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Introduction and preliminaries

Riemann Surface
A Riemann surface is a complex manifold of dimension one, that is a set
that around each point is locally homeomorphic to C.

Definition - Holomorphic map

A holomorphic map between Riemann surfaces F : X — Y is one which is
holomorphic when viewed as a map between regions in the complex plane.

Definition

Let F : X — Y be a non-constant holomorphic map defined at p € X.
The multiplicity of F at p, denoted mult,(F), is the unique integer m
such that there are local coordinates near p and F(p) with F having the
form z — z™. If m > 1 we call p a ramification point and F(p) a branch
point



Affine plane curves

Definition

An affine plane curve is the locus of zeros in C? of a polynomial f(x, y).
A polynomial f(x, y) is nonsingular at a root p if either partial derivative
% or g—; is non zero at p. The affine plane curve X of roots of f is
nonsingular at p if f is nonsingualar at p. The curve X is nonsingular, or

smooth, if it is non singular at each of its points.

Theorem

If f € C[x,y] is an irreducible polynomial then its locus of roots, X, is
connected. Hence if f is a nonsingular and irreducible, X is a Riemann
surface.

Lemma

Let X be a smooth afine plane curve defined by f(x,y) = 0, where fis a
polynomial. Define 7 : X — C by 7(x,y) = x, then 7 is ramified at

p € X if and only if g—;(p) =0.



Riemann-Hurwitz formula

Proposition
Let F: X — Y be a non-constant holomorphic map between compact
Riemann surfaces. For each y € Y, define

d,(F)= > mult,(F)
PEF~(y)

Then d, (F) is constant, independently of y € Y.
We call this constant the degree of F and we denote it by deg(F).

Riemann-Hurwitz Formula
Let X, Y be two compact Riemann surfaces and F : X — Y be a
non-constant holomorphic map. Then

2g(X) — 2 = deg(F)(2g(Y) = 2) + Y _[multy(F) - 1],
peX

where g(X), g(Y) denote de genus of the surfaces X and Y, respectively.



Hyperelliptic Riemann surfaces

Let h(x) be a polynomial of degree 2n+ 1 + ¢,e € {0,1} with distinct
roots.

Then the affine plane curve X defined by y? = h(x) is smooth.

Let k(z) = z2"*2h(1/z) (k is also a polynomial with distinct roots).
Form the smooth affine plane curve Y defined by the equation w? = k(z).
Let U={(x,y) € X :x#0} and V ={(z,w) € Y : z# 0}. (Note that
U and V are open sets in X and Y/, respectively). Define an isomophism

¢ :U—V
o(x,y) =(z,w) = (l/x,y/x"H)

Form the compact Riemann surface Z obtained by glueing X and Y
along U and V via ¢.

m:Z — Cq
(x,y) = x



Hyperelliptic Riemann surfaces

7 has degree 2 and the branch points of 7 are the roots of h (and the
point oo if h has odd degree). Therefore the inverse image of any point
under 7 is either two points with multiplicity one, or one point with
multiplicity two.

By the Riemann-Hurwitz formula we have

2g(Z)—2=2(0—-2)+2n+2 = g(Z)=n

(0.2)

(0.0) 2n+1+¢,0)



k-gonal curves

Theorem

Let p(x) be a polynomial of degree k(n+1) — 1+ ¢ (e € {0,1}) with
distinct roots. Let X be the affine plane curve defined by

X = F~1(0) c C? with

F(x,y):= yk — p(x).

Then X admits a compactification Z = X U {00y, - -+ , 00k} with k points
at infinity (z = 0), with Z being a Riemann surface of genus
g=3(k*(n+1)—k(n+3))+1.

Moreover the genus of Z coincides with the number of points with
integer coordinates in the triangle of vertices (0,0), (kn+ k,0), (0, k).

