα = iBiAα. (10.6.3)

The Lie derivative £X is a derivation relative to ∧, that is,

£X(A ∧ B) = (£XA) ∧ B + A ∧ (£XB)

for any A, B ∈ Ω∗(P ).

The Schouten Bracket. The next theorem produces an interesting
bracket on multivectors.

Theorem 10.6.1 (Schouten Bracket Theorem). There is a unique bilin-
ear operation [ , ] : Ω∗(P )×Ω∗(P ) → Ω∗(P ) natural with respect to restric-
tion to open sets5, called the Schouten bracket , that satisfies the following
properties:

(i) It is a biderivation of degree −1, that is, it is bilinear,

deg[A, B] = deg A + deg B − 1, (10.6.4)

and for A, B, C ∈ Ω∗(P ),

[A, B ∧ C] = [A, B] ∧ C + (−1)(deg A+1) deg BB ∧ [A, C]. (10.6.5)

(ii) It is determined on F(P ) and X(P ) by

(a) [F, G] = 0, for all F, G ∈ F(P );

(b) [X, F ] = X[F ], for all F ∈ F(P ), X ∈ X(P );

(c) [X, Y ] for all X, Y ∈ X(P ) is the usual Jacobi–Lie bracket of
vector fields.

(iii) [A, B] = (−1)deg A deg B [B, A].

5“Natural with respect to restriction to open sets” means the same as it did in
Proposition 4.2.4(v)
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In addition, the Schouten bracket satisfies the graded Jacobi identity

(−1)deg A deg C [[A, B], C] + (−1)deg B deg A[[B, C], A]

+ (−1)deg C deg B [[C, A], B] = 0. (10.6.6)

Proof. The proof proceeds in standard fashion and is similar to that
characterizing the exterior or Lie derivative by its properties (see Abra-
ham, Marsden, and Ratiu [1988]): On functions and vector fields it is given
by (ii); then (i) and linear extension determine it on any skew-symmetric
contravariant tensor in the second variable and a function and vector field
in the first; (iii) tells how to switch such variables, and finally (i) again
defines it on any pair of skew-symmetric contravariant tensors. The oper-
ation so defined satisfies (i), (ii), and (iii) by construction. Uniqueness is a
consequence of the fact that the skew-symmetric contravariant tensors are
generated as an exterior algebra locally by functions and vector fields, and
(ii) gives these. The graded Jacobi identity is verified on an arbitrary triple
of q-, p-, and r-vectors using (i), (ii), and (iii) and then invoking trilinearity
of the identity. �

Properties. The following formulas are useful in computing with the
Schouten bracket. If X ∈ X(P ) and A ∈ Ωp(P ), induction on the degree of
A and the use of property (i) show that

[X, A] = £XA. (10.6.7)

An immediate consequence of this formula and the graded Jacobi identity
is the derivation property of the Lie derivative relative to the Schouten
bracket , that is,

£X [A, B] = [£XA, B] + [A,£XB], (10.6.8)

for A ∈ Ωp(P ), B ∈ Ωq(P ), and X ∈ X(P ). Using induction on the number
of vector fields, (10.6.7), and the properties in Theorem 10.6.1, one can
prove that

[X1 ∧ · · · ∧ Xr, A] =
r∑

i=1

(−1)i+1X1 ∧ · · · ∧ X̌i ∧ · · · ∧ Xr ∧ (£XiA),

(10.6.9)

where X1, . . . , Xr ∈ X(P ) and X̌i means that Xi has been omitted. The last
formula plus linear extension can be taken as the definition of the Schouten
bracket, and one can deduce Theorem 10.6.1 from it; see Vaisman [1994]
for this approach. If A = Y1 ∧ · · · ∧ Ys for Y1, . . . , Ys ∈ X(P ), the formula
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above plus the derivation property of the Lie derivative give

[X1 ∧ · · · ∧ Xr, Y1 ∧ · · · ∧ Ys]

= (−1)r+1
r∑

i=1

s∑
j=1

(−1)i+j [Xi, Yj ] ∧ X1 ∧ · · · ∧ X̌i ∧ · · ·

∧ Xr ∧ Y1 ∧ · · · ∧ Y̌j ∧ · · · ∧ Ys. (10.6.10)

Finally, if A ∈ Ωp(P ), B ∈ Ωq(P ), and α ∈ Ωp+q−1(P ), the formula

i[A,B]α = (−1)q(p+1)iAd iBα + (−1)piBd iAα − iBiAdα (10.6.11)

(which is a direct consequence of (10.6.10) and Cartan’s formula for dα)
can be taken as the definition of [A, B] ∈ Ωp+q−1(P ); this is the approach
taken originally in Nijenhuis [1955].

