

(7,0)

Análise Matemática I 2^a data de Exame

Campus de Lisboa (Alameda)

2 de Fevereiro de 2001, 17 horas

Licenciatura em Engenharia Informática e de Computadores

Apresente todos os cálculos e justificações relevantes

I. 1. Determine para que valores dos parâmetros $a,b,c\in\mathbb{R}$ é que a função h real de variável real definida por

$$h(x) = \begin{cases} \arctan(e^x), & \text{se } x > 0, \\ ax^2 + bx + c, & \text{se } x \le 0, \end{cases}$$

é diferenciável em \mathbb{R} e determine a derivada (em \mathbb{R}) nesse(s) caso(s).

- 2. Seja $s \in \mathbb{R}$.
 - a) Calcule em função de s

$$\lim_{x \to +\infty} x^s \left(\frac{\pi}{2} - \arctan x \right).$$

b) Estude em função de s a convergência da série

$$\sum_{n=1}^{+\infty} n^s \left(\frac{\pi}{2} - \arctan n \right).$$

3. Considere as séries:

$$\sum_{n=1}^{+\infty} \left(\left(1 - \frac{1}{n} \right)^n - \left(1 - \frac{1}{n+1} \right)^{n+1} \right), \qquad \sum_{n=1}^{+\infty} \left(\frac{1}{2^n} - \frac{1}{3^{n+1}} \right).$$

Estude-as quanto a convergência e calcule a soma das que forem convergentes.

4. Considere os conjuntos A e B definidos por

$$A = \{x \in \mathbb{R} : 0 \le \text{sen}(\pi x) < 1\}, \qquad B = \{x \in \mathbb{R} : \log x \ge \log(1 - x)\}.$$

- a) Exprima A e B como uniões de intervalos disjuntos dois a dois.
- b) Determine, quando existirem, $\sup A$, $\sup(A \cap B)$, $\max(A \cap B)$, $\min(B \setminus \mathbb{Q})$.
- c) Decida se uma sucessão decrescente de termos em B é necessariamente convergente para um ponto de B.

- d) Considere uma função $g: B \to \mathbb{R}$ contínua e $(x_n)_{n \in \mathbb{N}}$ uma sucessão de termos em B. Decida se a série $\sum \frac{g(x_n)}{n^2}$ é necessariamente convergente. Se optar pela negativa dê um exemplo que justifique a afirmação. E se $(x_n)_{n \in \mathbb{N}}$ for decrescente?
- (9,0) II. 1. Considere uma função real de variável real g definida por

$$g(x) = \log(e^x - 1).$$

- a) Determine o domínio e o domínio de diferenciabilidade de g e calcule g'.
- b) Determine todas as assímptotas ao gráfico de g.
- c) Estude g quanto à existência de pontos de extremo local, crescimento, sentido de concavidades e pontos de inflexão e esboce o gráfico de g.
- 2. Calcule os limites:
 - a) $\lim_{x\to 0^+} x^{1/(e^{1/x}+1)}$,
 - b) $\lim_{\lambda \to +\infty} (1 + \lambda)^2 (\cos(1/(1 + \lambda)) 1),$
- 3. Determine a série de Taylor relativa a x=0 (série de Mac Laurin) da função $H(x)=x^2 \operatorname{sen}(x^2)+\log(1+2x)$ e o maior intervalo em que representa a função.
- 4. Determine a derivada de ordem 12 da função e^{x^4} para x=0 [Nota: $N\tilde{a}o$ calcule 12 derivadas!].
- (4,0) **III.**
- 1. Uma função $F: \mathbb{R} \to \mathbb{R}$ com derivada contínua em \mathbb{R} satisfaz a relação

$$F(n+1) = \frac{1}{n} + F(n)$$
 para todo o $n \in \mathbb{N}_1$.

Calcule os limites quando $x \to +\infty$ de F e F' supondo que os limites existem. Mostre que os limites podem não existir.

2. Uma função $G:[0,1]\to\mathbb{R}$ é contínua em [0,1], diferenciável em]0,1[e satisfaz $G(1)=0,\ G(0)=1.$ Mostre que existem $x,y\in]0,1[$ tais que $G(x)-x^2=0$ e G'(y)+2y=0.