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1
Introduction and Overview

1.1 Lagrangian and Hamiltonian Formalisms

Mechanics deals with the dynamics of particles, rigid bodies, continuous
media (fluid, plasma, and elastic materials), and field theories such as elec-
tromagnetism and gravity. This theory plays a crucial role in quantum me-
chanics, control theory, and other areas of physics, engineering, and even
chemistry and biology. Clearly, mechanics is a large subject that plays a
fundamental role in science. Mechanics also played a key part in the devel-
opment of mathematics. Starting with the creation of calculus stimulated
by Newton’s mechanics, it continues today with exciting developments in
group representations, geometry, and topology; these mathematical devel-
opments in turn are being applied to interesting problems in physics and
engineering.

Symmetry plays an important role in mechanics, from fundamental for-
mulations of basic principles to concrete applications, such as stability cri-
teria for rotating structures. The theme of this book is to emphasize the
role of symmetry in various aspects of mechanics.

This introduction treats a collection of topics fairly rapidly. The student
should not expect to understand everything perfectly at this stage. We will
return to many of the topics in subsequent chapters.

Lagrangian and Hamiltonian Mechanics. Mechanics has two main
points of view, Lagrangian mechanics and Hamiltonian mechanics.
In one sense, Lagrangian mechanics is more fundamental, since it is based
on variational principles and it is what generalizes most directly to the gen-
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eral relativistic context. In another sense, Hamiltonian mechanics is more
fundamental, since it is based directly on the energy concept and it is what
is more closely tied to quantum mechanics. Fortunately, in many cases these
branches are equivalent, as we shall see in detail in Chapter 7. Needless to
say, the merger of quantum mechanics and general relativity remains one
of the main outstanding problems of mechanics. In fact, the methods of
mechanics and symmetry are important ingredients in the developments of
string theory, which has attempted this merger.

Lagrangian Mechanics. The Lagrangian formulation of mechanics is
based on the observation that there are variational principles behind the
fundamental laws of force balance as given by Newton’s law F = ma.
One chooses a configuration space Q with coordinates qi, i = 1, . . . , n,
that describe the configuration of the system under study. Then one
introduces the Lagrangian L(qi, q̇i, t), which is shorthand notation for
L(q1, . . . , qn, q̇1, . . . , q̇n, t). Usually, L is the kinetic minus the potential
energy of the system, and one takes q̇i = dqi/dt to be the system velocity.
The variational principle of Hamilton states

δ

∫ b

a

L(qi, q̇i, t) dt = 0. (1.1.1)

In this principle, we choose curves qi(t) joining two fixed points in Q over
a fixed time interval [a, b] and calculate the integral regarded as a function
of this curve. Hamilton’s principle states that this function has a critical
point at a solution within the space of curves. If we let δqi be a variation,
that is, the derivative of a family of curves with respect to a parameter,
then by the chain rule, (1.1.1) is equivalent to

n∑
i=1

∫ b

a

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
dt = 0 (1.1.2)

for all variations δqi.
Using equality of mixed partials, one finds that

δq̇i =
d

dt
δqi.

Using this, integrating the second term of (1.1.2) by parts, and employing
the boundary conditions δqi = 0 at t = a and b, (1.1.2) becomes

n∑
i=1

∫ b

a

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi dt = 0. (1.1.3)

Since δqi is arbitrary (apart from being zero at the endpoints), (1.1.2) is
equivalent to the Euler–Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , n. (1.1.4)
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As Hamilton [1834] realized, one can gain valuable information by not im-
posing the fixed endpoint conditions. We will have a deeper look at such
issues in Chapters 7 and 8.

For a system of N particles moving in Euclidean 3-space, we choose the
configuration space to be Q = R3N = R3 ×· · ·×R3 (N times), and L often
has the form of kinetic minus potential energy:

L(qi, q̇i, t) =
1
2

N∑
i=1

mi‖q̇i‖2 − V (qi), (1.1.5)

where we write points in Q as q1, . . . ,qN , where qi ∈ R3. In this case the
Euler–Lagrange equations (1.1.4) reduce to Newton’s second law

d

dt
(miq̇i) = − ∂V

∂qi
, i = 1, . . . , N, (1.1.6)

that is, F = ma for the motion of particles in the potential V . As we shall
see later, in many examples more general Lagrangians are needed.

Generally, in Lagrangian mechanics, one identifies a configuration space
Q (with coordinates (q1, . . . , qn)) and then forms the velocity phase space
TQ, also called the tangent bundle of Q. Coordinates on TQ are denoted
by

(q1, . . . , qn, q̇1, . . . , q̇n),

and the Lagrangian is regarded as a function L : TQ → R.
Already at this stage, interesting links with geometry are possible. If

gij(q) is a given metric tensor or mass matrix (for now, just think of this
as a q-dependent positive definite symmetric n×n matrix) and we consider
the kinetic energy Lagrangian

L(qi, q̇i) =
1
2

n∑
i,j=1

gij(q)q̇iq̇j , (1.1.7)

then the Euler–Lagrange equations are equivalent to the equations of geode-
sic motion, as can be directly verified (see §7.5 for details). Conservation
laws that are a result of symmetry in a mechanical context can then be
applied to yield interesting geometric facts. For instance, theorems about
geodesics on surfaces of revolution can be readily proved this way.

The Lagrangian formalism can be extended to the infinite-dimensional
case. One view (but not the only one) is to replace the qi by fields ϕ1, . . . , ϕm

that are, for example, functions of spatial points xi and time. Then L
is a function of ϕ1, . . . , ϕm, ϕ̇1, . . . , ϕ̇m and the spatial derivatives of the
fields. We shall deal with various examples of this later, but we emphasize
that properly interpreted, the variational principle and the Euler–Lagrange
equations remain intact. One replaces the partial derivatives in the Euler–
Lagrange equations by functional derivatives defined below.
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Hamiltonian Mechanics. To pass to the Hamiltonian formalism, in-
troduce the conjugate momenta

pi =
∂L

∂q̇i
, i = 1, . . . , n, (1.1.8)

make the change of variables (qi, q̇i) �→ (qi, pi), and introduce the Hamil-
tonian

H(qi, pi, t) =
n∑

j=1

pj q̇
j − L(qi, q̇i, t). (1.1.9)

Remembering the change of variables, we make the following computations
using the chain rule:

∂H

∂pi
= q̇i +

n∑
j=1

(
pj

∂q̇j

∂pi
− ∂L

∂q̇j

∂q̇j

∂pi

)
= q̇i (1.1.10)

and

∂H

∂qi
=

n∑
j=1

pj
∂q̇j

∂qi
− ∂L

∂qi
−

n∑
j=1

∂L

∂q̇j

∂q̇j

∂qi
= − ∂L

∂qi
, (1.1.11)

where (1.1.8) has been used twice. Using (1.1.4) and (1.1.8), we see that
(1.1.11) is equivalent to

∂H

∂qi
= − d

dt
pi. (1.1.12)

Thus, the Euler–Lagrange equations are equivalent to Hamilton’s equa-
tions

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
,

(1.1.13)

where i = 1, . . . , n. The analogous Hamiltonian partial differential equa-
tions for time-dependent fields ϕ1, . . . , ϕm and their conjugate momenta
π1, . . . , πm are

∂ϕa

∂t
=

δH

δπa
,

∂πa

∂t
= − δH

δϕa
,

(1.1.14)
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where a = 1, . . . , m, H is a functional of the fields ϕa and πa, and the
variational , or functional , derivatives are defined by the equation∫

Rn

δH

δϕ1
δϕ1 dnx = lim

ε→0

1
ε
[H(ϕ1 + εδϕ1, ϕ2, . . . , ϕm, π1, . . . , πm)

− H(ϕ1, ϕ2, . . . , ϕm, π1, . . . , πm)], (1.1.15)

and similarly for δH/δϕ2, . . . , δH/δπm. Equations (1.1.13) and (1.1.14) can
be recast in Poisson bracket form :

Ḟ = {F, H}, (1.1.16)

where the brackets in the respective cases are given by

{F, G} =
n∑

i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
(1.1.17)

and

{F, G} =
m∑

a=1

∫
Rn

(
δF

δϕa

δG

δπa
− δF

δπa

δG

δϕa

)
dnx. (1.1.18)

Associated to any configuration space Q (coordinatized by (q1, . . . , qn))
is a phase space T ∗Q called the cotangent bundle of Q, which has coordi-
nates (q1, . . . , qn, p1, . . . , pn). On this space, the canonical bracket (1.1.17)
is intrinsically defined in the sense that the value of {F, G} is indepen-
dent of the choice of coordinates. Because the Poisson bracket satisfies
{F, G} = −{G, F} and in particular {H, H} = 0, we see from (1.1.16) that
Ḣ = 0; that is, energy is conserved . This is the most elementary of many
deep and beautiful conservation properties of mechanical systems.

There is also a variational principle on the Hamiltonian side. For the
Euler–Lagrange equations, we deal with curves in q-space (configuration
space), whereas for Hamilton’s equations we deal with curves in (q, p)-space
(momentum phase space). The principle is

δ

∫ b

a

[
n∑

i=1

piq̇
i − H(qj , pj)

]
dt = 0, (1.1.19)

as is readily verified; one requires piδq
i = 0 at the endpoints.

This formalism is the basis for the analysis of many important systems
in particle dynamics and field theory, as described in standard texts such
as Whittaker [1927], Goldstein [1980], Arnold [1989], Thirring [1978], and
Abraham and Marsden [1978]. The underlying geometric structures that are
important for this formalism are those of symplectic and Poisson geometry .
How these structures are related to the Euler–Lagrange equations and vari-
ational principles via the Legendre transformation is an essential ingredient
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of the story. Furthermore, in the infinite-dimensional case it is fairly well
understood how to deal rigorously with many of the functional analytic
difficulties that arise; see, for example, Chernoff and Marsden [1974] and
Marsden and Hughes [1983].

Exercises

� 1.1-1. Show by direct calculation that the classical Poisson bracket sat-
isfies the Jacobi identity . That is, if F and K are both functions of the
2n variables (q1, q2, . . . , qn, p1, p2, . . . , pn) and we define

{F, K} =
n∑

i=1

(
∂F

∂qi

∂K

∂pi
− ∂K

∂qi

∂F

∂pi

)
,

then the identity {L, {F, K}} + {K, {L, F}} + {F, {K, L}} = 0 holds.

1.2 The Rigid Body

It was already clear in the 19th century that certain mechanical systems
resist the canonical formalism outlined in §1.1. For example, to obtain a
Hamiltonian description for fluids, Clebsch [1857, 1859] found it necessary
to introduce certain nonphysical potentials.1 We will discuss fluids in §1.4
below.

Euler’s Rigid-Body Equations. In the absence of external forces, the
Euler equations for the rotational dynamics of a rigid body about its cen-
ter of mass are usually written as follows, as we shall derive in detail in
Chapter 15:

I1Ω̇1 = (I2 − I3)Ω2Ω3,

I2Ω̇2 = (I3 − I1)Ω3Ω1, (1.2.1)

I3Ω̇3 = (I1 − I2)Ω1Ω2,

where Ω = (Ω1,Ω2,Ω3) is the body angular velocity vector (the angular
velocity of the rigid body as seen from a frame fixed in the body) and
I1, I2, I3 are constants depending on the shape and mass distribution of
the body—the principal moments of inertia of the rigid body.

Are equations (1.2.1) Lagrangian or Hamiltonian in any sense? Since
there is an odd number of equations, they obviously cannot be put in canon-
ical Hamiltonian form in the sense of equations (1.1.13).

1For a geometric account of Clebsch potentials and further references, see Marsden
and Weinstein [1983], Marsden, Ratiu, and Weinstein [1984a, 1984b], Cendra and Mars-
den [1987], and Cendra, Ibort, and Marsden [1987].
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A classical way to see the Lagrangian (or Hamiltonian) structure of the
rigid-body equations is to use a description of the orientation of the body
in terms of three Euler angles denoted by θ, ϕ, ψ and their velocities θ̇, ϕ̇, ψ̇
(or conjugate momenta pθ, pϕ, pψ), relative to which the equations are in
Euler–Lagrange (or canonical Hamiltonian) form. However, this procedure
requires using six equations, while many questions are easier to study using
the three equations (1.2.1).

Lagrangian Form. To see the sense in which (1.2.1) are Lagrangian,
introduce the Lagrangian

L(Ω) =
1
2
(I1Ω2

1 + I2Ω2
2 + I3Ω2

3), (1.2.2)

which, as we will see in detail in Chapter 15, is the (rotational) kinetic
energy of the rigid body. We then write (1.2.1) as

d

dt

∂L

∂Ω
=

∂L

∂Ω
× Ω. (1.2.3)

These equations appear explicitly in Lagrange [1788, Volume 2, p. 212]
and were generalized to arbitrary Lie algebras by Poincaré [1901b]. We will
discuss these general Euler–Poincaré equations in Chapter 13. We can
also write a variational principle for (1.2.3) that is analogous to that for the
Euler–Lagrange equations but is written directly in terms of Ω. Namely,
(1.2.3) is equivalent to

δ

∫ b

a

L dt = 0, (1.2.4)

where variations of Ω are restricted to be of the form

δΩ = Σ̇ + Ω × Σ, (1.2.5)

where Σ is a curve in R3 that vanishes at the endpoints. This may be
proved in the same way as we proved that the variational principle (1.1.1)
is equivalent to the Euler–Lagrange equations (1.1.4); see Exercise 1.2-2.
In fact, later on, in Chapter 13, we shall see how to derive this variational
principle from the more “primitive” one (1.1.1).

Hamiltonian Form. If instead of variational principles we concentrate
on Poisson brackets and drop the requirement that they be in the canon-
ical form (1.1.17), then there is also a simple and beautiful Hamiltonian
structure for the rigid-body equations. To state it, introduce the angular
momenta

Πi = IiΩi =
∂L

∂Ωi
, i = 1, 2, 3, (1.2.6)



8 1. Introduction and Overview

so that the Euler equations become

Π̇1 =
I2 − I3

I2I3
Π2Π3,

Π̇2 =
I3 − I1

I3I1
Π3Π1, (1.2.7)

Π̇3 =
I1 − I2

I1I2
Π1Π2,

that is,

Π̇ = Π × Ω. (1.2.8)

Introduce the rigid-body Poisson bracket on functions of the Π’s,

{F, G}(Π) = −Π · (∇F ×∇G), (1.2.9)

and the Hamiltonian

H =
1
2

(
Π2

1

I1
+

Π2
2

I2
+

Π2
3

I3

)
. (1.2.10)

One checks (Exercise 1.2-3) that Euler’s equations (1.2.7) are equivalent
to2

Ḟ = {F, H}. (1.2.11)

For any equation of the form (1.2.11), conservation of total angular mo-
mentum holds regardless of the Hamiltonian; indeed, with

C(Π) =
1
2
(Π2

1 + Π2
2 + Π2

3),

we have ∇C(Π) = Π, and so

d

dt

1
2
(Π2

1 + Π2
2 + Π2

3) = {C, H}(Π) (1.2.12)

= −Π · (∇C ×∇H) (1.2.13)
= −Π · (Π ×∇H) = 0. (1.2.14)

The same calculation shows that {C, F} = 0 for any F . Functions such
as these that Poisson commute with every function are called Casimir
functions; they play an important role in the study of stability , as we
shall see later.3

2This Hamiltonian formulation of rigid body mechanics is implicit in many works,
such as Arnold [1966a, 1969], and is given explicitly in this Poisson bracket form in
Sudarshan and Mukunda [1974]. (Some preliminary versions were given by Pauli [1953],
Martin [1959], and Nambu [1973].) On the other hand, the variational form (1.2.4)
appears implicitly in Poincaré [1901b] and Hamel [1904]. It is given explicitly for fluids in
Newcomb [1962] and Bretherton [1970] and in the general case in Marsden and Scheurle
[1993a, 1993b].