(k)

(0,0) (kn+k-1 + €,0)



Newton Polygon

Definition
Given a Laurent polynomial

b d
=22 Xy

Jj=a k=c

consider the polygon defined as the convex hull of the points (j, k) € R?
such that aj x # 0. To this polygon we call the Newton polygon
associated to f and we denote it by A(f)

Definition

Let f € C[x,y,x 1, y~!] be a Laurent polynomial we define the
translated polynomial Ty ,[f](x,y) = x¥y!f(x,y) for k,| € Z and the
reflected polynomial R[f](x,y) = f(3, })



Toric compactification

Definition
Let f € C[x,y,x 1, y~!] be a Laurent polynomial, we define X; as

~({o})
and Ur = X¢r N ((C* X C*)

Toric compactification
. Let f(x,y) € C[x*!, y*]. Write f in the following form:

b d
=2 D kXYt
Jj=a k=c

Assume ¢, ¢, Cp.d 75 0. Define the polynomials F(x,y) = x "y~ °f(x, y)
and G(z,w) = z°w9f(1/z,1/w). Suppose that F and G are
nonsingular. Consider the isomorphism

¢ Up — Ug
o(x,y) = (z,w) = (1/x,1/y)



Toric compactification

Toric compactification

Let X;(f) be the compact Riemann surface obtained by glueing Xr and
Xc along Ur and Ug via ¢. To the type of glueing we call toric glueing
and to X:(f) we call the toric compactification of the affine plane curve
XE.

Remark

When we perform this type of compactification one naturally asks how

many points are we adding to Xg, that is how many co's are we adding
to Xg. Using the same notation as above the answer to this question is

the number of distinct solutions to the equations G(0,w) = 0 and
G(z,0)=0.



Khovanskii's Theorem

Theorem

Let f € C[x™1, y*1] be a Laurent polynomial, such that we can perform
the toric compactification X:(f). Then we can also perform the toric
compactifications on R[f] and Ty [f], for any k,! € Z. And

Xie(f) = Xe(RIf]) = Xe(Tii[f])

Khovanskii's Theorem
Let f € C[x,y,x 1, y~!] be a Laurent polynomial, such that we can
perform the toric compactification X;(f), then we have the following
equality

g(X:(f)) = # (int(A(f)) N Z?)

Where X;(f) is as above and A(f) is the Newton polygon of f.



Khovanskii's Theorem - Example

The rectangle
Let k,/ € N, and f(x,y) = A+ xK +y/ + xky! =0 with A € C\ {0,1}

/ xK 4+ A

Cxk 1

To see that f is nonsingular in X¢ we verify that the system

is impossible. As before we consider new variables z =1/x, w = 1/y and

define g(z,w) = z*w!f(1/z,1/w). g is also nonsingular in X;. Now
form the compact Riemann surface X;(f). Consider the holomorphic map

7w :Xi(f) — Cw
m(x,y) = x



Khovanskii's Theorem - Example

This map has degree / (deg(n) = /) and using the Lemma we see that it
has 2k ramification points with multiplicity /. Hence by the
Riemann-Hurwitz formula we have

g(Xe(f)) = (1 =1)(k - 1)

And the number of interior lattice points of the rectangle with vertices
(0,0), (k,0),(0,1), (k1)
. (k.)

(0,0) (k,0)



Isomorphic Riemann Surfaces and affine transformations

Definition
A Z-affine transformation is a map
¢ R? — R?
x+— Ax+ b

Where A € GLy(Z) and b € Z2.

Definition
Let ¢ : R2 — ]Rz, (i,j) — (k(i,j),1(i,])) be a Z-affine transformation
and f(x,y) ZZ G jx' 'v) € C[x,y,x"t,y7!] a Laurent polynomial

J=a j=c

we define 9[f] as

P[1(x, ) Z Z Cij k(w

j=—aj=—c



Isomorphic Riemann Surfaces and affine transformations

Theorem
Let f € C[x,y,x~ 1, y~1] be a nonsingular Laurent polynomial such that
and ¢ be an Z-affine transformation and let v[f] be as before, then

Proof (idea)

We need only to verify the result for translations and the Z-affine
transformations associated to the matrices

1 0 11 0 1
a=(o %)e=(5 1)emac=(3 o)
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