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The objective of this paper is to discuss the regularity of viscosity solutions

of time independent Hamilton-Jacobi Equations. We prove analogs of the KAM

theorem, show stability of the viscosity solutions and Mather sets under small

perturbations of the Hamiltonian.

1. INTRODUCTION

The objective of this paper is to study the regularity and stability under
small perturbations of viscosity solutions of Hamilton-Jacobi equations

H(P +Dxu, x) = H(P ), (1)

using a new set of ideas that combines dynamical systems techniques with
control theory and viscosity solutions methods. In (1), H(p, x) : R2n → R is
a smooth Hamiltonian, strictly convex, i.e., D2

vvL(x, v) > γ > 0 uniformly
(this is also called uniformly convex by some authors), and coercive in p

(lim|p|→∞
H(p,x)
|p| = ∞), and Zn periodic in x (H(p, x + k) = H(p, x) for

k ∈ Zn). Since Rn is the universal covering of the n-dimensional torus,
we identify H with its projection prH : Tn × Rn → R. By changing

1Supported in part by FCT (Portugal) through programs POCTI,
POCTI/32931/MAT/2000, BPD 1531/2000 and NSF grant DMS 97-29992.
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conveniently the Hamiltonian we may take P = 0 and H(P ) = H, which
we will do throughout the paper to simplify the notation.

In general, (1) does not admit global smooth solutions. The KAM
theorem deals with the case in which

H(p, x) = H0(p) + εH1(p, x). (2)

Under generic conditions it is possible to prove that for most values of P and
sufficiently small ε (1) admits a smooth solution that can be approximated
by a power series in ε [Arn89]. In this paper we will prove analogous results
for viscosity solutions of (1).

The outline of this paper is the following: in section 2 we review ba-
sic facts concerning the connections between Mather measures and viscos-
ity solutions. A general reference on control theory and viscosity solu-
tions is [FS93]. The special results concerning viscosity solutions of (1)
can be found in [LPV88], [Con95], and [Con97]. The main references on
Mather’s theory are [Mat91], [Mat89a], [Mat89b], [Mn92], and [Mn96]. The
use of viscosity solutions to study Hamiltonian systems, and in particular
Mather’s theory is discussed by Fathi [Fat97a], [Fat97b], [Fat98a], [Fat98b],
E [E99], and Jauslin, Kreiss and Moser [JKM99] (for conservation laws in
one dimension). Further developments and applications were considered in
[EG01], [Gom00], [Gom01b]. Then we review representation formulas for
H [CIPP98].

In section 3 study the behavior of H as a function of ε. We prove that
H is Lipschitz in ε, and depending only on properties of the unperturbed
problem, we show that H is differentiable with respect to ε. Then we
obtain L2 estimates (with respect to Mather measures) on the differences
Dxu

ε−Dxu (u and uε are solutions of (1) for ε = 0, ε, respectively), as well
as some perturbative results for the expansion of uε is a power series in ε.
Such results are an analog of the KAM theorem for viscosity solutions. In
particular they show L2 stability of the Mather sets.

These estimates are fairly general, and to prove finer results, in sections
4 we assume the additional hypothesis that the Mather measure is uniquely
ergodic. The main idea is that, like in KAM theory, a non-resonance type
condition should be imposed to prove stronger stability results. This role
is played by unique ergodicity of the Mather measure. We show, in section
4, that uε is uniformly continuous in ε.

2. MATHER MEASURES AND VISCOSITY SOLUTIONS

The purpose of this section is to review some results concerning viscosity
solutions and Mather measures.
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Theorem 1 (Lions, Papanicolaou, Varadhan). For each P ∈ Rn there
exists a number H(P ) and a periodic viscosity solution u of (1). The solu-
tion u is Lipschitz, semiconcave, and H is a convex function of P .

Both H and the viscosity solutions of (1) encode the dynamics certain
trajectories (global minimizers, see [EG01]) of the Hamilton equations

ẋ = −DpH(p, x) ṗ = DxH(p, x). (3)

Let L, the Lagrangian, be the Legendre transform of H

L(x, v) = sup
v
−p · v −H(p, x). (4)

This Lagrangian is defined on the tangent space of the torus (or when
convenient one considers its lifting to the tangent space Rn × Rn of the
universal covering Rn of Tn). Note that through the paper we use the
control theory convention, i.e., (3) is time reversed (in classical mechanics
one has ẋ = DpH(p, x) and ṗ = −DxH(p, x)) and the Legendre transform
(4) also has an extra minus sign (instead of supv p · v −H(p, x)).

Theorem 2 (Mather). For each P there exists a positive probability
measure µ (Mather measure) on Tn × Rn invariant under the dynamics
(3). This measure minimizes∫

L(x, v) + Pvdµ

over all such measures.

Several important properties of Mather measures can be described in
terms of viscosity solutions. Mather measures, as defined in the previous
theorem, are supported in the tangent space of the torus - however it is
convenient to consider another measure on the cotangent space of the torus
induced by µ using the diffeomorphism v = −DpH(p, x). By abuse of
language we will call again Mather measure to such measure.

Theorem 3 (Fathi). Suppose µ is a Mather measure and let u any so-
lution of (1). Then µ is supported on the graph (x, P +Dxu). Furthermore
Dxu is Lipschitz on the support of µ.

The fact that the support of a Mather measure is a Lipschitz graph
was proven by Mather [Mat89b]. Therefore once it is known that µ is
supported on the graph (x, P +Dxu) the last part of the theorem follows
trivially. Similar statements can also be found in [E99] or, using entropy
solutions for conservation laws instead of viscosity solutions of Hamilton-
Jacobi equations, in [JKM99]. The next proposition gives more precise
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Lipschitz estimates on Dxu. and shows that even outside the Mather set
Dxu is Lipschitz.

Proposition 1. Suppose (x, p) is a point in the graph

G = {(x,Dxu(x)) : u is differentiable at x}.

Then for all t > 0 the solution (x(t), p(t)) of (3) with initial conditions
(x, p) belongs G. If for some T > 0, (x(−T ), p(−T )) ∈ G then for any y
such that Dxu(y) exists

|Dxu(x)−Dxu(y)| ≤ C|x− y|,

with a constant depending on T .

Proof. The first part of the theorem (invariance of the graph for t > 0)
is a consequence of the optimal control interpretation of viscosity solu-
tions [FS93] and the reader may find a proof, for instance in [Gom01b] or
[Gom00]. To prove the second part, let S be the set of the points x such
that Dxu exists and the solution of (3) with initial conditions (x,Dxu)
stays in G up to time t = −T < 0. We claim that

|u(x+ y)− 2u(x) + u(x− y)| ≤ C(T )|y|2,

for all x ∈ S and all y ∈ Rn. Given this claim, the result follows from the
proof in ([EG01]), section 6. Part of the claim

u(x+ y)− 2u(x) + u(x− y) ≤ C|y|2

is just a consequence of semiconcavity of viscosity solutions, and the con-
stant C does not depend on T [FS93]. Thus it suffices to prove

u(x+ y)− 2u(x) + u(x− y) ≥ −C|y|2.

Let x(s), 0 ≤ s ≤ T , be a solution of (3). Set z = x(0), x = x(T ). Observe
that

u(z) =
∫ T

0

L(x(s), ẋ(s)) +Hds+ u(x)

and for any ψ

u(z) ≤
∫ T

0

L(x(s) + ψ, ẋ(s) + ψ̇(s)) +Hds+ u(x+ ψ(T )).

Choose ψ(s) = ± y
T s to get

u(x+ y) + u(x− y)− 2u(x) ≥ −C(T )|y|2.
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�
Note that C(T ) = O( 1

T ), as T → 0. Simple examples show that this is
sharp - as one would expect Dxu is not globally Lipschitz and the Lipschitz
constant depends on “how much time it takes to hit a shock”.

Let φ be a Lipschitz function. We need to define what Dxφ(x) means
in the support of a Mather measure. The problem is that although φ

is differentiable almost everywhere with respect to Lebesgue measure, a
measure µ may be supported exactly where the derivative does not exist.
However there is a natural definition of derivative that is convenient for
our purposes.

A function ψ : Rn → Rn is a version of Dxφ if the graph of ψ is
contained in the vertical convex hull of the closure of the graph of Dxφ.
More precisely if

ψ(x) ∈ Dxφ(x),

where

Dxφ(x) = co{p : p = lim
n→∞

Dxφ(xn), with xn → x, φ differentiable at xn}.

The next two propositions show that this definition is quite natural and
useful to our purposes:

Proposition 2. Assume that φ has the property that if xn → x and φ
is differentiable at x and at each xn then Dxφ(xn) → Dxφ(x). Then any
version of Dxφ coincides with the derivative of φ at all points where φ is
differentiable.

Proof. The hypothesis on φ implies immediately that

Dxφ(x) = {Dxφ(x)},

if φ is differentiable at x. �
The solutions of (1) have this property but this is not true for general

Lipschitz functions.

Proposition 3. Suppose (x, p) is a point in the graph G.Let (x(t), p(t))
be a solution of (3) with initial conditions (x, p) If for some T > 0, (x(T ), p(T )) ∈
G then for any y and any version Dxu(y)

|Dxu(x)−Dxu(y)| ≤ C|x− y|,

with a constant depending on T .

Proof. This follows from proposition 1 and from observing that | · | is a
convex function. �
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Since Mather measures µ are invariant under the dynamics (3) one has
for smooth functions φ∫

Tn×Rn

Dxφ(y)DpH(p, y)dµ = 0.

We prove next that for Lipschitz functions φ it is possible to choose a
version of Dxφ such that the same identity holds.

Theorem 4. Let φ : Rn → R be a Lipschitz function and µ a Mather
measure. Then there exists a version of Dxφ such that∫

Tn×Rn

Dxφ(y)DpH(p, y)dµ = 0.

Proof. Consider a generic point (x, p) in the support of µ and the
corresponding trajectory (x(t), p(t)) of (3) with initial condition (x, p). Let
Tn be a sequence converging to +∞. Through some subsequence

1
Tn

∫ Tn

0

ϕ(p(t), x(t))dt→
∫

Tn×Rn

ϕdµ,

for all µ-integrable, continuous, and periodic (in x) functions ϕ. Let zn ∈
Rn be any sequence such that |zn| → 0. If ϕ is continuous and does not
depend on p then

1
Tn

∫ Tn

0

ϕ(zn + x(t))dt→
∫

Tn×Rn

ϕdµ.

Let φ be a Lipschitz function. Note that φ is differentiable almost
everywhere. Thus it is possible to choose zn → 0 such that, for each n,
Dxφ(zn + x(t)) is defined for almost every t. Now consider the sequence of
vector-valued measures ηn defined by∫

Tn×Rn

ζ(p, y)dηn =
1
Tn

∫ Tn

0

Dxφ(zn + x(t)) · ζ(p(t), x(t))dt,

for all vector valued smooth, and periodic in y, functions ζ. Since Dxφ is
bounded, we can extract subsequence, also denoted by ηn, that converges
weakly to a vector measure η.

Since η << µ, in the sense that for any set A, µ(A) = 0 implies that
the vector η(A) = 0. Therefore, by Radon-Nikodym theorem, we have
dη = ψdµ, for some L1(µ) function ψ. By standard techniques in weak
limits it is clear that for almost every x ∈ Tn the density ψ is in Dxφ, so it
is a version of Dxφ.
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Finally, to see that ∫
Tn×Rn

ψDpH(p, y)dµ = 0,

we just have to observe that∫
Tn×Rn

DpH(p, y)dηn = O(εn)

and so
0 =

∫
Tn×Rn

DpH(p, y)dη =
∫

Tn×Rn

ψDpH(p, y)dµ.

�
The Hamilton-Jacobi equation (1) has two unknowns H and u. In the

remaining of this section we recall some representation formulas for H that
do not involve solving (1). A classical result [LPV88] is that

H = − lim
α→0

inf
x(·)

α

∫ ