
Differential Geometry of Curves and Surfaces

Abbreviated lecture notes

1. Curves

1. If U ⊂ Rn is an open set then a smooth map (or a differentiable map) F : U → Rm is
a C∞ map. If D ⊂ Rn is any set then F : D → Rm is smooth if there exist an open set
U ⊃ D and a smooth map G : U → Rm such that G|D = F.

2. A curve in Rn is a smooth map c : I → Rn, where I ⊂ R is an interval. The curve is
called regular if ċ(t) 6= 0 for all t ∈ I.

3. If c : I → Rn is a curve and t0 ∈ I then the arclength measured from t0 is

s(t) =

∫ t

t0

‖ċ(u)‖du.

If c is regular then s(t) is invertible, and we write c(s) = c(t(s)) (slightly abusing the
notation). In this case we have ‖c′(s)‖ = 1.

4. If c : I → R2 is a regular curve parameterized by arclength, we define the positive
orthonormal frame {e1(s), e2(s)} by taking e1(s) = c′(s) (tangent to the curve) and
e2(s) = Rπ

2
e1(s), where Rπ

2
=
(
0 −1
1 0

)
is a rotation by 90◦ in the positive direction.

The curvature of c is the smooth function k : I → R such that c′′(s) = k(s)e2(s). We
have e′1(s)

e′2(s)

 =

 0 k(s)

−k(s) 0

e1(s)
e2(s)

 .
5. If k(s0) 6= 0 then r(s0) = 1

|k(s0)| is the radius of the circle that approximates c(s) to second

order at s0 (radius of curvature). We have

c̈(t) = s̈(t)e1(s(t))±
ṡ2(t)

r(s(t))
e2(s(t))

6. A positive isometry of R2 is a map F : R2 → R2 of the form F(x) = Ax + b, where
A ∈ SO(2) is a rotation matrix, that is, A =

(
cosα − sinα
sinα cosα

)
for some α ∈ R.

7. Two regular plane curves parameterized by arclength are related by a positive isometry if
and only if their curvatures coincide.
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8. If c : I → R2 is a curve (not necessarily parameterized by its arclength) then its curvature
is given by

k(t) =
ẋ(t)ÿ(t)− ẏ(t)ẍ(t)[
(ẋ(t))2 + (ẏ(t))2

] 3
2

,

where c(t) = (x(t), y(t)).

9. A regular plane curve c : [a, b] → R2 is said to be closed if c(a) = c(b) and moreover
c(n)(a) = c(n)(b) for any n ∈ N (so that it can be extended to a periodic curve c : R→ R2).
A closed curve c : [a, b] → R2 is said to be simple if its restriction to the interval [a, b) is
injective. A simple closed curve is said to be convex if it bounds a convex set. A vertex
of a simple closed curve is a critical point (maximum, minimum or inflection point) of its
curvature.

10. Four Vertex Theorem: Every simple closed plane curve c : [a, b] → R2 has at least four
vertices on [a, b) (in fact, at least two minima and two maxima).

11. If c : [a, b]→ R2 is a plane curve parameterized by arclength and we write its unit tangent
vector as c′(s) = (cos(θ(s)), sin(θ(s))) then its curvature is k(s) = θ′(s).

12. The rotation index of a closed plane curve c : [a, b]→ R2, parameterized by its arclength,
with curvature k : [a, b]→ R, is the integer

m =
1

2π

∫ b

a
k(s)ds.

13. A (free) homotopy by closed regular curves bewteen two closed regular plane curves
c0, c1 : [a, b]→ R2 is a smooth map H : [a, b]× [0, 1]→ R2 such that:

(i) H(t, 0) = c0(t) for all t ∈ [a, b];

(ii) H(t, 1) = c1(t) for all t ∈ [a, b];

(iii) cu(t) = H(t, u) is a closed regular curve for all u ∈ [0, 1].

14. If two closed regular plane curves are homotopic by closed regular curves then they have
the same rotation index.

15. The total curvature of a closed plane curve c : [a, b]→ R2, parameterized by its arclength,
with curvature k : [a, b]→ R, is

µ =

∫ b

a
|k(s)|ds.

16. The total curvature µ of a closed regular curve satisfies µ ≥ 2π, and µ = 2π if and only if
the curve is convex.

17. Isoperimetric inequality: If c is a simple closed curve with of minimal length enclosing a

region of fixed area A then c parameterizes a circle of radius r =
√

A
π . Conversely, if c is a

simple closed curve of fixed length l enclosing a region of maximal area then c parameterizes
a circle of radius r = l

2π .

18. The curvature of a space curve c : I → R3 parameterized by arclength is

k(s) = ‖c′′(s)‖ ≥ 0.
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If k(s) 6= 0 we define the normal vector as

e2(s) =
1

k(s)
c′′(s),

and the binormal vector as
e3(s) = e1(s)× e2(s),

where
e1(s) = c′(s)

is the unit tangent vector.

19. Frenet-Serret formulas:
e′1(s)

e′2(s)

e′3(s)

 =


0 k(s) 0

−k(s) 0 τ(s)

0 −τ(s) 0



e1(s)

e2(s)

e3(s)

 ,
where the function τ(s) is called the torsion of the curve.

20. A regular space curve c : I → R3 with nonvanishing curvature has zero torsion if and only
if it lies on a plane.

21. A positive isometry of R3 is a map F : R3 → R3 of the form F(x) = Ax + b, where
A ∈ SO(3) is a rotation matrix, that is, AtA = I and detA = 1.

22. Two regular space curves with nonvanishing curvature are related by a positive isometry if
and only if their curvatures and torsions coincide.

23. Frenchel’s Theorem: Let c : [a, b] → R3 be a closed regular space curve parameterized
by arclength, and let k(s) = ‖c′′(s)‖ be its curvature. Then∫ b

a
k(s)ds ≥ 2π,

and the equality holds if and only if c is a plane convex curve.

24. A simple closed regular curve in R3 is called a knot. Two knots are called equivalent if
they are homotopic (up to reparameterization) by simple closed regular curves. A knot is
called trivial if it is equivalent to the circle.

25. Let c : [a, b]→ R3 be a nontrivial knot parameterized by arclength, and let k(s) = ‖c′′(s)‖
be its curvature. Then ∫ b

a
k(s)ds ≥ 4π.

2. Differentiable manifolds

1. A set M ⊂ Rn is said to be a differentiable manifold of dimension m ∈ {1, . . . , n− 1}
if for any point a ∈ M there exists an open neighborhood U 3 a and a smooth function
f : V ⊂ Rm → Rn−m such that

M ∩ U = Graph(f) ∩ U

for some ordering of the Cartesian coordinates of Rn. We also define a manifold of dimension
0 as a set of isolated points, and a manifold of dimension n as an open set.
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2. M ⊂ Rn is a differentiable manifold of dimension m if and only if for each point a ∈ M
there exists an open set U 3 a and a smooth function F : U → Rn−m such that:

(i) M ∩ U = {x ∈ U : F(x) = 0};
(ii) rankDF(a) = n−m.

3. A vector v ∈ Rn is said to be tangent to a set M ⊂ Rn at the point a ∈M if there exists
a smooth curve c : R→ M such that c(0) = a and ċ(0) = v. A vector v ∈ Rn is said to
be orthogonal to M at the point a if it is orthogonal to all vectors tangent to M at a.

4. If M ⊂ Rn is a manifold of dimension m then the set TaM of all vectors tangent to M
at the point a ∈ M is a vector space of dimension m, called the tangent space to M at
a. Its orthogonal complement T⊥a M is a vector space of dimension (n − m), called the
normal space to M at a.

5. Let M ⊂ Rn be an m-manifold, a ∈M , U 3 a an open set and F : U → Rn−m such that
M ∩ U = {x ∈ U : F(x) = 0} with rankDF(a) = n−m. Then TaM = kerDF(a).

6. A parameterization of a given m-manifold M ⊂ Rn is a smooth injective map g : U →M ,
with U ⊂ Rm open, such that rankDg(t) = m for all t ∈ U . We have

Tg(t)M = span

{
∂g

∂t1
(t), . . . ,

∂g

∂tm
(t)

}
.

7. Given a smooth map g : U → Rn, with U ⊂ Rm open, such that rankDg(t) = m for all
t ∈ U , and given any point t0 ∈ U , there exists an open set U0 ⊂ U with t0 ∈ U0 such
that g(U0) is an m-manifold.

3. Differential forms

1. The dual vector space to Rn is

(Rn)∗ = {α : Rn → R : α is linear}.

The elements of (Rn)∗ are called covectors.

2. The covectors dx1, . . . , dxn ∈ (Rn)∗ defined through

dxi(ej) =

{
1 if i = j

0 if i 6= j

form a basis for (Rn)∗, whose dimension is then n.

