Cálculo Diferencial e Integral II

Teste de Recuperação 2 (versão 2) - 3 de julho de 2019 - 10h

Duração: 1h30m

Todos os cursos excepto LMAC, MEFT

Apresente e justifique todos os cálculos

- 1. Seja M o conjunto de \mathbb{R}^3 definido por $M=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+yz+z^2=1\}.$
- [1.5] a) Mostre que M é uma variedade e indique a sua dimensão.
- [0.5] b) Justifique que M é um conjunto compacto.
- [2.0] c) Seja $f: M \to \mathbb{R}$ a função definida por f(x, y, z) = z. Determine os extremos globais de f.
 - 2. Considere o sistema de equações $\begin{cases} x^4 + xyz + z^4 &= 1 \\ x^2 + xy + xz + y^2 + z^2 &= 1 \end{cases}.$
- [1.5] a) Mostre que o sistema define x e y como funções de z numa vizinhança do ponto (1,0,0).
- [1.5] b) Determine $x'(0) \in y'(0)$.
- [1.0] c) Mostre que a função x = x(z) tem um extremo em z = 0 e classifique-o.
 - 3. Considere o campo vectorial $H: \mathbb{R}^3 \to \mathbb{R}^3$ definido por H(x,y,z) = (0,y,-z) e a superfície S definida por
 - $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 5; \ x \le 2; \ z \ge -2\}.$
- [2.0] a) Mostre que H tem divergência nula e determine um potencial vectorial associado, com a segunda componente nula.
- [3.0] b) Determine o fluxo de H através de S, no sentido da normal que em cada ponto de S aponta no sentido oposto ao da origem.
 - 4. Considere a superfície S_{α} e a curva Γ_{α} definidas por

$$S_{\alpha} = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1; \ z = \alpha(x^2 - y^2)\}$$

e $\Gamma_{\alpha}=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2=1;\ z=\alpha(x^2-y^2)\},$ onde α é um parâmetro real.

- [2.0] a) Determine a área de S_{α} em função de α .
- [1.0] b) Designando por $L(\alpha)$ o comprimento de Γ_{α} , escreva um integral cujo valor seja igual a $L(\alpha)$.
- [1.0] c) Justifique que $L(\alpha) = 2\pi + 2\pi\alpha^2 + R_2(\alpha)$, para α suficientemente pequeno, onde R_2 é o resto de segunda ordem da fórmula de Taylor de L em torno de zero.
 - 5. Seja $f: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3$ o campo vectorial definido por $f(x) = ||x||^q x$, $q \in \mathbb{R}$ e onde ||x|| denota a norma euclidiana de x.
- [0.5]a) Calcule o fluxo de f através da superfície da esfera de raio ϵ centrada na origem, em relação à normal exterior.
- [0.5] b) Determine $\operatorname{div}(f)$.
- c) Seja $\Omega \in \mathbb{R}^3$ um conjunto aberto limitado que contém a origem e ao qual é possível aplicar o teorema da divergência. Utilize os resultados anteriores para mostrar que existe um único valor de q para o qual o fluxo de f, através de $\partial\Omega$ no sentido da normal exterior, é independente de Ω . Calcule o valor desse fluxo.