Coordinate Formulas. In local coordinates, setting ∂/∂zi = ∂i, the
formulas (10.6.9) and (10.6.10) imply that

1. for any function f ,

[
f, ∂i1 ∧ · · · ∧ ∂ip

]
=

p∑
k=1

(−1)k−1 (∂ik
f) ∂i1 ∧ · · · ∧ ∂̌ik

∧ · · · ∧ ∂ip ,

whereˇover a symbol means that it is omitted, and

2.
[
∂i1 ∧ · · · ∧ ∂ip , ∂j1 ∧ · · · ∧ ∂jq

]
= 0.

Therefore, if

A = Ai1...ip∂i1 ∧ · · · ∧ ∂ip and B = Bj1...jq∂j1 ∧ · · · ∧ ∂jq ,

we get

[A, B] = A�i1...i�−1i�+1...ip∂�B
j1...jq∂i1 ∧ · · · ∧ ∂i�−1 ∧ ∂i�+1

∧ ∂j1 ∧ · · · ∧ ∂jq

+ (−1)pB�j1...j�−1j�+1...jq∂�A
i1...ip∂i1 ∧ · · · ∧ ∂ip

∧ ∂j1 ∧ · · · ∧ ∂j�−1 ∧ ∂j�+1 ∧ · · · ∧ ∂jq (10.6.12)

or, more succinctly,

[A, B]k2...kp+q = ε
k2...kp+q

i2...ipj1...jq
A�i2...ip

∂

∂x�
Bj1...jq

+ (−1)pε
k2...kp+q

i1...ipj2...jq
B�j2...jp

∂

∂x�
Ai1...iq , (10.6.13)

where all components are nonstrict. Here

ε
i1...ip+q

j1...jp+q
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is the Kronecker symbol : It is zero if (i1, . . . , ip+q) �= (j1, . . . , jp+q),
and is 1 (resp., −1) if j1, . . . , jp+q is an even (resp., odd) permutation of
i1, . . . , ip+q.

From §10.6 the Poisson tensor B ∈ Ω2(P ) defined by a Poisson bracket
{ , } on P satisfies B(dF,dG) = {F, G} for any F, G ∈ F(P ). By (10.6.2),
this can be written

{F, G} = iB(dF ∧ dG), (10.6.14)

or in local coordinates,

{F, G} = BIJ ∂F

∂zI

∂G

∂zJ
.

Writing B locally as a sum of terms of the form X ∧ Y for some X, Y ∈
X(P ) and taking Z ∈ X(P ) arbitrarily, by (10.6.1) we have for F, G, H ∈
F(P ),

iB(dF ∧ dG ∧ dH)(Z)
= (dF ∧ dG ∧ dH)(X, Y, Z)

= det

 dF (X) dF (Y ) dF (Z)
dG(X) dG(Y ) dG(Z)
dH(X) dH(Y ) dH(Z)


= det

[
dF (X) dF (Y )
dG(X) dG(Y )

]
dH(Z) + det

[
dH(X) dH(Y )
dF (X) dF (Y )

]
dG(Z)

+ det
[
dG(X) dG(Y )
dH(X) dH(Y )

]
dF (Z)

= iB(dF ∧ dG)dH(Z) + iB(dH ∧ dF )dG(Z) + iB(dG ∧ dH)dF (Z),

that is,

iB(dF ∧ dG ∧ dH)
= iB(dF ∧ dG)dH + iB(dH ∧ dF )dG + iB(dG ∧ dH)dF. (10.6.15)