3. A (covariant) k-tensor T is a multilinear map T : (Rn)k → R, i.e.

(i) T (v1, . . . ,vi + wi, . . . ,vk) = T (v1, . . . ,vi, . . . ,vk) + T (v1, . . . ,wi, . . . ,vk);

(ii) T (v1, . . . , λvi, . . . ,vk) = λT (v1, . . . ,vi, . . . ,vk).

4. A k-tensor α is said to be alternanting, or a k-covector, if

α(v1, . . . ,vi, . . . ,vj . . . ,vk) = −α(v1, . . . ,vj , . . . ,vi . . . ,vk).

We denote by Λk (Rn) the vector space of all k-covectors.
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5. Given i1, . . . , ik ∈ {1, . . . , n}, we define dxi1 ∧ . . . ∧ dxik ∈ Λk (Rn) as

dxi1 ∧ . . . ∧ dxik(v1, . . . ,vk) = det


dxi1(v1) . . . dxi1(vk)

. . . . . . . . .

dxik(v1) . . . dxik(vk)

 .
The set

{
dxi1 ∧ . . . ∧ dxik

}
1≤i1<...<ik≤n

is a basis for Λk (Rn), whose dimension is then(
n
k

)
. Since

(
n
0

)
= 1, we define Λ0 (Rn) = R.

6. If α ∈ Λk (Rn) and β ∈ Λl (Rn),

α =
∑

i1<...<ik

αi1...ik dx
i1 ∧ . . . ∧ dxik , β =

∑
j1<...<jl

βj1...jl dx
j1 ∧ . . . ∧ dxjl ,

we define their wedge product α ∧ β ∈ Λk+l (Rn) as

α ∧ β =
∑

i1<...<ik
j1<...<jl

αi1...ik βj1...jl dx
i1 ∧ . . . ∧ dxik ∧ dxj1 ∧ . . . ∧ dxjl .

If α is a 0-covetor (real number), its wedge product by α is simply the product by a scalar.

7. Properties of the wedge product:

(i) α ∧ (β + γ) = α ∧ β + α ∧ γ;

(ii) α ∧ β = (−1)klβ ∧ α if α ∈ Λk (Rn) , β ∈ Λl (Rn);

(iii) α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

8. A differential form of degree k on U ⊂ Rn is a smooth function ω : U → Λk(Rn). We
denote by Ωk(U) the set of k-forms on U .

9. If f : U ⊂ Rn → V ⊂ Rm is smooth and ω ∈ Ωk(V ) then the pull-back of ω by f is the
k-form f∗ω ∈ Ωk(U) defined by

(f∗ω)(x)(v1, . . . ,vk) = ω(f(x))(Df(x)v1, . . . , Df(x)vk).

10. Properties of the pull-back:

(i) f∗(ω + η) = f∗ω + f∗η;

(ii) f∗(ω ∧ η) = f∗ω ∧ f∗η;

(iii) (g ◦ f)∗(ω) = f∗(g∗ω).

11. If ω ∈ Ωk(U) with U ⊂ Rn,

ω =
∑

i1<...<ik

ωi1...ik(x) dxi1 ∧ . . . ∧ dxik ,

then its exterior derivative is the (k + 1)-form dω ∈ Ωk+1(U) defined by

dω =
∑

i1<...<ik

n∑
i=1

∂ωi1...ik
∂xi

dxi ∧ dxi1 ∧ . . . ∧ dxik .
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12. Properties of the exterior derivative:

(i) d(ω + η) = dω + dη;

(ii) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη if ω has degree k;

(iii) d(dω) = 0;

(iv) f∗(dω) = d(f∗ω).

13. We say that ω ∈ Ωk (U) is:

(i) closed if dω = 0;

(ii) exact if ω = dη for some η ∈ Ωk−1 (U) (called a potential for ω).

14. If ω ∈ Ωk (U) is exact then ω is closed.

15. Poincaré Lemma: If ω ∈ Ωk (U) is closed and the open set U is star-shaped then ω is
exact.

16. If g : U ⊂ Rm → M and h : V ⊂ Rm → M are parameterizations of the m-manifold
M ⊂ Rn then h−1 ◦ g is a diffeomorphism (smooth bijection with smooth inverse).

17. We say that two parameterizations g : U ⊂ Rm → M and h : V ⊂ Rm → M of the
m-manifold M ⊂ Rn induce the same orientation if detD(h−1 ◦ g) > 0, and opposite
orientations if detD(h−1 ◦ g) < 0. The manifold M is called orientable if it is possible
to choose parameterizations whose images cover M and induce the same orientation. An
orientation on an orientable manifold is a choice of a maximal family of parameterizations
under these conditions, which are said to be positive. An orientable manifold with a choice
of orientation is said to be oriented.