3H. B. G. Casimir was a student of P. Ehrenfest and wrote a brilliant thesis on
the quantum mechanics of the rigid body, a problem that has not been adequately
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Exercises

� 1.2-1. Show by direct calculation that the rigid-body Poisson bracket
satisfies the Jacobi identity. That is, if F and K are both functions of
(Π1,Π2,Π3) and we define

{F, K}(Π) = −Π · (∇F ×∇K),

then the identity {L, {F, K}} + {K, {L, F}} + {F, {K, L}} = 0 holds.

� 1.2-2. Verify directly that the Euler equations for a rigid body are equiv-
alent to

δ

∫
L dt = 0

for variations of the form δΩ = Σ̇ + Ω × Σ, where Σ vanishes at the
endpoints.

� 1.2-3. Verify directly that the Euler equations for a rigid body are equiv-
alent to the equations

d

dt
F = {F, H},

where { , } is the rigid-body Poisson bracket and H is the rigid-body Hamil-
tonian.

� 1.2-4.

(a) Show that the rotation group SO(3) can be identified with the Poin-
caré sphere, that is, the unit circle bundle of the two-sphere S2,
defined to be the set of unit tangent vectors to the two-sphere in R3.

(b) Using the known fact from basic topology that any (continuous) vec-
tor field on S2 must vanish somewhere, show that SO(3) cannot be
written as S2 × S1.

1.3 Lie–Poisson Brackets,
Poisson Manifolds, Momentum Maps

The rigid-body variational principle and the rigid-body Poisson bracket
are special cases of general constructions associated to any Lie algebra

addressed in the detail that would be desirable, even today. Ehrenfest in turn wrote his
thesis under Boltzmann around 1900 on variational principles in fluid dynamics and was
one of the first to study fluids from this point of view in material, rather than Clebsch,
representation. Curiously, Ehrenfest used the Gauss–Hertz principle of least curvature
rather than the more elementary Hamilton principle. This is a seed for many important
ideas in this book.
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g, that is, a vector space together with a bilinear, antisymmetric bracket
[ξ, η] satisfying Jacobi’s identity :

[[ξ, η], ζ] + [[ζ, ξ], η] + [[η, ζ], ξ] = 0 (1.3.1)

for all ξ, η, ζ ∈ g. For example, the Lie algebra associated to the rotation
group is g = R3 with bracket [ξ, η] = ξ × η, the ordinary vector cross
product.

The Euler–Poincaré Equations. The construction of a variational
principle on g replaces

δΩ = Σ̇ + Ω × Σ by δξ = η̇ + [η, ξ].

The resulting general equations on g, which we will study in detail in Chap-
ter 13, are called the Euler–Poincaré equations. These equations are
valid for either finite- or infinite-dimensional Lie algebras. To state them in
the finite-dimensional case, we use the following notation. Choosing a basis
e1, . . . , er of g (so dim g = r), the structure constants Cd

ab are defined
by the equation

[ea, eb] =
r∑

d=1

Cd
abed, (1.3.2)

where a, b run from 1 to r. If ξ is an element of the Lie algebra, its com-
ponents relative to this basis are denoted by ξa so that ξ =

∑r
a=1 ξaea.

If e1, . . . , er is the corresponding dual basis, then the components of the
differential of the Lagrangian L are the partial derivatives ∂L/∂ξa. Then
the Euler–Poincaré equations are

d

dt

∂L

∂ξd
=

r∑
a,b=1

Cb
ad

∂L

∂ξb
ξa. (1.3.3)

The coordinate-free version reads

d

dt

∂L

∂ξ
= ad∗

ξ

∂L

∂ξ
,

where adξ : g → g is the linear map η �→ [ξ, η], and ad∗
ξ : g∗ → g∗ is its

dual. For example, for L : R3 → R, the Euler–Poincaré equations become

d

dt

∂L

∂Ω
=

∂L

∂Ω
× Ω,

which generalize the Euler equations for rigid-body motion. As we men-
tioned earlier, these equations were written down for a fairly general class
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of L by Lagrange [1788, Volume 2, equation A, p. 212], while it was Poincaré
[1901b] who generalized them to any Lie algebra.

The generalization of the rigid-body variational principle states that the
Euler–Poincaré equations are equivalent to

δ

∫
L dt = 0 (1.3.4)

for all variations of the form δξ = η̇ + [ξ, η] for some curve η in g that
vanishes at the endpoints.

The Lie–Poisson Equations. We can also generalize the rigid-body
Poisson bracket as follows: Let F, G be defined on the dual space g∗. De-
noting elements of g∗ by µ, let the functional derivative of F at µ be
the unique element δF/δµ of g defined by

lim
ε→0

1
ε
[F (µ + εδµ) − F (µ)] =

〈
δµ,

δF

δµ

〉
, (1.3.5)

for all δµ ∈ g∗, where 〈 , 〉 denotes the pairing between g∗ and g. This
definition (1.3.5) is consistent with the definition of δF/δϕ given in (1.1.15)
when g and g∗ are chosen to be appropriate spaces of fields. Define the (±)
Lie–Poisson brackets by

{F, G}±(µ) = ±
〈

µ,

[
δF

δµ
,
δG

δµ

]〉
. (1.3.6)

Using the coordinate notation introduced above, the (±) Lie–Poisson brack-
ets become

{F, G}±(µ) = ±
r∑

a,b,d=1

Cd
abµd

∂F

∂µa

∂G

∂µb
, (1.3.7)

where µ = µaea.

Poisson Manifolds. The Lie–Poisson bracket and the canonical brackets
from the last section have four simple but crucial properties:

PB1 {F, G} is real bilinear in F and G.

PB2 {F, G} = −{G, F}, antisymmetry.
PB3 {{F, G}, H} + {{H, F}, G} + {{G, H}, F} = 0,

Jacobi identity.

PB4 {FG, H} = F{G, H} + {F, H}G, Leibniz identity.

A manifold (that is, an n–dimensional “smooth surface”) P together
with a bracket operation on F(P ), the space of smooth functions on P ,
and satisfying properties PB1–PB4, is called a Poisson manifold . In
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particular, g∗ is a Poisson manifold . In Chapter 10 we will study the general
concept of a Poisson manifold.

For example, if we choose g = R3 with the bracket taken to be the cross
product [x,y] = x × y, and identify g∗ with g using the dot product on
R3 (so 〈Π,x〉 = Π · x is the usual dot product), then the (−) Lie–Poisson
bracket becomes the rigid-body bracket.

Hamiltonian Vector Fields. On a Poisson manifold (P, {· , ·}), associ-
ated to any function H there is a vector field, denoted by XH , which has
the property that for any smooth function F : P → R we have the identity

〈dF, XH〉 = dF · XH = {F, H},

where dF is the differential of F and dF · XH denotes the derivative of
F in the direction XH . We say that the vector field XH is generated by
the function H, or that XH is the Hamiltonian vector field associated
with H. We also define the associated dynamical system whose points z
in phase space evolve in time by the differential equation

ż = XH(z). (1.3.8)

This definition is consistent with the equations in Poisson bracket form
(1.1.16). The function H may have the interpretation of the energy of the
system, but of course the definition (1.3.8) makes sense for any function.
For canonical systems with the Poisson bracket given by (1.1.17), XH is
given by the formula

XH(qi, pi) =
(

∂H

∂pi
,−∂H

∂qi

)
, (1.3.9)

whereas for the rigid-body bracket given on R3 by (1.2.9),

XH(Π) = Π ×∇H(Π). (1.3.10)

The general Lie–Poisson equations, determined by Ḟ = {F, H}, read

µ̇a = ∓
r∑

b,c=1

µdC
d
ab

∂H

∂µb
,

or intrinsically,

µ̇ = ∓ ad∗
δH/δµ µ. (1.3.11)

Reduction. There is an important feature of the rigid-body bracket that
also carries over to more general Lie algebras, namely, Lie–Poisson brackets
arise from canonical brackets on the cotangent bundle (phase space) T ∗G
associated with a Lie group G that has g as its associated Lie algebra. (The
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general theory of Lie groups is presented in Chapter 9.) Specifically, there
is a general construction underlying the association

(θ, ϕ, ψ, pθ, pϕ, pψ) �→ (Π1,Π2,Π3) (1.3.12)

defined by

Π1 =
1

sin θ
[(pϕ − pψ cos θ) sinψ + pθ sin θ cos ψ],

Π2 =
1

sin θ
[(pϕ − pψ cos θ) cos ψ − pθ sin θ sinψ], (1.3.13)

Π3 = pψ.

This rigid-body map takes the canonical bracket in the variables (θ, ϕ, ψ)
and their conjugate momenta (pθ, pϕ, pψ) to the (−) Lie–Poisson bracket in
the following sense. If F and K are functions of Π1,Π2,Π3, they determine
functions of (θ, ϕ, ψ, pθ, pϕ, pψ) by substituting (1.3.13). Then a (tedious
but straightforward) exercise using the chain rule shows that

{F, K}(−){Lie–Poisson} = {F, K}canonical. (1.3.14)

We say that the map defined by (1.3.13) is a canonical map or a
Poisson map and that the (−) Lie–Poisson bracket has been obtained
from the canonical bracket by reduction .

For a rigid body free to rotate about its center of mass, G is the (proper)
rotation group SO(3), and the Euler angles and their conjugate momenta
are coordinates for T ∗G. The choice of T ∗G as the primitive phase space is
made according to the classical procedures of mechanics: The configuration
space SO(3) is chosen, since each element A ∈ SO(3) describes the orien-
tation of the rigid body relative to a reference configuration, that is, the
rotation A maps the reference configuration to the current configuration.
For the description using Lagrangian mechanics, one forms the velocity–
phase space T SO(3) with coordinates (θ, ϕ, ψ, θ̇, ϕ̇, ψ̇). The Hamiltonian
description is obtained as in §1.1 by using the Legendre transform that
maps TG to T ∗G.

The passage from T ∗G to the space of Π’s (body angular momentum
space) given by (1.3.13) turns out to be determined by left translation on
the group. This mapping is an example of a momentum map, that is, a
mapping whose components are the “Noether quantities” associated with
a symmetry group. That the map (1.3.13) is a Poisson (canonical) map
(see equation (1.3.14)) is a general fact about momentum maps proved in
§12.6. To get to space coordinates one would use right translations and the
(+) bracket. This is what is done to get the standard description of fluid
dynamics.

Momentum Maps and Coadjoint Orbits. From the general rigid-
body equations, Π̇ = Π ×∇H, we see that

d

dt
‖Π‖2 = 0.
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In other words, Lie–Poisson systems on R3 conserve the total angular mo-
menta, that is, they leave the spheres in Π-space invariant. The gener-
alization of these objects associated to arbitrary Lie algebras are called
coadjoint orbits.

Coadjoint orbits are submanifolds of g∗ with the property that any Lie–
Poisson system Ḟ = {F, H} leaves them invariant. We shall also see how
these spaces are Poisson manifolds in their own right and are related to the
right (+) or left (−) invariance of the system regarded on T ∗G, and the
corresponding conserved Noether quantities.

On a general Poisson manifold (P, {· , ·}), the definition of a momentum
map is as follows. We assume that a Lie group G with Lie algebra g acts on
P by canonical transformations. As we shall review later (see Chapter 9),
the infinitesimal way of specifying the action is to associate to each Lie
algebra element ξ ∈ g a vector field ξP on P . A momentum map is a
map J : P → g∗ with the property that for every ξ ∈ g, the function 〈J, ξ〉
(the pairing of the g∗-valued function J with the vector ξ) generates the
vector field ξP ; that is,

X〈J,ξ〉 = ξP .

As we shall see later, this definition generalizes the usual notions of linear
and angular momentum. The rigid body shows that the notion has much
wider interest. A fundamental fact about momentum maps is that if the
Hamiltonian H is invariant under the action of the group G, then the
vector-valued function J is a constant of the motion for the dynamics of
the Hamiltonian vector field XH associated to H.

One of the important notions related to momentum maps is that of
infinitesimal equivariance , or the classical commutation relations,
which state that

{〈J, ξ〉 , 〈J, η〉} = 〈J, [ξ, η]〉 (1.3.15)

for all Lie algebra elements ξ and η. Relations like this are well known
for the angular momentum and can be directly checked using the Lie al-
gebra of the rotation group. Later, in Chapter 12, we shall see that the
relations (1.3.15) hold for a large important class of momentum maps that
are given by computable formulas. Remarkably, it is the condition (1.3.15)
that is exactly what is needed to prove that J is, in fact, a Poisson map.
It is via this route that one gets an intellectually satisfying generalization
of the fact that the map defined by equations (1.3.13) is a Poisson map;
that is, equation (1.3.14) holds.

Some History. The Lie–Poisson bracket was discovered by Sophus Lie
(Lie [1890, Vol. II, p. 237]). However, Lie’s bracket and his related work was
not given much attention until the work of Kirillov, Kostant, and Souriau
(and others) revived it in the mid-1960s. Meanwhile, it was noticed by Pauli
and Martin around 1950 that the rigid-body equations are in Hamiltonian
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form using the rigid-body bracket, but they were apparently unaware of the
underlying Lie theory. Meanwhile, the generalization of the Euler equations
to any Lie algebra g by Poincaré [1901b] (and picked up by Hamel [1904])
proceeded as well, but without much contact with Lie’s work until recently.
The symplectic structure on coadjoint orbits also has a complicated history
and itself goes back to Lie (Lie [1890, Ch. 20]).

The general notion of a Poisson manifold also goes back to Lie. However,
the four defining properties of the Poisson bracket have been isolated by
many authors such as Dirac [1964, p. 10]. The term “Poisson manifold” was
coined by Lichnerowicz [1977]. We shall give more historical information
on Poisson manifolds in §10.3.

The notion of the momentum map (the English translation of the French
words “application moment”) also has roots going back to the work of Lie.4

Momentum maps have found an astounding array of applications be-
yond those already mentioned. For instance, they are used in the study of
the space of all solutions of a relativistic field theory (see Arms, Marsden,
and Moncrief [1982]) and in the study of singularities in algebraic geom-
etry (see Atiyah [1983] and Kirwan [1984]). They also enter into convex
analysis in many interesting ways, such as the Schur–Horn theorem (Schur
[1923], Horn [1954]) and its generalizations (Kostant [1973]) and in the
theory of integrable systems (Bloch, Brockett, and Ratiu [1990, 1992] and
Bloch, Flaschka, and Ratiu [1990, 1993]). It turns out that the image of
the momentum map has remarkable convexity properties: see Atiyah [1982],
Guillemin and Sternberg [1982, 1984], Kirwan [1984], Delzant [1988], and
Lu and Ratiu [1991].

Exercises

� 1.3-1. A linear operator D on the space of smooth functions on Rn is
called a derivation if it satisfies the Leibniz identity: D(FG) = (DF )G+
F (DG). Accept the fact from the theory of manifolds (see Chapter 4) that
in local coordinates the expression of DF takes the form

(DF )(x) =
n∑

i=1

ai(x)
∂F

∂xi
(x)

for some smooth functions a1, . . . , an.

4Many authors use the words “moment map” for what we call the “momentum map.”
In English, unlike French, one does not use the phrases “linear moment” or “angular
moment of a particle,” and correspondingly, we prefer to use “momentum map.” We
shall give some comments on the history of momentum maps in §11.2.
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(a) Use the fact just stated to prove that for any bilinear operation {, }
on F(Rn) which is a derivation in each of its arguments, we have

{F, G} =
n∑

i,j=1

{xi, xj} ∂F

∂xi

∂G

∂xj
.

(b) Show that the Jacobi identity holds for any operation {, } on F(Rn)
as in (a), if and only if it holds for the coordinate functions.

