Exercise 1 - The modular group $S L(2, \mathbb{Z})$
The special linear group $S L(2, \mathbb{R})$ acts on the complex upper half plane $\mathcal{H}=\{\tau \in \mathbb{C} \mid \operatorname{Im} \tau>0\}$ by fractional linear transformations

$$
\tau \mapsto M \cdot \tau=\frac{a \tau+b}{c \tau+d} \quad, \quad M=\left(\begin{array}{ll}
a & b  \tag{1}\\
c & d
\end{array}\right) \in S L(2, \mathbb{R}) .
$$

a) Verify:

1. $M \cdot \tau \in \mathcal{H} \quad \forall M \in S L(2, \mathbb{R}), \tau \in \mathcal{H}$
2. $\left(M_{1} M_{2}\right) \cdot \tau=M_{1} \cdot\left(M_{2} \cdot \tau\right) \quad \forall M_{1}, M_{2} \in S L(2, \mathbb{R}), \tau \in \mathcal{H}$
b) The set $\overline{\mathcal{F}}=\left\{\tau \in \mathbb{C}|\quad| \tau\left|\geq 1,|\operatorname{Re} \tau| \leq \frac{1}{2}\right\}\right.$ denotes the closure of the fundamental domain for the modular group $S L(2, \mathbb{Z})$. Show that any point $\tau \in \mathcal{H}$ can be mapped into $\overline{\mathcal{F}}$ by an application of T- and S-transformations, where

$$
\begin{equation*}
T \cdot \tau=\tau+1 \quad, \quad S \cdot \tau=-1 / \tau . \tag{2}
\end{equation*}
$$

Exercise 2 - Eisenstein series of weight $k>2$
Let $k \in \mathbb{Z}$. A modular form of weight $k$ is a function $f: \mathcal{H} \rightarrow \mathbb{C}$ that is holomorphic on $\mathcal{H} \cup\{\infty\}$, and that satisfies

$$
\begin{equation*}
f(M \cdot \tau)=(c \tau+d)^{k} f(\tau) \quad \forall \tau \in \mathcal{H}, \forall M \in S L(2, \mathbb{Z}) \tag{3}
\end{equation*}
$$

Choosing $M=T$, we have $f(\tau+1)=f(\tau) \quad \forall \tau \in \mathcal{H}$, and hence $f$ is a periodic function of period 1 . Introducing $q=e^{2 \pi i \tau}$, it has the Fourier development, valid in the open complex unit disc,

$$
\begin{equation*}
f(\tau)=\sum_{n=0}^{\infty} a_{n} q^{n} . \tag{4}
\end{equation*}
$$

Consider the following series for even $k \geq 4(k \in \mathbb{N})$,

$$
\begin{equation*}
G_{k}(\tau)=\frac{(k-1)!}{2(2 \pi i)^{k}} \sum_{m, n \in \mathbb{Z}} \sum_{\text {with }(m, n) \neq(0,0)} \frac{1}{(m \tau+n)^{k}} \quad, \quad \tau \in \mathcal{H} . \tag{5}
\end{equation*}
$$

This series, called Eisenstein series, is absolutely and locally uniformly convergent for $k>2$.
a) Show that $G_{k}(\tau)$ is a modular form of weight $k$.
b) Show that the Fourier expansion of the Eisenstein series is

$$
\begin{equation*}
G_{k}(\tau)=\frac{(k-1)!\zeta(k)}{(2 \pi i)^{k}}+\sum_{n=1}^{\infty} q^{n} \sigma_{k-1}(n), \tag{6}
\end{equation*}
$$

where $\zeta(k)=\sum_{n=1}^{\infty} n^{-k}$ and where $\sigma_{k-1}(n)$ denotes the sum of the $(k-1)$ st power of the positive divisors of $n$, i.e. $\sigma_{k-1}(n)=\sum_{r \mid n} r^{k-1}$. Hint: Use $\frac{\pi}{\tan (\pi \tau)}=\sum_{m \in \mathbb{Z}} \frac{1}{\tau+m} \quad, \quad \tau \in \mathbb{C} \backslash \mathbb{Z}$.

## Exercise 3 - The Eisenstein series of weight 2

The Eisenstein series of weight 2 is defined by

$$
\begin{equation*}
G_{2}(\tau)=\frac{\zeta(2)}{(2 \pi i)^{2}}+\sum_{n=1}^{\infty} q^{n} \sigma_{1}(n) \tag{7}
\end{equation*}
$$

a) Show that $G_{2}(\tau)$ equals

$$
\begin{equation*}
G_{2}(\tau)=-\frac{1}{4 \pi^{2}}\left[\frac{1}{2} \sum_{n \neq 0} \frac{1}{n^{2}}+\frac{1}{2} \sum_{m \neq 0} \sum_{n \in \mathbb{Z}} \frac{1}{(m \tau+n)^{2}}\right] \tag{8}
\end{equation*}
$$

where one first carries out the summation over $n$, and then over $m$. Note that this series is not absolutely convergent, and hence one cannot interchange the order of summation to obtain $G_{2}(-1 / \tau)=\tau^{2} G_{2}(\tau)$.
b) Define $G_{2, \epsilon}(\tau)$ by

$$
\begin{equation*}
G_{2, \epsilon}(\tau)=-\frac{1}{4 \pi^{2}}\left[\frac{1}{2} \sum_{m, n \in \mathbb{Z}} \operatorname{with}(m, n) \neq(0,0) \frac{1}{(m \tau+n)^{2}|m \tau+n|^{2 \epsilon}}\right] \tag{9}
\end{equation*}
$$

which converges absolutely. How does it transform under modular transformations $\tau \mapsto M \cdot \tau$ with $M \in S L(2, \mathbb{Z})$ ?
c) It can be shown that

$$
\begin{equation*}
G_{2}^{*}(\tau) \equiv \lim _{\epsilon \rightarrow 0} G_{2, \epsilon}(\tau)=G_{2}(\tau)+\frac{1}{8 \pi \operatorname{Im} \tau} \tag{10}
\end{equation*}
$$

Using this, deduce the transformation behaviour

$$
\begin{equation*}
G_{2}(M \cdot \tau)=(c \tau+d)^{2} G_{2}(\tau)+\frac{i}{4 \pi} c(c \tau+d) . \tag{11}
\end{equation*}
$$

c) Show that the Dedekind $\eta$ function

$$
\begin{equation*}
\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right) \tag{12}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\frac{d}{d \tau} \ln \eta(\tau)=-2 \pi i G_{2}(\tau) \tag{13}
\end{equation*}
$$

d) Using the above, deduce the transformation law

$$
\begin{equation*}
\eta(-1 / \tau)=\sqrt{-i \tau} \eta(\tau) \tag{14}
\end{equation*}
$$