18. If g : U ⊂ Rm → M is a positive parameterization of the oriented m-manifold M ⊂ Rn
and ω ∈ Ωm (Rn), we define the integral of ω along g(U) as∫

g(U)
ω =

∫
U
ω(g(t))

(
∂g

∂t1
, . . . ,

∂g

∂tm

)
dt1 . . . dtm

=

∫
U
g∗ω (e1, . . . , em) dt1 . . . dtm.

19. If we think of an open set U ⊂ Rn as an n-manifold parameterized by the identity map
(which we take to be positive), then∫

U
f(x) dx1 ∧ . . . ∧ dxn =

∫
U
f(x) dx1 . . . dxn,

and so ∫
g(U)

ω =

∫
U
g∗ω.

20. The integral of a m-form on the image of a positive parameterization of an m-manifold is
well defined, that is, it is independent of the choice of parameterization.

21. If M ⊂ Rn is an oriented m-manifold and ω ∈ Ωm (Rn), we define∫
M
ω =

N∑
i=1

∫
gi(Ui)

ω,

where gi : Ui → M are positive parameterizations whose images are disjoint and cover M
except for a finite number of manifolds of dimension smaller than m. It can be shown that
it is always possible to obtain a finite number of parameterizations of this kind, and that
the definition above does not depend on the choice of these parameterizations.
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22. Informally, an m-manifold with boundary is a subset M ⊂ N of an m-manifold N ⊂ Rn
delimited by an (m−1)-manifold ∂M ⊂M , called the boundary of M , such that M \∂M
is again an m-manifold. We say that M is orientable if N is orientable. If M is oriented,
the induced orientation on ∂M is defined as follows: if g : U ∩{t1 ≤ 0} →M is a positive
parameterization of M such that h(t2, . . . , tm) = g(0, t2, . . . , tm) is a parameterization of
∂M , then h is positive. Moreover, if ω ∈ Ωm(Rn), we define∫

M
ω =

∫
M\∂M

ω.

23. Stokes Theorem: If M ⊂ Rn is a compact, oriented m-manifold with boundary and
ω ∈ Ωm−1 (Rn) then ∫

M
dω =

∫
∂M

ω,

where ∂M has the induced orientation.

24. If M is an oriented compact m-manifold (without boundary) and ω ∈ Ωm−1 (Rn) then∮
M
dω = 0.

4. Surfaces

1. A surface is a 2-dimensional differentiable manifold S ⊂ R3.

2. The first fundamental form of a surface S parameterized by g : U ⊂ R2 → S is the
quadratic form

I = dg · dg = Edu2 + 2Fdu dv +Gdv2,

where E F

F G

 =

∂g∂u · ∂g∂u ∂g
∂u ·

∂g
∂v

∂g
∂v ·

∂g
∂u

∂g
∂v ·

∂g
∂v


is a positive definite matrix of functions, called the matrix of the metric.

3. The squared length of a vector tangent to a surface S parameterized by g : U ⊂ R2 → S is∥∥∥∥v1∂g∂u + v2
∂g

∂v

∥∥∥∥2 = I(v1, v2) = E(v1)2 + 2Fv1v2 +G(v2)2.

In particular, the length of a curve c : [a, b]→ S given by c(t) = g(u(t), v(t)) is∫ b

a

√
I(u̇(t), v̇(t)) dt =

∫ b

a

√
Eu̇2 + 2Fu̇v̇ +Gv̇2 dt

4. The second fundamental form of a surface S parameterized by g : U ⊂ R2 → S is the
quadratic form

II = −dg · dn = Ldu2 + 2Mdudv +Ndv2,

where

n =
∂g
∂u ×

∂g
∂v∥∥∥∂g∂u × ∂g
∂v

∥∥∥
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is a unit normal vector to S andL M

M N

 = −

∂g∂u · ∂n∂u ∂g
∂u ·

∂n
∂v

∂g
∂v ·

∂n
∂u

∂g
∂v ·

∂n
∂v

 =

 ∂2g
∂u2
· n ∂2g

∂u∂v · n
∂2g
∂v∂u · n

∂2g
∂v2
· n

 .
5. At a point where the second fundamental form is definite (LN −M2 > 0) the surface is

convex (i.e. it lies on the same side of the tangent plane); at a point where the second
fundamental form is indefinite (LN −M2 < 0) the surface is not convex (i.e. it lies on both
sides of the tangent plane).