The Jacobi–Schouten Identity. Equations (10.6.14) and (10.6.15) im-
ply

{{F, G} , H} + {{H, F} , G} + {{G, H} , F}
= iB(d {F, G} ∧ dH) + iB(d {H, F} ∧ dG) + iB(d {G, H} ∧ dF )
= iBd(iB(dF ∧ dG)dH + iB(dH ∧ dF )dG + iB(dG ∧ dH)dF )
= iBd iB(dF ∧ dG ∧ dH)

= 1
2 i[B,B](dF ∧ dG ∧ dH),

the last equality being a consequence of (10.6.11). We summarize what we
have proved.
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Theorem 10.6.2. The following identity holds:

{{F, G} , H} + {{H, F} , G} + {{G, H} , F}

=
1
2
i[B,B](dF ∧ dG ∧ dH). (10.6.16)

This result shows that Jacobi’s identity for { , } is equivalent to [B, B] =
0. Thus, a Poisson structure is uniquely defined by a contravariant an-
tisymmetric two-tensor whose Schouten bracket with itself vanishes. The
local formula (10.6.13) becomes

[B, B]IJK =
n∑

L=1

(
BLK ∂BIJ

∂zL
+ BLI ∂BJK

∂zL
+ BLJ ∂BKI

∂zL

)
,

which coincides with our earlier expression (10.4.2).

The Lie–Schouten Identity. There is another interesting identity that
gives the Lie derivative of the Poisson tensor along a Hamiltonian vector
field.

Theorem 10.6.3. The following identity holds:

£XH
B = i[B,B]dH. (10.6.17)

Proof. In coordinates,

(£XB)IJ = XK ∂BIJ

∂zK
− BIK ∂XJ

∂zK
− BKJ ∂XI

∂zK
,

so if XI = BIJ(∂H/∂zJ), this becomes

(£XH
B)IJ = BKL ∂BIJ

∂zK

∂H

∂zL
− BIK ∂

∂zK

(
BJL ∂H

∂zL

)
+ BJK ∂

∂zK

(
BIL ∂H

∂zL

)
=

(
BKL ∂BIJ

∂zK
− BIK ∂BJL

∂zK
− BKJ ∂BIL

∂zK

)
∂H

∂zL

= [B, B]LIJ ∂H

∂zL
=

(
i[B,B]dH

)IJ
,

so (10.6.17) follows. �

This identity shows how Jacobi’s identity [B, B] = 0 is directly used to
show that the flow ϕt of a Hamiltonian vector field is Poisson. The above
derivation shows that the flow of a time-dependent Hamiltonian vector field
consists of Poisson maps; indeed, even in this case,

d

dt
(ϕ∗

t B) = ϕ∗
t (£XH

B) = ϕ∗
t

(
i[B,B]dH

)
= 0

is valid.
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Exercises

� 10.6-1. Prove the following formulas by the method indicated in the text.

(a) If A ∈ Ωq(P ) and X ∈ X(P ), then [X, A] = £XA.

(b) If A ∈ Ωq(P ) and X1, . . . , Xr ∈ X(P ), then

[X1 ∧ · · · ∧ Xr, A] =
r∑

i=1

(−1)i+1X1 ∧ · · · ∧ X̌i ∧ · · · ∧ Xr ∧ (£Xi
A).

(c) If X1, . . . , Xr, Y1, . . . , Ys ∈ X(P ), then

[X1 ∧ · · · ∧ Xr, Y1 ∧ · · · ∧ Ys]

= (−1)r+1
r∑

i=1

s∑
j=1

(−1)i+j [Xi, Yi] ∧ X1 ∧ · · · ∧ X̌i

∧ · · · ∧ Xr ∧ Y1 ∧ · · · ∧ Y̌j ∧ · · · ∧ Ys.

(d) If A ∈ Ωp(P ), B ∈ Ωq(P ), and α ∈ Ωp+q−1(P ), then

i[A,B]α = (−1)q(p+1)iAd iBα + (−1)piBd iAα − iBiAdα.

� 10.6-2. Let M be a finite-dimensional manifold. A k-vector field is a
skew-symmetric contravariant tensor field A(x) : T ∗

x M × · · · × T ∗
x M → R

(k copies of T ∗
x M). Let x0 ∈ M be such that A(x0) = 0.

(a) If X ∈ X(M), show that (£XA)(x0) depends only on X(x0), thereby
defining a map dx0A : Tx0M → Tx0M ∧ · · · ∧ Tx0M (k times), called
the intrinsic derivative of A at x0.

(b) If α1, . . . , αk ∈ T ∗
x M , v1, . . . , vk ∈ TxM , show that

〈α1 ∧ · · · ∧ αk, v1 ∧ · · · ∧ vk〉 := det [〈αi, vj〉]

defines a nondegenerate pairing between T ∗
x M∧· · ·∧T ∗

x M and TxM∧
· · ·∧TxM . Conclude that these two spaces are dual to each other, that
the space Ωk(M) of k-forms is dual to the space of k-contravariant
skew-symmetric tensor fields Ωk(M), and that the bases{

dxi1 ∧ · · · ∧ dxik
∣∣ i1 < · · · < ik

}
and {

∂

∂xi1
∧ · · · ∧ ∂

∂xik

∣∣∣∣ i1 < · · · < ik

}
are dual to each other.
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(c) Show that the dual map

(dx0A)∗ : T ∗
x0

M ∧ · · · ∧ T ∗
x0

M → T ∗
x0

M

is given by

(dx0A)∗(α1 ∧ · · · ∧ αk) = d(A(α̃1, . . . , α̃k))(x0),

where α̃1, . . . , α̃k ∈ Ω1(M) are arbitrary one-forms whose values at
x0 are α1, . . . , αk.

� 10.6-3 (Weinstein [1983b]). Let (P, { , }) be a finite-dimensional Poisson
manifold with Poisson tensor B ∈ Ω2(P ). Let z0 ∈ P be such that B(z0) =
0. For α, β ∈ T ∗

z0
P , define

[α, β]B = (dz0B)∗(α ∧ β) = d(B(α̃, β̃))(z0)

where dz0B is the intrinsic derivative of B and α̃, β̃ ∈ Ω1(P ) are such that
α̃(z0) = α, β̃(z0) = β. (See Exercise 10.6-2.) Show that (α, β) �→ [α, β]B
defines a bilinear skew-symmetric map T ∗

z0
P×T ∗

z0
P → T ∗

z0
P . Show that the

Jacobi identity for the Poisson bracket implies that [ , ]B is a Lie bracket on
T ∗

z0
P . Since (T ∗

z0
P, [ , ]B) is a Lie algebra, its dual Tz0P naturally carries

the induced Lie–Poisson structure, called the linearization of the given
Poisson bracket at z0. Show that the linearization in local coordinates has
the expression

{F, G} (v) =
∂Bij(z0)

∂zk

∂F

∂vi

∂G

∂vj
vk,

for F, G : Tz0P → R and v ∈ Tz0P .

� 10.6-4 (Magri–Weinstein). On the finite-dimensional manifold P , assume
that one has a symplectic form Ω and a Poisson structure B. Define K =
B� ◦ Ω� : TP → TP . Show that (Ω�)−1 + B� : T ∗P → TP defines a new
Poisson structure on P if and only if Ω� ◦ Kn induces a closed two-form
(called a presymplectic form) on P for all n ∈ N.

10.7 Generalities on Lie–Poisson Structures

The Lie–Poisson Equations. We begin by working out Hamilton’s
equations for the Lie–Poisson bracket.

Proposition 10.7.1. Let G be a Lie group. The equations of motion for
the Hamiltonian H with respect to the ± Lie–Poisson brackets on g∗ are

dµ

dt
= ∓ ad∗

δH/δµ µ. (10.7.1)
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Proof. Let F ∈ F(g∗) be an arbitrary function. By the chain rule,

dF

dt
= DF (µ) · µ̇ =

〈
µ̇,

δF

δµ

〉
, (10.7.2)

while

{F, H}± (µ) = ±
〈

µ,

[
δF

δµ
,
δH

δµ

]〉
= ±

〈
µ,− adδH/δµ

δF

δµ

〉
= ∓

〈
ad∗

δH/δµ µ,
δF

δµ

〉
. (10.7.3)

Nondegeneracy of the pairing and arbitrariness of F imply the result. �

Caution. In infinite dimensions, g∗ does not necessarily mean the literal
functional-analytic dual of g, but rather a space in (nondegenerate) duality
with g. In this case, care must be taken with the definition of δF/δµ. �

Formula (10.7.1) says that on g∗±, the Hamiltonian vector field of H :
g∗ → R is given by

XH(µ) = ∓ ad∗
δH/δµ µ. (10.7.4)

For example, for G = SO(3), formula (10.1.3) for the Lie–Poisson bracket
gives

XH(Π) = Π ×∇H. (10.7.5)

Historical Note. Lagrange devoted a good deal of attention in Volume
2 of Mécanique Analytique to the study of rotational motion of mechanical
systems. In fact, in equation A on page 212 he gives the reduced Lie–
Poisson equations for SO(3) for a rather general Lagrangian. This equation
is essentially the same as (10.7.5). His derivation was just how we would
do it today—by reduction from material to spatial representation. Formula
(10.7.5) actually hides a subtle point in that it identifies g and g∗. Indeed,
the way Lagrange wrote the equations, they are much more like their coun-
terpart on g, which are called the Euler–Poincaré equations. We will come
to these in Chapter 13, where additional historical information may be
found.

Coordinate Formulas. In finite dimensions, if ξa, a = 1, 2, . . . , l, is a
basis for g, the structure constants Cd

ab are defined by

[ξa, ξb] = Cd
abξd (10.7.6)
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(a sum on “d” is understood). Thus, the Lie–Poisson bracket becomes

{F, K}± (µ) = ±µd
∂F

∂µa

∂K

∂µb
Cd

ab, (10.7.7)

where µ = µaξa, {ξa} is the basis of g∗ dual to {ξa}, and summation on
repeated indices is understood. Taking F and K to be components of µ,
(10.7.7) becomes

{µa, µb}± = ±Cd
abµd. (10.7.8)

The equations of motion for a Hamiltonian H likewise become

µ̇a = ∓µdC
d
ab

∂H

∂µb
. (10.7.9)

Poisson Maps. In the Lie–Poisson reduction theorem in Chapter 13 we
will show that the maps from T ∗G to g∗− (resp., g∗+) given by αg �→ T ∗

e Lg ·αg

(resp., αg �→ T ∗
e Rg ·αg) are Poisson maps. We will show in the next chapter

that this is a general property of momentum maps. Here is another class
of Poisson maps that will also turn out to be momentum maps.

Proposition 10.7.2. Let G and H be Lie groups and let g and h be their
Lie algebras. Let α : g → h be a linear map. The map α is a homomorphism
of Lie algebras if and only if its dual α∗ : h∗

± → g∗± is a (linear) Poisson
map.

Proof. Let F, K ∈ F(g∗). To compute δ(F ◦ α∗)/δµ, we let ν = α∗(µ)
and use the definition of the functional derivative and the chain rule to get〈

δ

δµ
(F ◦ α∗), δµ

〉
= D(F ◦ α∗)(µ) · δµ = DF (α∗(µ)) · α∗(δµ)

=
〈

α∗(δµ),
δF

δν

〉
=

〈
δµ, α · δF

δν

〉
. (10.7.10)

Thus,

δ

δµ
(F ◦ α∗) = α · δF

δν
. (10.7.11)

Hence,

{F ◦ α∗, K ◦ α∗}+ (µ) =
〈

µ,

[
δ

δµ
(F ◦ α∗),

δ

δµ
(K ◦ α∗)

]〉
=

〈
µ,

[
α · δF

δν
, α · δK

δν

]〉
. (10.7.12)

The expression (10.7.12) equals〈
µ, α ·

[
δF

δν
,
δG

δν

]〉
(10.7.13)

for all F and K if and only if α is a Lie algebra homomorphism. �
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This theorem applies to the case α = Teσ for σ : G → H a Lie group
homomorphism, as one may see by studying the reduction diagram in Fig-
ure 10.7.1 (and being cautious that σ need not be a diffeomorphism).

T ∗
g G T ∗

σ(g)H

g∗+ h∗
+

T ∗σ

α∗

right
translate to
identity

right
translate to
identity

�

�

 


Figure 10.7.1. Lie group homomorphisms induce Poisson maps.

Examples

(a) Plasma to Fluid Poisson Map for the Momentum Variables.
Let G be the group of diffeomorphisms of a manifold Q and let H be the
group of canonical transformations of P = T ∗Q. We assume that the topol-
ogy of Q is such that all locally Hamiltonian vector fields on T ∗Q are glob-
ally Hamiltonian.6 Thus, the Lie algebra h consists of functions on T ∗Q
modulo constants. Its dual is identified with itself via the L2-inner product
relative to the Liouville measure dq dp on T ∗Q. Let σ : G → H be the map
η �→ T ∗η−1, which is a group homomorphism, and let α = Teσ : g → h. We
claim that α∗ : F(T ∗Q)/R → g∗ is given by

α∗(F ) =
∫

pf(q, p) dp, (10.7.14)

where we regard g∗ as the space of one-form densities on Q, and the integral
denotes fiber integration for each fixed q ∈ Q. Indeed, α is the map taking
vector fields X on Q to their lifts XP(X) on T ∗Q. Thus, as a map of X(Q)
to F(T ∗Q)/R, α is given by X �→ P(X). Its dual is given by

〈α∗(f), X〉 = 〈f, α(X)〉 =
∫

P

fP(X) dq dp

=
∫

P

f(q, p)p · X(q) dq dp, (10.7.15)

so α∗(F ) is given by (10.7.14), as claimed. �

6For example, this holds if the first cohomology group H1(Q) is trivial.
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(b) Plasma to Fluid Map for the Density Variable. Let G = F(Q)
regarded as an abelian group and let the map σ : G → Diffcan(T ∗Q) be
given by σ(ϕ) = fiber translation by dϕ. A computation similar to that
above gives the Poisson map

α∗(f)(q) =
∫

f(q, p) dp (10.7.16)

from F(T ∗Q) to Den(Q) = F(Q)∗. The integral in (10.7.16) denotes the
fiber integration of f(q, p) for fixed q ∈ Q. �

Linear Poisson Structures are Lie–Poisson. Next we characterize
Lie–Poisson brackets as the linear ones. Let V ∗ and V be Banach spaces
and let 〈 , 〉 : V ∗ × V → R be a weakly nondegenerate pairing of V ∗ with
V . Think of elements of V as linear functionals on V ∗. A Poisson bracket
on V ∗ is called linear if the bracket of any two linear functionals on V ∗ is
again linear. This condition is equivalent to the associated Poisson tensor
B(µ) : V → V ∗ being linear in µ ∈ V ∗.

Proposition 10.7.3. Let 〈 , 〉 : V ∗×V → R be a (weakly) nondegenerate
pairing of the Banach spaces V ∗ and V , and let V ∗ have a linear Poisson
bracket. Assume that the bracket of any two linear functionals on V ∗ is in
the range of 〈µ, · 〉 for all µ ∈ V ∗ (this condition is automatically satisfied if
V is finite-dimensional). Then V is a Lie algebra, and the Poisson bracket
on V ∗ is the corresponding Lie–Poisson bracket.

Proof. If x ∈ V , we denote by x′ the functional x′(µ) = 〈µ, x〉 on V ∗.
By hypothesis, the Poisson bracket {x′, y′} is a linear functional on V ∗. By
assumption this bracket is represented by an element that we denote by
[x, y]′ in V , that is, we can write {x′, y′} = [x, y]′. (The element [x, y] is
unique, since 〈 , 〉 is weakly nondegenerate.) It is straightforward to check
that the operation [ , ] on V so defined is a Lie algebra bracket. Thus, V
is a Lie algebra, and one then checks that the given Poisson bracket is the
Lie–Poisson bracket for this algebra. �

Exercises

� 10.7-1. Let σ : SO(3) → GL(3) be the inclusion map. Identify so(3)∗ =
R3 with the rigid-body bracket and identify gl(3)∗ with gl(3) using 〈A, B〉 =
trace(ABT ). Compute the induced map α∗ : gl(3) → R3 and verify directly
that it is Poisson.