� 1.3-2. Define, for a fixed function f : R3 → R,

{F, K}f = ∇f · (∇F ×∇K).

(a) Show that this is a Poisson bracket.

(b) Locate the bracket in part (a) in Nambu [1973].

� 1.3-3. Verify directly that (1.3.13) defines a Poisson map.

� 1.3-4. Show that a bracket satisfying the Leibniz identity also satisfies

F{K, L} − {FK, L} = {F, K}L − {F, KL}.

1.4 The Heavy Top

The equations of motion for a rigid body with a fixed point in a gravita-
tional field provide another interesting example of a system that is Hamil-
tonian relative to a Lie–Poisson bracket. See Figure 1.4.1.

The underlying Lie algebra consists of the algebra of infinitesimal Eu-
clidean motions in R3. (These do not arise as Euclidean motions of the
body, since the body has a fixed point.) As we shall see, there is a close
parallel with the Poisson structure for compressible fluids.

The basic phase space we start with is again T ∗ SO(3), coordinatized by
Euler angles and their conjugate momenta. In these variables, the equations
are in canonical Hamiltonian form; however, the presence of gravity breaks
the symmetry, and the system is no longer SO(3) invariant, so it cannot
be written entirely in terms of the body angular momentum Π. One also
needs to keep track of Γ, the “direction of gravity” as seen from the body.
This is defined by Γ = A−1k, where k points upward and A is the element
of SO(3) describing the current configuration of the body. The equations
of motion are

Π̇1 =
I2 − I3

I2I3
Π2Π3 + Mgl(Γ2χ3 − Γ3χ2),

Π̇2 =
I3 − I1

I3I1
Π3Π1 + Mgl(Γ3χ1 − Γ1χ3), (1.4.1)

Π̇3 =
I1 − I2

I1I2
Π1Π2 + Mgl(Γ1χ2 − Γ2χ1),



1.4 The Heavy Top 17

fixed point

Ω

center of mass

l = distance from fixed 
      point to center of mass

M = total mass

g = gravitational 
       acceleration 

Ω = body angular 
        velocity of top

g

lAχ

kΓ

Figure 1.4.1. Heavy top

and

Γ̇ = Γ × Ω, (1.4.2)

where M is the body’s mass, g is the acceleration of gravity, χ is the body
fixed unit vector on the line segment connecting the fixed point with the
body’s center of mass, and l is the length of this segment. See Figure 1.4.1.

The Lie algebra of the Euclidean group is se(3) = R3 × R3 with the Lie
bracket

[(ξ,u), (η,v)] = (ξ × η, ξ × v − η × u). (1.4.3)

We identify the dual space with pairs (Π,Γ); the corresponding (−) Lie–
Poisson bracket, called the heavy top bracket , is

{F, G}(Π,Γ) = −Π · (∇ΠF ×∇ΠG)
− Γ · (∇ΠF ×∇ΓG −∇ΠG ×∇ΓF ). (1.4.4)

The above equations for Π,Γ can be checked to be equivalent to

Ḟ = {F, H}, (1.4.5)

where the heavy top Hamiltonian

H(Π,Γ) =
1
2

(
Π2

1

I1
+

Π2
2

I2
+

Π2
3

I3

)
+ MglΓ · χ (1.4.6)
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is the total energy of the body (Sudarshan and Mukunda [1974]).
The Lie algebra of the Euclidean group has a structure that is a special

case of what is called a semidirect product . Here it is the product of the
group of rotations with the translation group. It turns out that semidirect
products occur under rather general circumstances when the symmetry in
T ∗G is broken. The general theory for semidirect products was developed
by Sudarshan and Mukunda [1974], Ratiu [1980, 1981, 1982], Guillemin and
Sternberg [1982], Marsden, Weinstein, Ratiu, Schmid, and Spencer [1983],
Marsden, Ratiu, and Weinstein [1984a, 1984b], and Holm and Kupershmidt
[1983]. The Lagrangian approach to this and related problems is given in
Holm, Marsden, and Ratiu [1998a].

Exercises

� 1.4-1. Verify that Ḟ = {F, H} is equivalent to the heavy top equations
using the heavy top Hamiltonian and bracket.

� 1.4-2. Work out the Euler–Poincaré equations on se(3). Show that with

L(Ω,Γ) =
1
2
(I1Ω2

1 + I2Ω2
2 + I3Ω2

3) − MglΓ · χ,

the Euler–Poincaré equations are not the heavy top equations.

1.5 Incompressible Fluids

Arnold [1966a, 1969] showed that the Euler equations for an incompress-
ible fluid could be given a Lagrangian and Hamiltonian description similar
to that for the rigid body. His approach5 has the appealing feature that
one sets things up just the way Lagrange and Hamilton would have done:
One begins with a configuration space Q and forms a Lagrangian L on
the velocity phase space TQ and then H on the momentum phase space
T ∗Q, just as was outlined in §1.1. Thus, one automatically has variational
principles, etc. For ideal fluids, Q = G is the group Diffvol(Ω) of volume-
preserving transformations of the fluid container (a region Ω in R2 or R3,
or a Riemannian manifold in general, possibly with boundary). Group mul-
tiplication in G is composition.

Kinematics of a Fluid. The reason we select G = Diffvol(Ω) as the
configuration space is similar to that for the rigid body; namely, each ϕ
in G is a mapping of Ω to Ω that takes a reference point X ∈ Ω to a

5Arnold’s approach is consistent with what appears in the thesis of Ehrenfest from
around 1904; see Klein [1970]. However, Ehrenfest bases his principles on the more
sophisticated curvature principles of Gauss and Hertz.
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current point x = ϕ(X) ∈ Ω; thus, knowing ϕ tells us where each particle
of fluid goes and hence gives us the fluid configuration . We ask that ϕ
be a diffeomorphism to exclude discontinuities, cavitation, and fluid inter-
penetration, and we ask that ϕ be volume-preserving to correspond to the
assumption of incompressibility.

A motion of a fluid is a family of time-dependent elements of G, which
we write as x = ϕ(X, t). The material velocity field is defined by

V(X, t) =
∂ϕ(X, t)

∂t
,

and the spatial velocity field is defined by v(x, t) = V(X, t), where x
and X are related by x = ϕ(X, t). If we suppress “t” and write ϕ̇ for V,
note that

v = ϕ̇ ◦ ϕ−1, i.e., vt = Vt ◦ ϕ−1
t , (1.5.1)

where ϕt(x) = ϕ(X, t). See Figure 1.5.1.

D

trajectory of fluid particle

v(x,t)

Figure 1.5.1. The trajectory and velocity of a fluid particle.

We can regard (1.5.1) as a map from the space of (ϕ, ϕ̇) (material or La-
grangian description) to the space of v’s (spatial or Eulerian description).
Like the rigid body, the material to spatial map (1.5.1) takes the canonical
bracket to a Lie–Poisson bracket; one of our goals is to understand this re-
duction. Notice that if we replace ϕ by ϕ◦ η for a fixed (time-independent)
η ∈ Diffvol(Ω), then ϕ̇ ◦ ϕ−1 is independent of η; this reflects the right
invariance of the Eulerian description (v is invariant under composition of
ϕ by η on the right). This is also called the particle relabeling symme-
try of fluid dynamics. The spaces TG and T ∗G represent the Lagrangian
(material) description, and we pass to the Eulerian (spatial) description by
right translations and use the (+) Lie–Poisson bracket. One of the things we
want to do later is to better understand the reason for the switch between
right and left in going from the rigid body to fluids.
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Dynamics of a Fluid. The Euler equations for an ideal, incompress-
ible, homogeneous fluid moving in the region Ω are

∂v
∂t

+ (v · ∇)v = −∇p (1.5.2)

with the constraint div v = 0 and the boundary condition that v is tangent
to the boundary, ∂Ω.

The pressure p is determined implicitly by the divergence-free (volume-
preserving) constraint div v = 0. (See Chorin and Marsden [1993] for basic
information on the derivation of Euler’s equations.) The associated Lie al-
gebra g is the space of all divergence-free vector fields tangent to the bound-
ary. This Lie algebra is endowed with the negative Jacobi–Lie bracket
of vector fields given by

[v, w]iL =
n∑

j=1

(
wj ∂vi

∂xj
− vj ∂wi

∂xj

)
. (1.5.3)

(The subscript L on [· , ·] refers to the fact that it is the left Lie algebra
bracket on g. The most common convention for the Jacobi–Lie bracket of
vector fields, also the one we adopt, has the opposite sign.) We identify g

and g∗ using the pairing

〈v,w〉 =
∫

Ω

v · w d3x. (1.5.4)

Hamiltonian Structure. Introduce the (+) Lie–Poisson bracket, called
the ideal fluid bracket, on functions of v by

{F, G}(v) =
∫

Ω

v ·
[
δF

δv
,
δG

δv

]
L

d3x, (1.5.5)

where δF/δv is defined by

lim
ε→0

1
ε
[F (v + εδv) − F (v)] =

∫
Ω

(
δv · δF

δv

)
d3x. (1.5.6)

With the energy function chosen to be the kinetic energy,

H(v) =
1
2

∫
Ω

‖v‖2 d3x, (1.5.7)

one can verify that the Euler equations (1.5.2) are equivalent to the Poisson
bracket equations

Ḟ = {F, H} (1.5.8)
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for all functions F on g. To see this, it is convenient to use the orthogonal
decomposition w = Pw+∇p of a vector field w into a divergence-free part
Pw in g and a gradient. The Euler equations can be written

∂v
∂t

+ P(v · ∇v) = 0. (1.5.9)

One can express the Hamiltonian structure in terms of the vorticity as a
basic dynamic variable and show that the preservation of coadjoint orbits
amounts to Kelvin’s circulation theorem. Marsden and Weinstein [1983]
show that the Hamiltonian structure in terms of Clebsch potentials fits
naturally into this Lie–Poisson scheme, and that Kirchhoff’s Hamiltonian
description of point vortex dynamics, vortex filaments, and vortex patches
can be derived in a natural way from the Hamiltonian structure described
above.

Lagrangian Structure. The general framework of the Euler–Poincaré
and the Lie–Poisson equations gives other insights as well. For example,
this general theory shows that the Euler equations are derivable from the
“variational principle”

δ

∫ b

a

∫
Ω

1
2
‖v‖2 d3x = 0,

which is to hold for all variations δv of the form

δv = u̇ + [v,u]L

(sometimes called Lin constraints), where u is a vector field (represent-
ing the infinitesimal particle displacement) vanishing at the temporal end-
points.6

There are important functional-analytic differences between working in
material representation (that is, on T ∗G) and in Eulerian representation
(that is, on g∗) that are important for proving existence and uniqueness
theorems, theorems on the limit of zero viscosity, and the convergence of
numerical algorithms (see Ebin and Marsden [1970], Marsden, Ebin, and
Fischer [1972], and Chorin, Hughes, Marsden, and McCracken [1978]). Fi-
nally, we note that for two-dimensional flow , a collection of Casimir func-
tions is given by

C(ω) =
∫

Ω

Φ(ω(x)) d2x (1.5.10)

for Φ : R → R any (smooth) function, where ωk = ∇× v is the vorticity .
For three-dimensional flow, (1.5.10) is no longer a Casimir.

6As mentioned earlier, this form of the variational (strictly speaking, a Lagrange–
d’Alembert type) principle is due to Newcomb [1962]; see also Bretherton [1970]. For
the case of general Lie algebras, it is due to Marsden and Scheurle [1993b]; see also
Cendra and Marsden [1987].
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Exercises

� 1.5-1. Show that any divergence-free vector field X on R3 can be written
globally as a curl of another vector field and, away from equilibrium points,
can locally be written as

X = ∇f ×∇g,

where f and g are real-valued functions on R3. Assume that this (so-called
Clebsch–Monge) representation also holds globally. Particles of fluid follow
trajectories satisfying the equation ẋ = X(x). Show that these trajectories
can be described by a Hamiltonian system with a bracket in the form of
Exercise 1.3-2.

1.6 The Maxwell–Vlasov System

Plasma physics provides another beautiful application area for the tech-
niques discussed in the preceding sections. We shall briefly indicate these
in this section. The period 1970–1980 saw the development of noncanonical
Hamiltonian structures for the Korteweg–de Vries (KdV) equation (due to
Gardner, Kruskal, Miura, and others; see Gardner [1971]) and other soli-
ton equations. This quickly became entangled with the attempts to un-
derstand integrability of Hamiltonian systems and the development of the
algebraic approach; see, for example, Gelfand and Dorfman [1979], Manin
[1979] and references therein. More recently, these approaches have come to-
gether again; see, for instance, Reyman and Semenov-Tian-Shansky [1990],
Moser and Veselov [1991]. KdV type models are usually derived from or
are approximations to more fundamental fluid models, and it seems fair to
say that the reasons for their complete integrability are not yet completely
understood.

Some History. For fluid and plasma systems, some of the key early
works on Poisson bracket structures were Dashen and Sharp [1968], Goldin
[1971], Iwíınski and Turski [1976], Dzyaloshinskii and Volovick [1980], Mor-
rison and Greene [1980], and Morrison [1980]. In Sudarshan and Mukunda
[1974], Guillemin and Sternberg [1982], and Ratiu [1980, 1982], a general
theory for Lie–Poisson structures for special kinds of Lie algebras, called
semidirect products, was begun. This was quickly recognized (see, for ex-
ample, Marsden [1982], Marsden, Weinstein, Ratiu, Schmid, and Spencer
[1983], Holm and Kupershmidt [1983], and Marsden, Ratiu, and Weinstein
[1984a, 1984b]) to be relevant to the brackets for compressible flow; see §1.7
below.

Derivation of Poisson Structures. A rational scheme for systemati-
cally deriving brackets is needed since for one thing, a direct verification
of Jacobi’s identity can be inefficient and time–consuming. Here we out-
line a derivation of the Maxwell–Vlasov bracket by Marsden and Weinstein



1.6 The Maxwell–Vlasov System 23

[1982]. The method is similar to Arnold’s, namely by performing a reduc-
tion starting with:

(i) canonical brackets in a material representation for the plasma; and

(ii) a potential representation for the electromagnetic field.

One then identifies the symmetry group and carries out reduction by this
group in a manner similar to that we described for Lie–Poisson systems.

For plasmas, the physically correct material description is actually slightly
more complicated; we refer to Cendra, Holm, Hoyle, and Marsden [1998]
for a full account.

Parallel developments can be given for many other brackets, such as the
charged fluid bracket by Spencer and Kaufman [1982]. Another method,
based primarily on Clebsch potentials, was developed in a series of papers
by Holm and Kupershmidt (for example, Holm and Kupershmidt [1983])
and applied to a number of interesting systems, including superfluids and
superconductors. They also pointed out that semidirect products are ap-
propriate for the MHD bracket of Morrison and Greene [1980].

The Maxwell–Vlasov System. The Maxwell–Vlasov equations for a
collisionless plasma are the fundamental equations in plasma physics.7 In
Euclidean space, the basic dynamical variables are

f(x,v, t) : the plasma particle number density per phase space
volume d3x d3v;

E(x, t) : the electric field;
B(x, t) : the magnetic field.

The equations for a collisionless plasma for the case of a single species
of particles with mass m and charge e are

∂f

∂t
+ v · ∂f

∂x
+

e

m

(
E +

1
c
v × B

)
· ∂f

∂v
= 0,

1
c

∂B
∂t

= −curlE,

1
c

∂E
∂t

= curlB − 1
c
jf , (1.6.1)

div E = ρf ,

div B = 0.

The current defined by f is given by

jf = e

∫
vf(x,v, t) d3v

7See, for example, Clemmow and Dougherty [1959], van Kampen and Felderhof [1967],
Krall and Trivelpiece [1973], Davidson [1972], Ichimaru [1973], and Chen [1974].
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and the charge density by

ρf = e

∫
f(x,v, t) d3v.