6. Gauss’s equations:

∂2g

∂u2
= Γuuu

∂g

∂u
+ Γvuu

∂g

∂v
+ Ln;

∂2g

∂u∂v
= Γuuv

∂g

∂u
+ Γvuv

∂g

∂v
+Mn;

∂2g

∂v∂u
= Γuvu

∂g

∂u
+ Γvvu

∂g

∂v
+Mn;

∂2g

∂v2
= Γuvv

∂g

∂u
+ Γvvv

∂g

∂v
+Nn,

where the functions Γuuu,Γ
u
uv = Γuvu,Γ

u
vv,Γ

v
uu,Γ

v
uv = Γvvu,Γ

v
vv are called the Christoffel

symbols.

7. Weingarten’s equations:

∂n

∂u
=
FM −GL
EG− F 2

∂g

∂u
+
FL− EM
EG− F 2

∂g

∂v
;

∂n

∂v
=
FN −GM
EG− F 2

∂g

∂u
+
FM − EN
EG− F 2

∂g

∂v
.

8. The normal curvature of a curve c : I → S on a surface S, parameterized by arclength,
is kn(s) = c′′(s) · n, where n is a unit normal vector to S at c(s). If g : U ⊂ R2 → S is a
parameterization and c(s) = g(u(s), v(s)) then kn(s) = II(u′(s), v′(s)).

9. The maximum and the minimum of II(v1, v2) subject to the constraint I(v1, v2) = 1 are
called the principal curvatures of S at the point under consideration. The directions of the
corresponding unit tangent vectors are called the principal directions of S at that point.
If the principal curvatures are different then the principal directions are orthogonal.

10. The mean curvature of a surface S at a given point is

H =
1

2
(k1 + k2) =

EN +GL− 2FM

2(EG− F 2)
,

where k1 and k2 are the principal curvatures at that point. The Gauss curvature of S at
the same point is

K = k1k2 =
LN −M2

EG− F 2
.

S is said to be minimal if H ≡ 0, and flat if K ≡ 0.
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11. If k1 = k2 at some point then that point is called umbillic. Moreover, we call the point
elliptic if K > 0, hyperbolic if K < 0, and parabolic if K = 0. The surface is convex at
elliptic points, and is not convex at hyperbolic points.

12. The principal direction corresponding to the principal curvature k1 is given by tangent
vectors of the form

v1
∂g

∂u
+ v2

∂g

∂v

such that L M

M N

v1
v2

 = k1

E F

F G

v1
v2

 .
13. If g : U ⊂ R2 → S is a parameterization then the area of g(U) ⊂ S is

A =

∫∫
U

∥∥∥∥∂g∂u × ∂g

∂v

∥∥∥∥ du dv =

∫∫
U

√
EG− F 2 du dv.

14. If g : U ⊂ R2 → S is a parameterization then

∂n

∂u
× ∂n

∂v
= K

∂g

∂u
× ∂g

∂v
.

In particular, if K(u0, v0) 6= 0 then

|K(u0, v0)| = lim
ε→0

A′(ε)

A(ε)
,

where A(ε) is the area of g(Bε(u0, v0)) ⊂ S and A′(ε) is the area of n(Bε(u0, v0)) ⊂ S2.

15. If g : U ⊂ R2 → S is a parameterization,

gε(u, v) = g(u, v) + εf(u, v)n(u, v)

is a small deformation of g and A(ε) is the area of gε(U) then

dA

dε
(0) = −2

∫∫
U
fH
√
EG− F 2 du dv.

In particular, if S has minimal area (for a fixed boundary) then H ≡ 0, and if S has minimal
area while bounding a fixed volume then H is constant.

16. If g : U ⊂ R2 → S is a parameterization, {e1, e2, e3 = n} is an orthonormal frame and
θ1, θ2 ∈ Ω1(U) are such that

dg = θ1e1 + θ2e2

then the first fundamental form is

I = (θ1)2 + (θ2)2.

Moreover, if ω j
i ∈ Ω1(U) are such that

dei =

3∑
j=1

ω j
i ej ,
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we have
ω j
i = −ω i

j .

Defining the symmetric 2× 2 matrix B through{
ω 3
1 = b11θ

1 + b12θ
2

ω 3
2 = b21θ

1 + b22θ
2

,

we have

II =

2∑
i,j=1

bijθ
iθj .
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