Also, ∂f/∂x and ∂f/∂v denote the gradients of f with respect to x and
v, respectively, and c is the speed of light. The evolution equation for f
results from the Lorentz force law and standard transport assumptions.
The remaining equations are the standard Maxwell equations with charge
density ρf and current jf produced by the plasma.

Two limiting cases will aid our discussions. First, if the plasma is con-
strained to be static, that is, f is concentrated at v = 0 and t-independent,
we get the charge-driven Maxwell equations:

1
c

∂B
∂t

= −curlE,

1
c

∂E
∂t

= curlB,

div E = ρ, and div B = 0.

(1.6.2)

Second, if we let c → ∞, electrodynamics becomes electrostatics, and we
get the Poisson–Vlasov equation

∂f

∂t
+ v · ∂f

∂x
− e

m

∂ϕf

∂x
· ∂f

∂v
= 0, (1.6.3)

where –∇2ϕf = ρf . In this context, the name “Poisson–Vlasov” seems
quite appropriate. The equation is, however, formally the same as the earlier
Jeans [1919] equation of stellar dynamics. Henon [1982] has proposed calling
it the “collisionless Boltzmann equation.”

Maxwell’s Equations. For simplicity, we let m = e = c = 1. As the
basic configuration space we take the space A of vector potentials A on R3

(for the Yang–Mills equations this is generalized to the space of connections
on a principal bundle over space). The corresponding phase space T ∗A is
identified with the set of pairs (A,Y), where Y is also a vector field on R3.
The canonical Poisson bracket is used on T ∗A :

{F, G} =
∫ (

δF

δA
δG

δY
− δF

δY
δG

δA

)
d3x. (1.6.4)

The electric field is E = −Y, and the magnetic field is B = curlA.
With the Hamiltonian

H(A,Y) =
1
2

∫
(‖E‖2 + ‖B‖2) d3x, (1.6.5)

Hamilton’s canonical field equations (1.1.14) are checked to give the equa-
tions for ∂E/∂t and ∂A/∂t, which imply the vacuum Maxwell’s equations.
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Alternatively, one can begin with TA and the Lagrangian

L(A, Ȧ) =
1
2

∫ (
‖Ȧ‖2 − ‖∇× A‖2

)
d3x (1.6.6)

and use the Euler–Lagrange equations and variational principles.
It is of interest to incorporate the equation div E = ρ and, correspond-

ingly, to use directly the field strengths E and B, rather than E and A. To
do this, we introduce the gauge group G, the additive group of real-valued
functions ψ : R3 → R. Each ψ ∈ G transforms the fields according to the
rule

(A,E) �→ (A + ∇ψ,E). (1.6.7)

Each such transformation leaves the Hamiltonian H invariant and is a
canonical transformation, that is, it leaves Poisson brackets intact. In this
situation, as above, there will be a corresponding conserved quantity, or
momentum map, in the same sense as in §1.3. As mentioned there, some
simple general formulas for computing momentum maps will be studied in
detail in Chapter 12. For the action (1.6.7) of G on T ∗A, the associated
momentum map is

J(A,Y) = div E, (1.6.8)

so we recover the fact that div E is preserved by Maxwell’s equations (this
is easy to verify directly using the identity div curl = 0). Thus we see that
we can incorporate the equation div E = ρ by restricting our attention to
the set J−1(ρ). The theory of reduction is a general process whereby one
reduces the dimension of a phase space by exploiting conserved quantities
and symmetry groups. In the present case, the reduced space is J−1(ρ)/G,
which is identified with Maxρ, the space of E’s and B’s satisfying div E = ρ
and divB = 0.

The space Maxρ inherits a Poisson structure as follows. If F and K are
functions on Maxρ, we substitute E = −Y and B = ∇ × A to express F
and K as functionals of (A,Y). Then we compute the canonical brackets
on T ∗A and express the result in terms of E and B. Carrying this out using
the chain rule gives

{F, K} =
∫ (

δF

δE
· curl

δK

δB
− δK

δE
· curl

δF

δB

)
d3x, (1.6.9)

where δF/δE and δF/δB are vector fields, with δF/δB divergence-free.
These are defined in the usual way; for example,

lim
ε→0

1
ε
[F (E + εδE,B) − F (E,B)] =

∫
δF

δE
· δE d3x. (1.6.10)

This bracket makes Maxρ into a Poisson manifold and the map (A,Y) �→
(−Y,∇ × A) into a Poisson map. The bracket (1.6.9) was discovered (by
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a different procedure) by Pauli [1933] and Born and Infeld [1935]. We refer
to (1.6.9) as the Pauli–Born–Infeld bracket or the Maxwell–Poisson
bracket for Maxwell’s equations.

With the energy H given by (1.6.5) regarded as a function of E and B,
Hamilton’s equations in bracket form Ḟ = {F, H} on Maxρ capture the full
set of Maxwell’s equations (with external charge density ρ).

The Poisson–Vlasov Equation. The papers Iwíınski and Turski [1976]
and Morrison [1980] showed that the Poisson–Vlasov equations form a
Hamiltonian system with

H(f) =
1
2

∫
‖v‖2f(x,v, t) d3x d3v +

1
2

∫
‖∇ϕf‖2 d3x (1.6.11)

and the Poisson–Vlasov bracket

{F, G} =
∫

f

{
δF

δf
,
δG

δf

}
xv

d3x d3v, (1.6.12)

where { , }xv is the canonical bracket on (x,v)-space. As was observed in
Gibbons [1981] and Marsden and Weinstein [1982], this is the (+) Lie–
Poisson bracket associated with the Lie algebra g of functions of (x,v)
with Lie bracket the canonical Poisson bracket.

According to the general theory, this Lie–Poisson structure is obtained
by reduction from canonical brackets on the cotangent bundle of the group
underlying g, just as was the case for the rigid body and incompressible
fluids. This time, the group G = Diffcan is the group of canonical transfor-
mations of (x,v)-space. The Poisson–Vlasov equations can equally well be
written in canonical form on T ∗G. This is related to the Lagrangian and
Hamiltonian description of a plasma that goes back to Low [1958], Katz
[1961], and Lundgren [1963]. Thus, one can start with the particle descrip-
tion with canonical brackets and, through reduction, derive the brackets
here. See Cendra, Holm, Hoyle, and Marsden [1998] for exactly how this
goes. There are other approaches to the Hamiltonian formulation using ana-
logues of Clebsch potentials; see, for instance, Su [1961], Zakharov [1971],
and Gibbons, Holm, and Kupershmidt [1982].

The Poisson–Vlaslov to Compressible Flow Map. Before going on
to the Maxwell–Vlasov equations, we point out a remarkable connection be-
tween the Poisson–Vlasov bracket (1.6.12) and the bracket for compressible
flow.

The Euler equations for compressible flow in a region Ω in R3 are

ρ

(
∂v
∂t

+ (v · ∇)v
)

= −∇p (1.6.13)

and
∂ρ

∂t
+ div(ρv) = 0, (1.6.14)
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with the boundary condition

v tangent to ∂Ω.

Here the pressure p is determined from an internal energy function per
unit mass given by p = ρ2w′(ρ), where w = w(ρ) is the constitutive relation.
(We ignore entropy for the present discussion—its inclusion is straightfor-
ward to deal with.) The compressible fluid Hamiltonian is

H =
1
2

∫
Ω

ρ‖v‖2 d3x +
∫

Ω

ρw(ρ) d3x. (1.6.15)

The relevant Poisson bracket is most easily expressed if we use the mo-
mentum density M = ρv and density ρ as our basic variables. The com-
pressible fluid bracket is

{F, G} =
∫

Ω

M ·
[(

δG

δM
· ∇

)
δF

δM
−

(
δF

δM
· ∇

)
δG

δM

]
d3x

+
∫

Ω

ρ

[(
δG

δM
· ∇

)
δF

δρ
−

(
δF

δM
· ∇

)
δG

δρ

]
d3x. (1.6.16)

Notice the similarities in structure between the Poisson bracket (1.6.16)
for compressible flow and (1.4.4). For compressible flow it is the density
that prevents a full Diff(Ω) invariance; the Hamiltonian is invariant only
under those diffeomorphisms that preserve the density.

The space of (M, ρ)’s can be shown to be the dual of a semidirect product
Lie algebra and it can also be shown that the preceding bracket is the as-
sociated (+) Lie–Poisson bracket (see Marsden, Weinstein, Ratiu, Schmid,
and Spencer [1983], Holm and Kupershmidt [1983], and Marsden, Ratiu,
and Weinstein [1984a, 1984b]).

The relationship with the Poisson–Vlasov bracket is this: Suppressing
the time variable, define the map f �→ (M, ρ) by

M(x) =
∫

Ω

vf(x,v)d3v and ρ(x) =
∫

Ω

f(x,v) d3v. (1.6.17)

Remarkably, this plasma to fluid map is a Poisson map taking the Poisson–
Vlasov bracket (1.6.12) to the compressible fluid bracket (1.6.16). In fact,
this map is a momentum map (Marsden, Weinstein, Ratiu, Schmid, and
Spencer [1983]). The Poisson–Vlasov Hamiltonian is not invariant under
the associated group action, however.

The Maxwell–Vlasov Bracket. A bracket for the Maxwell–Vlasov
equations was given by Iwíınski and Turski [1976] and Morrison [1980].
Marsden and Weinstein [1982] used systematic procedures involving reduc-
tion and momentum maps to derive (and correct) the bracket starting with
a canonical bracket.
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The procedure starts with the material description8 of the plasma as
the cotangent bundle of the group Diffcan of canonical transformations of
(x,p)-space and the space T ∗A for Maxwell’s equations. We justify this
by noticing that the motion of a charged particle in a fixed (but possibly
time-dependent) electromagnetic field via the Lorentz force law defines a
(time-dependent) canonical transformation. On T ∗ Diffcan ×T ∗A we put
the sum of the two canonical brackets, and then we reduce. First we reduce
by Diffcan, which acts on T ∗ Diffcan by right translation but does not act on
T ∗A. Thus we end up with densities fmom(x,p, t) on position-momentum
space and with the space T ∗A used for the Maxwell equations. On this
space we get the (+) Lie–Poisson bracket, plus the canonical bracket on
T ∗A. Recalling that p is related to v and A by p = v + A, we let the
gauge group G of electromagnetism act on this space by

(fmom(x,p, t),A(x, t),Y(x, t)) �→
(fmom(x,p + ∇ϕ(x), t),A(x, t) + ∇ϕ(x),Y(x, t)). (1.6.18)

The momentum map associated with this action is computed to be

J(fmom,A,Y) = div E −
∫

fmom(x,p) d3p. (1.6.19)

This corresponds to div E − ρf if we write f(x,v, t) = fmom(x,p −
A, t). This reduced space J−1(0)/G can be identified with the space MV
of triples (f,E,B) satisfying div E = ρf and div B = 0. The bracket on
MV is computed by the same procedure as for Maxwell’s equations. These
computations yield the following Maxwell–Vlasov bracket:

{F, K}(f,E,B) =
∫

f

{
δF

δf
,
δK

δf

}
xv

d3x d3v

+
∫ (

δF

δE
· curl

δK

δB
− δK

δE
· curl

δF

δB

)
d3x

+
∫ (

δF

δE
· δf

δv
δK

δf
− δK

δE
· δf

δv
δF

δf

)
d3x d3v

+
∫

fB ·
(

∂

∂v
δF

δf
× ∂

∂v
δK

δf

)
d3x d3v.

(1.6.20)

With the Maxwell–Vlasov Hamiltonian

H(f,E,B) =
1
2

∫
‖v‖2f(x,v, t) d3x d3v

+
1
2

∫
(‖E(x, t)‖2 + ‖B(x, t)‖2) d3x, (1.6.21)

8As shown in Cendra, Holm, Hoyle, and Marsden [1998], the correct physical descrip-
tion of the material representation of a plasma is a bit more complicated than simply
Diffcan; however the end result is the same.
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the Maxwell–Vlasov equations take the Hamiltonian form

Ḟ = {F, H} (1.6.22)

on the Poisson manifold MV.

Exercises

� 1.6-1. Verify that one obtains the Maxwell equations from the Maxwell–
Poisson bracket.

� 1.6-2. Verify that the action (1.6.7) has the momentum map J(A,Y) =
div E in the sense given in §1.3.

1.7 Nonlinear Stability

There are various meanings that can be given to the word “stability.” In-
tuitively, stability means that small disturbances do not grow large as time
passes. Being more precise about this notion is not just capricious math-
ematical nitpicking; indeed, different interpretations of the word stability
can lead to different stability criteria. Examples like the double spherical
pendulum and stratified shear flows, which are sometimes used to model
oceanographic phenomena show that one can get different criteria if one
uses linearized or nonlinear analyses (see Marsden and Scheurle [1993a] and
Abarbanel, Holm, Marsden, and Ratiu [1986]).

Some History. The history of stability theory in mechanics is very com-
plex, but certainly has its roots in the work of Riemann [1860, 1861],
Routh [1877], Thomson and Tait [1879], Poincaré [1885, 1892], and Lia-
punov [1892, 1897].

Since these early references, the literature has become too vast to even
survey roughly. We do mention, however, that a guide to the large Soviet
literature may be found in Mikhailov and Parton [1990].

The basis of the nonlinear stability method discussed below was origi-
nally given by Arnold [1965b, 1966b] and applied to two-dimensional ideal
fluid flow, substantially augmenting the pioneering work of Rayleigh [1880].
Related methods were also found in the plasma physics literature, notably
by Newcomb [1958], Fowler [1963], and Rosenbluth [1964]. However, these
works did not provide a general setting or key convexity estimates needed to
deal with the nonlinear nature of the problem. In retrospect, we may view
other stability results, such as the stability of solitons in the Korteweg–de
Vries (KdV) equation (Benjamin [1972] and Bona [1975]) as being instances
of the same method used by Arnold. A crucial part of the method exploits
the fact that the basic equations of nondissipative fluid and plasma dynam-
ics are Hamiltonian in character. We shall explain below how the Hamilto-
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nian structures discussed in the previous sections are used in the stability
analysis.

Dynamics and Stability. Stability is a dynamical concept. To explain
it, we shall use some fundamental notions from the theory of dynamical
systems (see, for example, Hirsch and Smale [1974] and Guckenheimer and
Holmes [1983]). The laws of dynamics are usually presented as equations
of motion, which we write in the abstract form of a dynamical system :

u̇ = X(u). (1.7.1)

Here, u is a variable describing the state of the system under study, X
is a system-specific function of u, and u̇ = du/dt, where t is time. The
set of all allowed u’s forms the state, or phase space P . We usually view
X as a vector field on P . For a classical mechanical system, u is often a
2n-tuple (q1, . . . , qn, p1, . . . , pn) of positions and momenta, and for fluids,
u is a velocity field in physical space.

As time evolves, the state of the system changes; the state follows a curve
u(t) in P . The trajectory u(t) is assumed to be uniquely determined if its
initial condition u0 = u(0) is specified. An equilibrium state is a state ue

such that X(ue) = 0. The unique trajectory starting at ue is ue itself; that
is, ue does not move in time.

The language of dynamics has been an extraordinarily useful tool in the
physical and biological sciences, especially during the last few decades. The
study of systems that develop spontaneous oscillations through a mecha-
nism called the Poincaré–Andronov–Hopf bifurcation is an example of such
a tool (see Marsden and McCracken [1976], Carr [1981], and Chow and Hale
[1982], for example). More recently, the concept of “chaotic dynamics” has
sparked a resurgence of interest in dynamical systems. This occurs when
dynamical systems possess trajectories that are so complex that they be-
have as if they were, in some sense, random. Some believe that the theory
of turbulence will use such notions in its future development. We are not
concerned with chaos directly, although it plays a role in some of what
follows. In particular, we remark that in the definition of stability below,
stability does not preclude chaos. In other words, the trajectories near a
stable point can still be temporally very complex; stability just prevents
them from moving very far from equilibrium.

To define stability, we choose a measure of nearness in P using a “metric”
d. For two points u1 and u2 in P , d determines a positive number denoted by
d(u1, u2), the distance from u1 to u2. In the course of a stability analysis, it
is necessary to specify, or construct, a metric appropriate for the problem
at hand. In this setting, one says that an equilibrium state ue is stable
when trajectories that start near ue remain near ue for all t ≥ 0. In precise
terms, given any number ε > 0, there is δ > 0 such that if d(u0, ue) < δ,
then d(u(t), ue) < ε for all t > 0 . Figure 1.7.1 shows examples of stable and
unstable equilibria for dynamical systems whose state space is the plane.
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ue

ue

ue

ue

(a) (b) (c) (d)

Figure 1.7.1. The equilibrium point (a) is unstable because the trajectory u(t)
does not remain near ue. Similarly, (b) is unstable, since most trajectories (even-
tually) move away from ue. The equilibria in (c) and (d) are stable because all
trajectories near ue stay near ue.

Fluids can be stable relative to one distance measure and, simultaneously,
unstable relative to another. This seeming pathology actually reflects im-
portant physical processes; see Wan and Pulvirente [1984].

Rigid-Body Stability. A physical example illustrating the definition of
stability is the motion of a free rigid body. This system can be simulated
by tossing a book, held shut with a rubber band, into the air. It rotates
stably when spun about its longest and shortest axes, but unstably when
spun about the middle axis (Figure 1.7.2). One possible choice of a distance
measure defining stability in this example is a metric in body angular mo-
mentum space. We shall return to this example in detail in Chapter 15
when we study rigid-body stability.

(a) (b) (c)

Figure 1.7.2. If you toss a book into the air, you can make it spin stably about
its shortest axis (a), and its longest axis (b), but it is unstable when it rotates
about its middle axis (c).
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Linearized and Spectral Stability. There are two other ways of treat-
ing stability. First of all, one can linearize equation (1.7.1); if δu denotes a
variation in u and X ′(ue) denotes the linearization of X at ue (the matrix
of partial derivatives in the case of finitely many degrees of freedom), the
linearized equations describe the time evolution of “infinitesimal” distur-
bances of ue:

d

dt
(δu) = X ′(ue) · δu. (1.7.2)

Equation (1.7.1), on the other hand, describes the nonlinear evolution of
finite disturbances ∆u = u−ue. We say that ue is linearly stable if (1.7.2)
is stable at δu = 0, in the sense defined above. Intuitively, this means that
there are no infinitesimal disturbances that are growing in time. If (δu)0 is
an eigenfunction of X ′(ue), that is, if

X ′(ue) · (δu)0 = λ(δu)0 (1.7.3)

for a complex number λ, then the corresponding solution of (1.7.2) with
initial condition (δu)0 is

δu = etλ(δu)0. (1.7.4)

The right side of this equation is growing when λ has positive real part.
This leads us to the third notion of stability: We say that (1.7.1) or (1.7.2)
is spectrally stable if the eigenvalues (more precisely, points in the spec-
trum) all have nonpositive real parts. In finite dimensions and, under ap-
propriate technical conditions in infinite dimensions, one has the following
implications:

(stability) ⇒ (spectral stability)
and

(linear stability) ⇒ (spectral stability).

If the eigenvalues all lie strictly in the left half-plane, then a classical re-
sult of Liapunov guarantees stability. (See, for instance, Hirsch and Smale
[1974] for the finite-dimensional case and Marsden and McCracken [1976]
or Abraham, Marsden, and Ratiu [1988] for the infinite-dimensional case.)
However, in many systems of interest, the dissipation is very small and are
modeled as being conservative. For such systems the eigenvalues must be
symmetrically distributed under reflection in the real and imaginary axes
(We prove this later in the text). This implies that the only possibility
for spectral stability occurs when the eigenvalues lie exactly on the imagi-
nary axis. Thus, this version of the Liapunov theorem is of no help in the
Hamiltonian case.

Spectral stability need not imply stability ; instabilities can be generated
(even in Hamiltonian systems) through, for example, resonance. Thus, to
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obtain general stability results, one must use other techniques to augment
or replace the linearized theory. We give such a technique below.

Here is a planar example of a system that is spectrally stable at the
origin but that is unstable there. In polar coordinates (r, θ), consider the
evolution of u = (r, θ) given by

ṙ = r3(1 − r2) and θ̇ = 1. (1.7.5)

In (x, y) coordinates this system takes the form

ẋ = x(x2 + y2)(1 − x2 − y2) − y,

ẏ = y(x2 + y2)(1 − x2 − y2) + x.

The eigenvalues of the linearized system at the origin are readily verified
to be ±

√
−1, so the origin is spectrally stable; however, the phase portrait,

shown in Figure 1.7.3, shows that the origin is unstable. (We include the
factor 1− r2 to give the system an attractive periodic orbit—this is merely
to enrich the example and show how a stable periodic orbit can attract
the orbits expelled by an unstable equilibrium.) This is not, however, a
conservative system; next, we give two examples of Hamiltonian systems
with similar features.

Figure 1.7.3. The phase portrait for ṙ = r3(1 − r2), θ̇ = 1.

Resonance Example. The linear system in R2 whose Hamiltonian is
given by

H(q, p) =
1
2
p2 +

1
2
q2 + pq

has zero as a double eigenvalue, so it is spectrally stable. On the other
hand,

q(t) = (q0 + p0)t + q0 and p(t) = −(q0 + p0)t + p0

is the solution of this system with initial condition (q0, p0), which clearly
leaves any neighborhood of the origin no matter how close to it (q0, p0) is.
Thus, spectral stability need not imply even linear stability . An even simpler
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example of the same phenomenon is given by the free particle Hamiltonian
H(q, p) = p2/2.

Another higher-dimensional example with resonance in R8 is given by
the linear system whose Hamiltonian is

H = q2p1 − q1p2 + q4p3 − q3p4 + q2q3.

The general solution with initial condition (q0
1 , . . . , p0

4) is given by

q1(t) = q0
1 cos t + q0

2 sin t,

q2(t) = −q0
1 sin t + q0

2 cos t,

q3(t) = q0
3 cos t + q0

4 sin t,

q4(t) = −q0
3 sin t + q0

4 cos t,

and

p1(t) = −q0
3

2
t sin t +

q0
4

2
(t cos t − sin t) + p0

1 cos t + p0
2 sin t,

p2(t) = −q0
3

2
(t cos t + sin t) − q0

4

2
t sin t − p0

1 sin t + p0
2 cos t,

p3(t) =
q0
1

2
t sin t − q0

2

2
(t cos t + sin t) + p0

3 cos t + p0
4 sin t,

p4(t) =
q0
1

2
(t cos t − sin t) +

q0
2

2
t sin t − p0

3 sin t + p0
4 cos t.

One sees that pi(t) leaves any neighborhood of the origin, no matter how
close to the origin the initial conditions (q0

1 , . . . , p0
4) are; that is, the system

is linearly unstable. On the other hand, all eigenvalues of this linear system
are ±i, each a quadruple eigenvalue. Thus, this linear system is spectrally
stable.

Cherry’s Example (Cherry [1959, 1968]). This example is a Hamil-
tonian system that is spectrally stable and linearly stable but is nonlinearly
unstable. Consider the Hamiltonian on R4 given by

H =
1
2
(q2

1 + p2
1) − (q2

2 + p2
2) +

1
2
p2(p2

1 − q2
1) − q1q2p1. (1.7.6)

This system has an equilibrium at the origin, which is linearly stable, since
the linearized system consists of two uncoupled oscillators in the (δq2, δp2)
and (δq1, δp1) variables, respectively, with frequencies in the ratio 2 : 1 (the
eigenvalues are ±i and ±2i, so the frequencies are in resonance). A family
of solutions (parametrized by a constant τ) of Hamilton’s equations for
(1.7.6) is given by

q1 = −
√

2
cos(t − τ)

t − τ
, q2 =

cos 2(t − τ)
t − τ

,

p1 =
√

2
sin(t − τ)

t − τ
, p2 =

sin 2(t − τ)
t − τ

.

(1.7.7)
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The solutions (1.7.7) clearly blow up in finite time; however, they start at
time t = 0 at a distance

√
3/τ from the origin, so by choosing τ large,

we can find solutions starting arbitrarily close to the origin, yet going to
infinity in a finite time, so the origin is nonlinearly unstable.

Despite the above situation relating the linear and nonlinear theories,
there has been much effort devoted to the development of spectral stability
methods. When instabilities are present, spectral estimates give important
information on growth rates. As far as stability goes, spectral stability
gives necessary, but not sufficient, conditions for stability. In other words,
for the nonlinear problems spectral instability can predict instability, but
not stability . This is a basic result of Liapunov; see Abraham, Marsden,
and Ratiu [1988], for example. Our immediate purpose is the opposite: to
describe sufficient conditions for stability .

Casimir Functions. Besides the energy, there are other conserved quan-
tities associated with group symmetries such as linear and angular mo-
mentum. Some of these are associated with the group that underlies the
passages from material to spatial or body coordinates. These are called
Casimir functions; such a quantity, denoted by C, is characterized by
the fact that it Poisson commutes with every function, that is,

{C, F} = 0 (1.7.8)

for all functions F on phase space P . We shall study such functions and
their relation with momentum maps in Chapters 10 and 11. For example,
if Φ is any function of one variable, the quantity

C(Π) = Φ(‖Π‖2) (1.7.9)

is a Casimir function for the rigid-body bracket, as is seen by using the
chain rule. Likewise,

C(ω) =
∫

Ω

Φ(ω) dx dy (1.7.10)

is a Casimir function for the two-dimensional ideal fluid bracket. (This
calculation ignores boundary terms that arise in an integration by parts—
see Lewis, Marsden, Montgomery, and Ratiu [1986] for a treatment of these
boundary terms.)

Casimir functions are conserved by the dynamics associated with any
Hamiltonian H, since Ċ = {C, H} = 0. Conservation of (1.7.9) corresponds
to conservation of total angular momentum for the rigid body, while con-
servation of (1.7.10) represents Kelvin’s circulation theorem for the Euler
equations. It provides infinitely many independent constants of the motion
that mutually Poisson commute; that is, {C1, C2} = 0, but this does not
imply that these equations are integrable.
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Lagrange–Dirichlet Criterion. For Hamiltonian systems in canonical
form, an equilibrium point (qe, pe) is a point at which the partial derivatives
of H vanish, that is, it is a critical point of H. If the 2n × 2n matrix δ2H
of second partial derivatives evaluated at (qe, pe) is positive or negative
definite (that is, all the eigenvalues of δ2H(qe, pe) have the same sign), then
(qe, pe) is stable. This follows from conservation of energy and the fact from
calculus that the level sets of H near (qe, pe) are approximately ellipsoids.
As mentioned earlier, this condition implies, but is not implied by, spectral
stability. The KAM (Kolmogorov, Arnold, Moser) theorem, which gives
stability of periodic solutions for two-degree-of-freedom systems, and the
Lagrange–Dirichlet theorem are the most basic general stability theorems
for equilibria of Hamiltonian systems.

For example, let us apply the Lagrange–Dirichlet theorem to a classical
mechanical system whose Hamiltonian has the form kinetic plus potential
energy. If (qe, pe) is an equilibrium, it follows that pe is zero. Moreover, the
matrix δ2H of second-order partial derivatives of H evaluated at (qe, pe)
block diagonalizes, with one of the blocks being the matrix of the quadratic
form of the kinetic energy, which is always positive definite. Therefore, if
δ2H is definite, it must be positive definite, and this in turn happens if and
only if δ2V is positive definite at qe, where V is the potential energy of the
system. We conclude that for a mechanical system whose Lagrangian is
kinetic minus potential energy, (qe, 0) is a stable equilibrium, provided that
the matrix δ2V (qe) of second-order partial derivatives of the potential V at
qe is positive definite (or, more generally, qe is a strict local minimum for
V ). If δ2V at qe has a negative definite direction, then qe is an unstable
equilibrium.

The second statement is seen in the following way. The linearized Hamil-
tonian system at (qe, 0) is again a Hamiltonian system whose Hamiltonian
is of the form kinetic plus potential energy, the potential energy being given
by the quadratic form δ2V (qe). From a standard theorem in linear algebra,
which states that two quadratic forms, one of which is positive definite, can
be simultaneously diagonalized, we conclude that the linearized Hamilto-
nian system decouples into a family of Hamiltonian systems of the form

d

dt
(δpk) = −ckδqk,

d

dt
(δqk) =

1
mk

δpk,

where 1/mk > 0 are the eigenvalues of the positive definite quadratic form
given by the kinetic energy in the variables δpj , and ck are the eigenvalues
of δ2V (qe). Thus the eigenvalues of the linearized system are given by
±

√
−ck/mk. Therefore, if some ck is negative, the linearized system has

at least one positive eigenvalue, and thus (qe, 0) is spectrally and hence
linearly and nonlinearly unstable. For generalizations of this, see Oh [1987],
Grillakis, Shatah, and Strauss [1987], Chern [1997] and references therein.



1.7 Nonlinear Stability 37

The Energy–Casimir Method. This is a generalization of the classical
Lagrange–Dirichlet method. Given an equilibrium ue for u̇ = XH(u) on a
Poisson manifold P , it proceeds in the following steps.
To test an equilibrium (satisfying XH(ze) = 0) for stability:

Step 1. Find a conserved function C (C will typically be a Casimir
function plus other conserved quantities) such that the first
variation vanishes:

δ(H + C)(ze) = 0.

Step 2. Calculate the second variation

δ2(H + C)(ze).

Step 3. If δ2(H + C)(ze) is definite (either positive or negative),
then ze is called formally stable.

With regard to Step 3, we point out that an equilibrium solution need
not be a critical point of H alone; in general, δH(ze) �= 0. An example
where this occurs is a rigid body spinning about one of its principal axes
of inertia. In this case, a critical point of H alone would have zero angular
velocity; but a critical point of H + C is a (nontrivial) stationary rotation
about one of the principal axes.

The argument used to establish the Lagrange–Dirichlet test formally
works in infinite dimensions too. Unfortunately, for systems with infinitely
many degrees of freedom (like fluids and plasmas), there is a serious techni-
cal snag. The calculus argument used before runs into problems; one might
think that these are just technical and that we just need to be more careful
with the calculus arguments. In fact, there is widespread belief in this “en-
ergy criterion” (see, for instance, the discussion and references in Marsden
and Hughes [1983, Chapter 6], and Potier-Ferry [1982]). However, Ball and
Marsden [1984] have shown using an example from elasticity theory that
the difficulty is genuine: They produce a critical point of H at which δ2H
is positive definite, yet this point is not a local minimum of H. On the
other hand, Potier-Ferry [1982] shows that asymptotic stability is restored
if suitable dissipation is added. Another way to overcome this difficulty is
to modify Step 3 using a convexity argument of Arnold [1966b].

Modified Step 3. Assume that P is a linear space.

(a) Let ∆u = u − ue denote a finite variation in phase space.

(b) Find quadratic functions Q1 and Q2 such that

Q1(∆u) ≤ H(ue + ∆u) − H(ue) − δH(ue) · ∆u

and

Q2(∆u) ≤ C(ue + ∆u) − C(ue) − δC(ue) · ∆u,
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(c) Require Q1(∆u) + Q2(∆u) > 0 for all ∆u �= 0.

(d) Introduce the norm ‖∆u‖ by

‖∆u‖2 = Q1(∆u) + Q2(∆u),

so ‖∆u‖ is a measure of the distance from u to ue; that is, we choose
d(u, ue) = ‖∆u‖.

(e) Require

|H(ue + ∆u) − H(ue)| ≤ C1‖∆u‖α

and

|C(ue + ∆u) − C(ue)| ≤ C2‖∆u‖α

for constants α, C1, C2 > 0 and ‖∆u‖ sufficiently small.

These conditions guarantee stability of ue and provide the distance mea-
sure relative to which stability is defined. The key part of the proof is
simply the observation that if we add the two inequalities in (b), we get

‖∆u‖2 ≤ H(ue + ∆u) + C(ue + ∆u) − H(ue) − C(ue)

using the fact that δH(ue) ·∆u and δC(ue) ·∆u add up to zero by Step 1.
But H and C are constant in time, so

‖(∆u)time=t‖2 ≤ [H(ue + ∆u) + C(ue + ∆u) − H(ue) − C(ue)]|time=0 .

Now employ the inequalities in (e) to get

‖(∆u)time=t‖2 ≤ (C1 + C2)‖(∆u)time=0‖α.

This estimate bounds the temporal growth of finite perturbations in
terms of initial perturbations, which is what is needed for stability. For
a survey of this method, additional references, and numerous examples, see
Holm, Marsden, Ratiu, and Weinstein [1985].

There are some situations (such as the stability of elastic rods) in which
the above techniques do not apply. The chief reason is that there may be a
lack of sufficiently many Casimir functions to achieve even the first step. For
this reason a modified (but more sophisticated) method has been developed
called the “energy–momentum method.” The key to the method is to avoid
the use of Casimir functions by applying the method before any reduction
has taken place. This method was developed in a series of papers of Simo,
Posbergh, and Marsden [1990, 1991] and Simo, Lewis, and Marsden [1991].
A discussion and additional references are found later in this section.
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Gyroscopic Systems. The distinctions between “stability by energy
methods,” that is, energetics and “spectral stability” become especially
interesting when one adds dissipation. In fact, building on the classical
work of Kelvin and Chetaev, one can prove that if δ2H is indefinite, yet
the spectrum is on the imaginary axis, then adding dissipation necessarily
makes the system linearly unstable. That is, at least one pair of eigenval-
ues of the linearized equations move into the right half-plane. This is a
phenomenon called dissipation-induced instability. This result, along
with related developments, is proved in Bloch, Krishnaprasad, Marsden,
and Ratiu [1991, 1994, 1996]. For example, consider the linear gyroscopic
system

M q̈ + Sq̇ + V q = 0, (1.7.11)

where q ∈ Rn, M is a positive definite symmetric n× n matrix, S is skew,
and V is symmetric. This system is Hamiltonian (Exercise 1.7-2). If V has
negative eigenvalues, then (1.7.11) is formally unstable. However, due to
S, the system can be spectrally stable. However, if R is positive definite
symmetric and ε > 0 is small, the system with friction

M q̈ + Sq̇ + εRq̇ + V q = 0 (1.7.12)

is linearly unstable. A specific example is given in Exercise 1.7-4.

Outline of the Energy–Momentum Method. The energy momen-
tum method is an extension of the Arnold (or energy–Casimir) method for
the study of stability of relative equilibria, which was developed for Lie–
Poisson systems on duals of Lie algebras, especially those of fluid dynamical
type. In addition, the method extends and refines the fundamental stability
techniques going back to Routh, Liapunov, and, in more recent times, to
the work of Smale.

The motivation for these extensions is threefold.
First of all, the energy–momentum method can deal with Lie–Poisson

systems for which there are not sufficient Casimir functions available, such
as 3-D ideal flow and certain problems in elasticity. In fact, Abarbanel
and Holm [1987] use what can be recognized retrospectively as the energy–
momentum method to show that 3-D equilibria for ideal flow are generally
formally unstable due to vortex stretching. Other fluid and plasma situ-
ations, such as those considered by Chern and Marsden [1990] for ABC
flows and certain multiple-hump situations in plasma dynamics (see Holm,
Marsden, Ratiu, and Weinstein [1985] and Morrison [1987], for example),
provided additional motivation in the Lie–Poisson setting.

A second motivation is to extend the method to systems that need not be
Lie–Poisson and still make use of the powerful idea of using reduced spaces,
as in the original Arnold method. Examples such as rigid bodies with vi-
brating antennas (Sreenath, Oh, Krishnaprasad, and Marsden [1988], Oh,



40 1. Introduction and Overview

Sreenath, Krishnaprasad, and Marsden [1989], Krishnaprasad and Mars-
den [1987]) and coupled rigid bodies (Patrick [1989]) motivated the need
for such an extension of the theory.

Finally, it gives sharper stability conclusions in material representation
and links with geometric phases.

The Idea of the Energy–Momentum Method. The setting of the
energy–momentum method is that of a mechanical system with symmetry
with a configuration space Q and phase space T ∗Q and a symmetry group
G acting, with a standard momentum map J : T ∗Q → g∗, where g∗ is the
Lie algebra of G. Of course, one gets the Lie–Poisson case when Q = G.

The rough idea for the energy momentum method is first to formulate
the problem directly on the unreduced space. Here, relative equilibria as-
sociated with a Lie algebra element ξ are critical points of the augmented
Hamiltonian Hξ := H−〈J, ξ〉. The idea is now to compute the second vari-
ation of Hξ at a relative equilibrium ze with momentum value µe subject to
the constraint J = µe and on a space transverse to the action of Gµe

, the
subgroup of G that leaves µe fixed. Although the augmented Hamiltonian
plays the role of H+C in the Arnold method, notice that Casimir functions
are not required to carry out the calculations.

The surprising thing is that the second variation of Hξ at the relative
equilibrium can be arranged to be block diagonal, using splittings that are
based on the mechanical connection, while at the same time, the symplectic
structure also has a simple block structure, so that the linearized equations
are put into a useful canonical form. Even in the Lie–Poisson setting, this
leads to situations in which one gets much simpler second variations. This
block diagonal structure is what gives the method its computational power.

The general theory for carrying out this procedure was developed in
Simo, Posbergh, and Marsden [1990, 1991] and Simo, Lewis, and Marsden
[1991]. An exposition of the method may be found, along with additional
references, in Marsden [1992]. It is of interest to extend this to the singular
case, which is the subject of ongoing work; see Ortega and Ratiu [1997,
1998] and references therein.

The energy–momentum method may also be usefully formulated in the
Lagrangian setting, which is very convenient for the calculations in many
examples. The general theory for this was developed in Lewis [1992] and
Wang and Krishnaprasad [1992]. This Lagrangian setting is closely related
to the general theory of Lagrangian reduction. In this context one reduces
variational principles rather than symplectic and Poisson structures, and
for the case of reducing the tangent bundle of a Lie group, this leads to the
Euler–Poincaré equations rather than the Lie–Poisson equations.

Effectiveness in Examples. The energy–momentum method has proven
its effectiveness in a number of examples. For instance, Lewis and Simo
[1990] were able to deal with the stability problem for pseudo-rigid bodies,
which was thought up to that time to be analytically intractable.
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The energy–momentum method can sometimes be used in contexts where
the reduced space is singular or at nongeneric points in the dual of the
Lie algebra. This is done at singular points in Lewis, Ratiu, Simo, and
Marsden [1992], who analyze the heavy top in great detail and, in the
Lie–Poisson setting for compact groups at nongeneric points in the dual
of the Lie algebra, in Patrick [1992, 1995]. One of the key things is to
keep track of group drifts, because the isotropy group Gµ can change for
nearby points, and these are important for the reconstruction process and
for understanding the Hannay–Berry phase in the context of reduction
(see Marsden, Montgomery, and Ratiu [1990] and references therein). For
noncompact groups and an application to the dynamics of rigid bodies in
fluids (underwater vehicles), see Leonard and Marsden [1997]. Additional
work in this area is still needed in the context of singular reduction.

The Benjamin–Bona theorem on stability of solitons for the KdV equa-
tion can be viewed as an instance of the energy momentum method, see
also Maddocks and Sachs [1993], and for example, Oh [1987] and Grillakis,
Shatah, and Strauss [1987], although there are many subtleties in the PDE
context.

Hamiltonian Bifurcations. The energy–momentum method has also
been used in the context of Hamiltonian bifurcation problems. We shall
give some simple examples of this in §1.8. One such context is that of free
boundary problems building on the work of Lewis, Marsden, Montgomery,
and Ratiu [1986], which gives a Hamiltonian structure for dynamic free
boundary problems (surface waves, liquid drops, etc.), generalizing Hamil-
tonian structures found by Zakharov. Along with the Arnold method itself,
this is used for a study of the bifurcations of such problems in Lewis, Mars-
den, and Ratiu [1987], Lewis [1989, 1992], Kruse, Marsden, and Scheurle
[1993], and other references cited therein.

Converse to the Energy–Momentum Method. Because of the block
structure mentioned, it has also been possible to prove, in a sense, a con-
verse of the energy–momentum method. That is, if the second variation
is indefinite, then the system is unstable. One cannot, of course, hope to
do this literally as stated, since there are many systems (e.g., gyroscopic
system mentioned earlier—an explicit example is given in Exercise 1.7-4)
that are formally unstable, and yet their linearizations have eigenvalues
lying on the imaginary axis. Most of these are presumably unstable due
to “Arnold diffusion,” but of course this is a very delicate situation to
prove analytically. Instead, the technique is to show that with the addition
of dissipation, the system is destabilized. This idea of dissipation-induced
instability goes back to Thomson and Tait in the last century. In the con-
text of the energy–momentum method, Bloch, Krishnaprasad, Marsden,
and Ratiu [1994, 1996] show that with the addition of appropriate dissipa-
tion, the indefiniteness of the second variation is sufficient to induce linear
instability in the problem.



42 1. Introduction and Overview

There are related eigenvalue movement formulas (going back to Krein)
that are used to study non-Hamiltonian perturbations of Hamiltonian nor-
mal forms in Kirk, Marsden, and Silber [1996]. There are interesting ana-
logues of this for reversible systems in O’Reilly, Malhotra, and Namam-
chchivaya [1996].

Extension to Nonholonomic Systems. It is possible to partially ex-
tend the energy–momentum method to the case of nonholonomic systems.
Building on the work on nonholonomic systems in Arnold [1988], Bates and
Sniatycki [1993] and Bloch, Krishnaprasad, Marsden, and Murray [1996],
on the example of the Routh problem in Zenkov [1995], and on the large
Russian literature in this area, Zenkov, Bloch, and Marsden [1998] show
that there is a generalization to this setting. The method is effective in the
sense that it applies to a wide variety of interesting examples, such as the
rolling disk, a three-wheeled vehicle known as the the roller racer and the
rattleback.

Exercises

� 1.7-1. Work out Cherry’s example of the Hamiltonian system in R4 whose
energy function is given by (1.7.6). Show explicitly that the origin is a
linearly and spectrally stable equilibrium but that it is nonlinearly unstable
by proving that (1.7.7) is a solution for every τ > 0 that can be chosen to
start arbitrarily close to the origin and that goes to infinity for t → τ .

� 1.7-2. Show that (1.7.11) is Hamiltonian with p = M q̇,

H(q,p) =
1
2
p · M−1p +

1
2
q · V q,

and

{F, K} =
∂F

∂qi

∂K

∂pi
− ∂K

∂qi

∂F

∂pi
− Sij ∂F

∂pi

∂K

∂pj
.

� 1.7-3. Show that (up to an overall factor) the characteristic polynomial
for the linear system (1.7.11) is

p(λ) = det[λ2M + λS + V ]

and that this actually is a polynomial of degree n in λ2.

� 1.7-4. Consider the two-degree-of-freedom system

ẍ − gẏ + γẋ + αx = 0,

ÿ + gẋ + δẏ + βy = 0.

(a) Write it in the form (1.7.12).
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(b) For γ = δ = 0 show:

(i) it is spectrally stable if α > 0, β > 0;

(ii) for αβ < 0, it is spectrally unstable;

(iii) for α < 0, β < 0, it is formally unstable (that is, the energy
function, which is a quadratic form, is indefinite); and

A. if D := (g2 + α + β)2 − 4αβ < 0, then there are two roots
in the right half-plane and two in the left; the system is
spectrally unstable;

B. if D = 0 and g2 +α+β ≥ 0, the system is spectrally stable,
but if g2 + α + β < 0 then it is spectrally unstable; and

C. if D > 0 and g2 +α+β ≥ 0, the system is spectrally stable,
but if g2 + α + β < 0, then it is spectrally unstable.

(c) For a polynomial p(λ) = λ4 + ρ1λ
3 + ρ2λ

2 + ρ3λ + ρ4, the Routh–
Hurwitz criterion (see Gantmacher [1959, Volume 2]) says that the
number of right half-plane zeros of p is the number of sign changes
of the sequence{

1, ρ1,
ρ1ρ2 − ρ3

ρ1
,

ρ3ρ1ρ2 − ρ2
3 − ρ4ρ

2
1

ρ1ρ2 − ρ3
, ρ4

}
.

Apply this to the case in which α < 0, β < 0, g2 + α + β > 0, γ > 0,
and δ > 0 to show that the system is spectrally unstable.

1.8 Bifurcation

When the energy–momentum or energy–Casimir method indicates that
an instability might be possible, techniques of bifurcation theory can be
brought to bear to determine the emerging dynamical complexities such as
the development of multiple equilibria and periodic orbits.

Ball in a Rotating Hoop. For example, consider a particle moving
with no friction in a rotating hoop (Figure 1.8.1).

In §2.8 we derive the equations and study the phase portraits for this
system. One finds that as ω increases past

√
g/R, the stable equilibrium at

θ = 0 becomes unstable through a Hamiltonian pitchfork bifurcation and
two new solutions are created. These solutions are symmetric in the vertical
axis, a reflection of the original Z2 symmetry of the mechanical system in
Figure 1.8.1. Breaking this symmetry by, for example, putting the rotation
axis slightly off center is an interesting topic that we shall discuss in §2.8.
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Figure 1.8.1. A particle moving in a hoop rotating with angular velocity ω.

Rotating Liquid Drop. The system consists of the two-dimensional
Euler equations for an ideal fluid with a free boundary. An equilibrium
solution consists of a rigidly rotating circular drop. The energy–Casimir
method shows stability, provided that

Ω < 2

√
3τ

R3
. (1.8.1)

In this formula, Ω is the angular velocity of the circular drop, R is its
radius, and τ is the surface tension, a constant. As Ω increases and (1.8.1)
is violated, the stability of the circular solution is lost and is picked up by
elliptical-like solutions with Z2 ×Z2 symmetry. The bifurcation is actually
subcritical relative to the angular velocity Ω (that is, the new solutions
occur below the critical value of Ω) and is supercritical (the new solutions
occur above criticality) relative to the angular momentum. This is proved in
Lewis, Marsden, and Ratiu [1987] and Lewis [1989], where other references
may also be found (see Figure 1.8.2).

For the ball in the hoop, the eigenvalue evolution for the linearized equa-
tions is shown in Figure 1.8.3(a). For the rotating liquid drop, the movement
of eigenvalues is the same: They are constrained to stay on the imaginary
axis because of the symmetry of the problem. Without this symmetry,
eigenvalues typically split, as in Figure 1.8.3(b). These are examples of a
general theory of the movement of such eigenvalues given in Golubitsky
and Stewart [1987], Dellnitz, Melbourne, and Marsden [1992], Knobloch,
Mahalov, and Marsden [1994], and Kirk, Marsden, and Silber [1996].
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Figure 1.8.2. A circular liquid drop losing its stability and its symmetry.
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Figure 1.8.3. The movement of eigenvalues in bifurcation of equilibria.

More Examples. Another example is the heavy top: a rigid body with
one point fixed, moving in a gravitational field. When the top makes the
transition from a fast top to a slow top, the angular velocity ω decreases
past the critical value

ωc =
2
√

MglI1

I3
, (1.8.2)

stability is lost, and a resonance bifurcation occurs. Here, when the
bifurcation occurs, the eigenvalues of the equations linearized at the equi-
librium behave as in Figure 1.8.4.

For an extensive study of bifurcations and stability in the dynamics of
a heavy top, see Lewis, Ratiu, Simo, and Marsden [1992]. Behavior of this
sort is sometimes called a Hamiltonian Krein–Hopf bifurcation , or a
gyroscopic instability (see van der Meer [1985, 1990]). Here more com-
plex dynamic behavior ensues, including periodic and chaotic motions (see
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Figure 1.8.4. Eigenvalue movement in the Hamiltonian Hopf bifurcation.

Holmes and Marsden [1983]). In some systems with symmetry, the eigen-
values can pass as well as split , as has been shown by Dellnitz, Melbourne,
and Marsden [1992] and references therein.

More sophisticated examples, such as the dynamics of two coupled three-
dimensional rigid bodies, requires a systematic development of the basic
theory of Golubitsky and Schaeffer [1985] and Golubitsky, Stewart, and
Schaeffer [1988]. This theory is begun in, for example, Duistermaat [1983],
Lewis, Marsden, and Ratiu [1987], Lewis [1989], Patrick [1989], Meyer and
Hall [1992], Broer, Chow, Kim, and Vegter [1993], and Golubitsky, Mars-
den, Stewart, and Dellnitz [1995]. For bifurcations in the double spher-
ical pendulum (which includes a Hamiltonian–Krein–Hopf bifurcation),
see Dellnitz, Marsden, Melbourne, and Scheurle [1992] and Marsden and
Scheurle [1993a].

Exercises

� 1.8-1. Study the bifurcations (changes in the phase portrait) for the equa-
tion

ẍ + µx + x2 = 0

as µ passes through zero. Use the second derivative test on the potential
energy.

� 1.8-2. Repeat Exercise 1.8-1 for

ẍ + µx + x3 = 0

as µ passes through zero.
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1.9 The Poincaré–Melnikov Method

The Forced Pendulum. To begin with a simple example, consider the
equation of a forced pendulum:

φ̈ + sinφ = ε cos ωt. (1.9.1)

Here ω is a constant angular forcing frequency and ε is a small parameter.
Systems of this or a similar nature arise in many interesting situations.
For example, a double planar pendulum and other “executive toys” exhibit
chaotic motion that is analogous to the behavior of this equation; see Burov
[1986] and Shinbrot, Grebogi, Wisdom, and Yorke [1992].

For ε = 0 (1.9.1) has the phase portrait of a simple pendulum (the same
as shown later in Figure 2.8.2a). For ε small but nonzero, (1.9.1) possesses
no analytic integrals of the motion. In fact, it possesses transversal inter-
secting stable and unstable manifolds (separatrices); that is, the Poincaré
map Pt0 : R2 → R2 defined as the map that advance solutions by one
period T = 2π/ω starting at time t0 possess transversal homoclinic points.
This type of dynamic behavior has several consequences, besides precluding
the existence of analytic integrals, that lead one to use the term “chaotic.”
For example, (1.9.1) has infinitely many periodic solutions of arbitrarily
high period. Also, using the shadowing lemma, one sees that given any
bi–infinite sequence of zeros and ones9, there exists a corresponding solu-
tion of (1.9.1) that successively crosses the plane φ = 0 (the pendulum’s
vertically downward configuration) with φ > 0 corresponding to a zero and
φ < 0 corresponding to a one. The origin of this chaos on an intuitive
level lies in the motion of the pendulum near its unperturbed homoclinic
orbit, the orbit that does one revolution in infinite time. Near the top of
its motion (where φ = ±π) small nudges from the forcing term can cause
the pendulum to fall to the left or right in a temporally complex way.

The dynamical systems theory needed to justify the preceding statements
is available in Smale [1967], Moser [1973], Guckenheimer and Holmes [1983],
and Wiggins [1988, 1990]. Some key people responsible for the development
of the basic theory are Poincaré, Birkhoff, Kolmogorov, Melnikov, Arnold,
Smale, and Moser. The idea of transversal intersecting separatrices comes
from Poincaré’s famous paper on the three-body problem (Poincaré [1890]).
His goal, not quite achieved for reasons we shall comment on later, was to
prove the nonintegrability of the restricted three-body problem and that
various series expansions used up to that point diverged (he began the
theory of asymptotic expansions and dynamical systems in the course of

9For example, build such a sequence out of digits from the binary expansion of π
and e using the former for the left infinite sequence and the latter for the right infinite
sequence.
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this work). See Diacu and Holmes [1996] for additional information about
Poincaré’s work.

Although Poincaré had all the essential tools needed to prove that equa-
tions like (1.9.1) are not integrable (in the sense of having no analytic
integrals), his interests lay with harder problems, and he did not develop
the easier basic theory very much. Important contributions were made by
Melnikov [1963] and Arnold [1964] that lead to a simple procedure for
proving that (1.9.1) is not integrable. The Poincaré–Melnikov method was
revived by Chirikov [1979], Holmes [1980b], and Chow, Hale, and Mallet-
Paret [1980]. We shall give the method for Hamiltonian systems. We refer
to Guckenheimer and Holmes [1983] and to Wiggins [1988, 1990] for gen-
eralizations and further references.

The Poincaré–Melnikov Method. This method proceeds as follows:

1. Write the dynamical equation to be studied in the form

ẋ = X0(x) + εX1(x, t), (1.9.2)

where x ∈ R2, X0 is a Hamiltonian vector field with energy H0,
X1 is periodic with period T and is Hamiltonian with energy a T–
periodic function H1. Assume that X0 has a homoclinic orbit x(t),
so x(t) → x0, a hyperbolic saddle point, as t → ±∞.

2. Compute the Poincaré–Melnikov function defined by

M(t0) =
∫ ∞

−∞
{H0, H1}(x(t − t0), t) dt, (1.9.3)

where { , } denotes the Poisson bracket.

If M(t0) has simple zeros as a function of t0, then (1.9.2) has, for
sufficiently small ε, homoclinic chaos in the sense of transversal in-
tersecting separatrices (in the sense of Poincaré maps as mentioned
above).

We shall prove this result in §2.11. To apply it to equation (1.9.1) one
proceeds as follows. Let x = (φ, φ̇), so we get

d

dt

[
φ

φ̇

]
=

[
φ̇

− sinφ

]
+ ε

[
0

cos ωt

]
.

The homoclinic orbits for ε = 0 are given by (see Exercise 1.9-1)

x(t) =
[

φ(t)
φ̇(t)

]
=

[
±2 tan−1(sinh t)

±2 sech t

]
,
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and one has

H0(φ, φ̇) = 1
2 φ̇2 − cos φ and H1(φ, φ̇, t) = φ cos ωt. (1.9.4)

Hence (1.9.3) gives

M(t0) =
∫ ∞

−∞

(
∂H0

∂φ

∂H1

∂φ̇
− ∂H0

∂φ̇

∂H1

∂φ

)
(x(t − t0), t) dt

= −
∫ ∞

−∞
φ̇(t − t0) cos ωt dt

= ∓
∫ ∞

−∞
[2 sech(t − t0) cos ωt] dt.

Changing variables and using the fact that sech is even and sin is odd, we
get

M(t0) = ∓2
(∫ ∞

−∞
sech t cos ωt dt

)
cos(ωt0).

The integral is evaluated by residues (see Exercise 1.9-2):

M(t0) = ∓2π sech
(πω

2

)
cos(ωt0), (1.9.5)

which clearly has simple zeros. Thus, this equation has chaos for ε small
enough.

Exercises

� 1.9-1. Verify directly that the homoclinic orbits for the simple pendulum
equation φ̈ + sinφ = 0 are given by φ(t) = ±2 tan−1(sinh t).

� 1.9-2. Evaluate the integral
∫ ∞
−∞ sech t cos ωt dt to prove (1.9.5) as fol-

lows. Write sech t = 2/(et + e−t) and note that there is a simple pole
of

f(z) =
eiωz + e−iωz

ez + e−z

in the complex plane at z = πi/2. Evaluate the residue there and apply
Cauchy’s theorem.10

10Consult a book on complex variables such as Marsden and Hoffman, Basic Complex
Analysis, Third Edition, Freeman, 1998.
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1.10 Resonances, Geometric Phases, and
Control

The work of Smale [1970] shows that topology plays an important role
in mechanics. Smale’s work employs Morse theory applied to conserved
quantities such as the energy–momentum map. In this section we point out
other ways in which geometry and topology enter mechanical problems.

The One-to-One Resonance. When one considers resonant systems,
one often encounters Hamiltonians of the form

H =
1
2
(q2

1 + p2
1) +

λ

2
(q2

2 + p2
2) + higher-order terms. (1.10.1)

The quadratic terms describe two oscillators that have the same frequency
when λ = 1, which is why one speaks of a one-to-one resonance. To analyze
the dynamics of H, it is important to utilize a good geometric picture for
the critical case

H0 =
1
2
(q2

1 + p2
1 + q2

2 + p2
2). (1.10.2)

The energy level H0 = constant is the three-sphere S3 ⊂ R4. If we think of
H0 as a function on complex two-space C2 by letting

z1 = q1 + ip1 and z2 = q2 + ip2,

then H0 = (|z1|2 + |z2|2)/2, so H0 is left-invariant by the action of SU(2),
the group of complex 2 × 2 unitary matrices of determinant one. The cor-
responding conserved quantities are

W1 = 2(q1q2 + p1p2),
W2 = 2(q2p1 − q1p2),

W3 = q2
1 + p2

1 − q2
2 − p2

2,

(1.10.3)

which comprise the components of a (momentum) map

J : R
4 → R

3. (1.10.4)

From the readily verified relation 4H2
0 = W 2

1 + W 2
2 + W 2

3 , one finds that
J restricted to S3 gives a map

j : S3 → S2. (1.10.5)

The fibers j−1(point) are circles, and the trajectories for the dynamics of
H0 move along these circles. The map j is the Hopf fibration, which
describes S3 as a topologically nontrivial circle bundle over S2. The role of
the Hopf fibration in mechanics was known to Reeb [1949].
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One also finds that the study of systems like (1.10.1) that are close to
H0 can, to a good approximation, be reduced to dynamics on S2. These
dynamics are in fact Lie–Poisson and S2 sits as a coadjoint orbit in so(3)∗,
so the evolution is of rigid-body type, just with a different Hamiltonian.
For a computer study of the Hopf fibration in the one-to-one resonance,
see Kocak, Bisshopp, Banchoff, and Laidlaw [1986].

The Hopf Fibration in Rigid-Body Mechanics. When doing reduc-
tion for the rigid body, one studies the reduced space

J−1(µ)/Gµ = J−1(µ)/S1,

which in this case is the sphere S2. As we shall see in Chapter 15, J−1(µ)
is topologically the same as the rotation group SO(3), which in turn is the
same as S3/Z2. Thus, the reduction map is a map of SO(3) to S2. Such a
map is given explicitly by taking an orthogonal matrix A and mapping it
to the vector on the sphere given by Ak, where k is the unit vector along
the z-axis. This map, which does the projection, is in fact a restriction of
a momentum map and is, when composed with the map of S3 ∼= SU(2) to
SO(3), just the Hopf fibration again. Thus, not only does the Hopf fibration
occur in the one-to-one resonance, it occurs in the rigid body in a natural
way as the reduction map from material to body representation!

Geometric Phases. The history of this concept is complex. We refer
to Berry [1990] for a discussion of the history, going back to Bortolotti in
1926, Vladimirskii and Rytov in 1938 in the study of polarized light, Kato
in 1950, and Longuet–Higgins and others in 1958 in atomic physics. Some
additional historical comments regarding phases in rigid-body mechanics
are given below.

We pick up the story with the classical example of the Foucault pendu-
lum. The Foucault pendulum gives an interesting phase shift (a shift in the
angle of the plane of the pendulum’s swing) when the overall system un-
dergoes a cyclic evolution (the pendulum is carried in a circular motion due
to the Earth’s rotation). This phase shift is geometric in character: If one
parallel transports an orthonormal frame along the same line of latitude,
it returns with a phase shift equaling that of the Foucault pendulum. This
phase shift ∆θ = 2π cos α (where α is the co-latitude) has the geometric
meaning shown in Figure 1.10.1.

In geometry, when an orthonormal frame returns to its original position
after traversing a closed path but is rotated, the rotation is referred to as
holonomy (or anholonomy). This is a unifying mathematical concept
that underlies many geometric phases in systems such as fiber optics, MRI
(magnetic resonance imaging), amoeba propulsion, molecular dynamics,
and micromotors. These applications represent one reason the subject is of
such current interest.

In the quantum case a seminal paper on geometric phases is Kato [1950].
It was Berry [1984, 1985], Simon [1983], Hannay [1985], and Berry and
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cut and
unroll cone

parallel translate
frame along a
line of latitude

Figure 1.10.1. The geometric interpretation of the Foucault pendulum phase
shift.

Hannay [1988] who realized that holonomy is the crucial geometric unify-
ing thread. On the other hand, Golin, Knauf, and Marmi [1989], Mont-
gomery [1988], and Marsden, Montgomery, and Ratiu [1989, 1990] demon-
strated that averaging connections and reduction of mechanical systems
with symmetry also plays an important role, both classically and quantum-
mechanically. Aharonov and Anandan [1987] have shown that the geomet-
ric phase for a closed loop in projectivized complex Hilbert space occurring
in quantum mechanics equals the exponential of the symplectic area of a
two–dimensional manifold whose boundary is the given loop. The symplec-
tic form in question is naturally induced on the projective space from the
canonical symplectic form of complex Hilbert space (minus the imaginary
part of the inner product) via reduction. Marsden, Montgomery, and Ratiu
[1990] show that this formula is the holonomy of the closed loop relative to
a principal S1-connection on the unit ball of complex Hilbert space and is
a particular case of the holonomy formula in principal bundles with abelian
structure group.

Geometric Phases and Locomotion. Geometric phases naturally oc-
cur in families of integrable systems depending on parameters. Consider an
integrable system with action-angle variables

(I1, I2, . . . , In, θ1, θ2, . . . , θn);

assume that the Hamiltonian H(I1, I2, . . . , In;m) depends on a parameter
m ∈ M . This just means that we have a Hamiltonian independent of the
angular variables θ and we can identify the configuration space with an n-
torus Tn. Let c be a loop based at a point m0 in M . We want to compare the
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angular variables in the torus over m0, while the system is slowly changed
as the parameters traverse the circuit c. Since the dynamics in the fiber vary
as we move along c, even if the actions vary by a negligible amount, there
will be a shift in the angle variables due to the frequencies ωi = ∂H/∂Ii of
the integrable system; correspondingly, one defines

dynamic phase =
∫ 1

0

ωi (I, c(t)) dt.

Here we assume that the loop is contained in a neighborhood whose stan-
dard action coordinates are defined. In completing the circuit c, we return
to the same torus, so a comparison between the angles makes sense. The
actual shift in the angular variables during the circuit is the dynamic
phase plus a correction term called the geometric phase. One of the key
results is that this geometric phase is the holonomy of an appropriately
constructed connection (called the Hannay–Berry connection) on the
torus bundle over M that is constructed from the action–angle variables.
The corresponding angular shift, computed by Hannay [1985], is called
Hannay’s angles, so the actual phase shift is given by

∆θ = dynamic phases + Hannay’s angles.

The geometric construction of the Hannay–Berry connection for classical
systems is given in terms of momentum maps and averaging in Golin,
Knauf, and Marmi [1989] and Montgomery [1988]. Weinstein [1990] makes
precise the geometric structures that make possible a definition of the Han-
nay angles for a cycle in the space of Lagrangian submanifolds, even with-
out the presence of an integrable system. Berry’s phase is then seen as a
“primitive” for the Hannay angles. A summary of this work is given in
Woodhouse [1992].

Another class of examples where geometric phases naturally arise is the
dynamics of coupled rigid bodies. The three-dimensional single rigid body
is discussed below. For several coupled rigid bodies, the dynamics can be
quite complex. For instance, even for three coupled bodies in the plane, the
dynamics are known to be chaotic, despite the presence of stable relative
equilibria; see Oh, Sreenath, Krishnaprasad, and Marsden [1989]. Geomet-
ric phase phenomena for this type of example are quite interesting as they
are in some of the work of Wilczek and Shapere on locomotion in microor-
ganisms. (See, for example, Shapere and Wilczek [1987, 1989] and Wilczek
and Shapere [1989].) In this problem, control of the system’s internal or
shape variables can lead to phase changes in the external or group variables.
These choices of variables are related to the variables in the reduced and
the unreduced phase spaces. In this setting one can formulate interesting
questions of optimal control such as “When a falling cat turns itself over
in mid-flight (all the time with zero angular momentum!), does it do so
with optimal efficiency in terms of, say, energy expended?” There are in-
teresting answers to these questions that are related to the dynamics of
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Yang–Mills particles moving in the associated gauge field of the problem.
See Montgomery [1984, 1990] and references therein.

We give two simple examples of geometric phases for linked rigid bodies.
Additional details can be found in Marsden, Montgomery, and Ratiu [1990].
First, consider three uniform coupled bars (or coupled planar rigid bodies)
linked together with pivot (or pin) joints, so the bars are free to rotate
relative to each other. Assume that the bars are moving freely in the plane
with no external forces and that the angular momentum is zero. However,
assume that the joint angles can be controlled with, say, motors in the
joints. Figure 1.10.2 shows how the joints can be manipulated, each one
going through an angle of 2π and yet the overall assemblage rotates through
an angle π.

Figure 1.10.2. Manipulating the joint angles can lead to an overall rotation of
the system.

Here we assume that the moments of inertia of the two outside bars
(about an axis through their centers of mass and perpendicular to the
page) are each one-half that of the middle bar. The statement is verified
by examining the equation for zero angular momentum (see, for example
Sreenath, Oh, Krishnaprasad, and Marsden [1988] and Oh, Sreenath, Kr-
ishnaprasad, and Marsden [1989]). General formulas for the reconstruction
phase applicable to examples of this type are given in Krishnaprasad [1989].

A second example is the dynamics of linkages. This type of example is
considered in Krishnaprasad [1989], Yang and Krishnaprasad [1990], includ-
ing comments on the relation with the three-manifold theory of Thurston.
Here one considers a linkage of rods, say four rods linked by pivot joints as
in Figure 1.10.3.

The system is free to rotate without external forces or torques, but there
are assumed to be torques at the joints. When one turns the small “crank”
the whole assemblage turns, even though the angular momentum, as in the
previous example, stays zero.
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overall phase
rotation of
the assemblage

crank

Figure 1.10.3. Turning the crank can lead to an overall phase shift.

For an overview of how geometric phases are used in robotic locomotion
problems, see Marsden and Ostrowski [1998]. (This paper is available at
http://www.cds.caltech.edu/~marsden.)

Phases in Rigid-Body Dynamics. As we shall see in Chapter 15, the
motion of a rigid body is a geodesic with respect to a left-invariant Rieman-
nian metric (the inertia tensor) on the rotation group SO(3). The corre-
sponding phase space is P = T ∗ SO(3) and the momentum map J : P → R3

for the left SO(3) action is right translation to the identity. We identify
so(3)∗ with so(3) via the standard inner product and identify R3 with
so(3) via the map v �→ v̂, where v̂(w) = v × w,× being the standard cross
product. Points in so(3)∗ are regarded as the left reduction of T ∗ SO(3) by
G = SO(3) and are the angular momenta as seen from a body-fixed frame.

The reduced spaces Pµ = J−1(µ)/Gµ are identified with spheres in R3 of
Euclidean radius ‖µ‖, with their symplectic form ωµ = −dS/‖µ‖, where dS
is the standard area form on a sphere of radius ‖µ‖ and where Gµ consists
of rotations about the µ-axis. The trajectories of the reduced dynamics
are obtained by intersecting a family of homothetic ellipsoids (the energy
ellipsoids) with the angular momentum spheres. In particular, all but at
most four of the reduced trajectories are periodic. These four exceptional
trajectories are the well-known homoclinic trajectories; we shall determine
them explicitly in §15.8.

Suppose a reduced trajectory Π(t) is given on Pµ, with period T . After
time T , by how much has the rigid body rotated in space? The spatial an-
gular momentum is π = µ = gΠ, which is the conserved value of J. Here
g ∈ SO(3) is the attitude of the rigid body and Π is the body angular
momentum. If Π(0) = Π(T ), then

µ = g(0)Π(0) = g(T )Π(T ),

and so g(T )−1µ = g(0)−1µ, that is, g(T )g(0)−1µ = µ, so g(T )g(0)−1 is a
rotation about the axis µ. We want to give the angle of this rotation.
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To determine this angle, let c(t) be the corresponding trajectory in
J−1(µ) ⊂ P . Identify T ∗ SO(3) with SO(3)×R3 by left trivialization, so c(t)
gets identified with (g(t),Π(t)). Since the reduced trajectory Π(t) closes
after time T , we recover the fact that c(T ) = gc(0) for some g ∈ Gµ. Here,
g = g(T )g(0)−1 in the preceding notation. Thus, we can write

g = exp[(∆θ)ζ], (1.10.6)

where ζ = µ/‖µ‖ identifies gµ with R by aζ �→ a, for a ∈ R. Let D be one
of the two spherical caps on S2 enclosed by the reduced trajectory, let Λ be
the corresponding oriented solid angle, that is, |Λ| = (area D)/‖µ‖2, and
let Hµ be the energy of the reduced trajectory. See Figure 1.10.4. All norms
are taken relative to the Euclidean metric of R3. Montgomery [1991a] and
Marsden, Montgomery, and Ratiu [1990] show that modulo 2π, we have
the rigid-body phase formula

∆θ =
1

‖µ‖

{∫
D

ωµ + 2HµT

}
= −Λ +

2HµT

‖µ‖ . (1.10.7)

Pµ

D
reduced trajectory

true trajectory

horizontal liftdynamic phase

geometric phase

πµ

Pµ

Figure 1.10.4. The geometry of the rigid-body phase formula.
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More History. The history of the rigid-body phase formula is quite
interesting and seems to have proceeded independently of the other devel-
opments above.11 The formula has its roots in work of MacCullagh dating
back to 1840 and Thomson and Tait [1867, §§123, 126]. (See Zhuravlev
[1996] and O’Reilly [1997] for a discussion and extensions.) A special case
of formula (1.10.7) is given in Ishlinskii [1952]; see also Ishlinskii [1963].12

The formula referred to covers a special case in which only the geometric
phase is present. For example, in certain precessional motions in which,
up to a certain order in averaging, one can ignore the dynamic phase, and
only the geometric phase survives. Even though Ishlinskii found only spe-
cial cases of the result, he recognized that it is related to the geometric
concept of parallel transport. A formula like the one above was found by
Goodman and Robinson [1958] in the context of drift in gyroscopes; their
proof is based on the Gauss–Bonnet theorem. Another interesting approach
to formulas of this sort, also based on averaging and solid angles, is given in
Goldreich and Toomre [1969], who applied it to the interesting geophysical
problem of polar wander (see also Poincaré [1910]!).

The special case of the above formula for a symmetric free rigid body
was given by Hannay [1985] and Anandan [1988, formula (20)]. The proof
of the general formula based on the theory of connections and the formula
for holonomy in terms of curvature was given by Montgomery [1991a] and
Marsden, Montgomery, and Ratiu [1990]. The approach using the Gauss–
Bonnet theorem and its relation to the Poinsot construction along with
additional results is taken up by Levi [1993]. For applications to general
resonance problems (such as the three-wave interaction) and nonlinear op-
tics, see Alber, Luther, Marsden and Robbins [1998].

An analogue of the rigid-body phase formula for the heavy top and the
Lagrange top (symmetric heavy top) was given in Marsden, Montgomery,
and Ratiu [1990]. Links with vortex filament configurations were given in
Fukumoto and Miyajima [1996] and Fukumoto [1997].

Satellites with Rotors and Underwater Vehicles. Another example
that naturally gives rise to geometric phases is the rigid body with one or
more internal rotors. Figure 1.10.5 illustrates the system considered. To
specify the position of this system we need an element of the group of rigid
motions of R3 to place the center of mass and the attitude of the carrier,
and an angle (element of S1) to position each rotor. Thus the configuration
space is Q = SE(3)×S1 ×S1 ×S1. The equations of motion of this system
are an extension of Euler’s equations of motion for a freely spinning rotor.
Just as holding a spinning bicycle wheel while sitting on a swivel chair can
affect the carrier’s motion, so the spinning rotors can affect the dynamics

11We thank V. Arnold for valuable help with these comments.
12On page 195 of Ishlinskii [1976], a later book on mechanics, it is stated that “the

formula was found by the author in 1943 and was published in Ishlinskii [1952].”
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rigid carrier

spinning rotors

Figure 1.10.5. The rigid body with internal rotors.

of the rigid carrier.
In this example, one can analyze equilibria and their stability in much the

same way as one can with the rigid body. However, what one often wants to
do is to forcibly spin, or control, the rotors so that one can achieve attitude
control of the structure in the same spirit that a falling cat has control
of its attitude by manipulating its body parts while falling. For example,
one can attempt to prescribe a relation between the rotor dynamics and
the rigid-body dynamics by means of a feedback law. This has the property
that the total system angular momentum is still preserved and that the
resulting dynamic equations can be expressed entirely in terms of the free
rigid-body variable. (A falling cat has zero angular momentum even though
it is able to turn over!) In some cases the resulting equations are again
Hamiltonian on the invariant momentum sphere. Using this fact, one can
compute the geometric phase for the problem generalizing the free rigid-
body phase formula. (See Bloch, Krishnaprasad, Marsden, and Sánchez de
Alvarez [1992] and Bloch, Leonard, and Marsden [1997, 1998] for details.)
This type of analysis is useful in designing and understanding attitude
control devices.

Another example that combines some features of the satellite and the
heavy top is the underwater vehicle. This is in the realm of the dynamics
of rigid bodies in fluids, a subject going back to Kirchhoff in the late 1800s.
We refer to Leonard and Marsden [1997] and Holmes, Jenkins, and Leonard
[1998] for modern accounts and many references.

Miscellaneous Links. There are many continuum-mechanical examples
to which the techniques of geometric mechanics apply. Some of those are
free boundary problems (Lewis, Marsden, Montgomery, and Ratiu [1986],
Montgomery, Marsden, and Ratiu [1984], Mazer and Ratiu [1989]), space-
craft with flexible attachments (Krishnaprasad and Marsden [1987]), elas-
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ticity (Holm and Kupershmidt [1983], Kupershmidt and Ratiu [1983], Mars-
den, Ratiu, and Weinstein [1984a, 1984b], Simo, Marsden, and Krishnaprasad
[1988]), and reduced MHD (Morrison and Hazeltine [1984] and Marsden
and Morrison [1984]). We also wish to look at these theories from both the
spatial (Eulerian) and body (convective) points of view as reductions of
the canonical material picture. These two reductions are, in an appropriate
sense, dual to each other.

The geometric-analytic approach to mechanics finds use in a number of
other diverse areas as well. We mention just a few samples.

• Integrable systems (Moser [1980], Perelomov [1990], Adams, Harnad, and
Previato [1988], Fomenko and Trofimov [1989], Fomenko [1988a, 1988b],
Reyman and Semenov-Tian-Shansky [1990], and Moser and Veselov [1991]).

• Applications of integrable systems to numerical analysis (like the QR algo-
rithm and sorting algorithms); see Deift and Li [1989] and Bloch, Brockett,
and Ratiu [1990, 1992].

• Numerical integration (Sanz-Serna and Calvo [1994], Marsden, Patrick, and
Shadwick [1996], Wendlandt and Marsden [1997], Marsden, Patrick, and
Shkoller [1998]).

• Hamiltonian chaos (Arnold [1964], Ziglin [1980a, 1980b, 1981], Holmes and
Marsden [1981, 1982a, 1982b, 1983], Wiggins [1988]).

• Averaging (Cushman and Rod [1982], Iwai [1982, 1985], Ercolani, Forest,
McLaughlin, and Montgomery [1987]).

• Hamiltonian bifurcations (van der Meer [1985], Golubitsky and Schaeffer
[1985], Golubitsky and Stewart [1987], Golubitsky, Stewart, and Schaeffer
[1988], Lewis, Marsden, and Ratiu [1987], Lewis, Ratiu, Simo, and Mars-
den [1992], Montaldi, Roberts, and Stewart [1988], Golubitsky, Marsden,
Stewart, and Dellnitz [1995]).

• Algebraic geometry (Atiyah [1982, 1983], Kirwan [1984, 1985 1998]).

• Celestial mechanics (Deprit [1983], Meyer and Hall [1992]).

• Vortex dynamics (Ziglin [1980b], Koiller, Soares, and Melo Neto [1985],
Wan and Pulvirente [1984], Wan [1986, 1988a, 1988b, 1988c], Kirwan [1988],
Szeri and Holmes [1988], Newton [1994], Pekarsky and Marsden [1998]).

• Solitons (Flaschka, Newell, and Ratiu [1983a, 1983b], Newell [1985], Kovačič
and Wiggins [1992], Alber and Marsden [1992]).

• Multisymplectic geometry, PDEs, and nonlinear waves (Gotay, Isenberg,
and Marsden [1997], Bridges [1994, 1997], Marsden and Shkoller [1999],
and Marsden, Patrick, and Shkoller [1998]).

• Relativity and Yang–Mills theory (Fischer and Marsden [1972, 1979], Arms
[1981], Arms, Marsden, and Moncrief [1981, 1982]).
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• Fluid variational principles using Clebsch variables and “Lin constraints”
(Seliger and Whitham [1968], Cendra and Marsden [1987], Cendra, Ibort,
and Marsden [1987], Holm, Marsden, and Ratiu [1998a]).

• Control, stabilization, satellite and underwater vehicle dynamics (Krish-
naprasad [1985], van der Schaft and Crouch [1987], Aeyels and Szafranski
[1988], Bloch, Krishnaprasad, Marsden, and Sánchez de Alvarez [1992],
Wang, Krishnaprasad, and Maddocks [1991], Leonard [1997], Leonard and
Marsden [1997]), Bloch, Leonard, and Marsden [1998], and Holmes, Jenk-
ins, and Leonard [1998]).

• Nonholonomic systems (Naimark and Fufaev [1972], Koiller [1992], Bates
and Sniatycki [1993], Bloch, Krishnaprasad, Marsden, and Murray [1996],
Koon and Marsden [1997a, 1997b, 1998], Zenkov, Bloch, and Marsden
[1998]).

Reduction theory for mechanical systems with symmetry is a natural
historical continuation of the works of Liouville (for integrals in involution)
and of Jacobi (for angular momentum) for reducing the phase space dimen-
sion in the presence of first integrals. It is intimately connected with work on
momentum maps, and its forerunners appear already in Jacobi [1866], Lie
[1890], Cartan [1922], and Whittaker [1927]. It was developed later in Kir-
illov [1962], Arnold [1966a], Kostant [1970], Souriau [1970], Smale [1970],
Nekhoroshev [1977], Meyer [1973], and Marsden and Weinstein [1974]. See
also Guillemin and Sternberg [1984] and Marsden and Ratiu [1986] for the
Poisson case and Sjamaar and Lerman [1991] for basic work on the singular
symplectic case.




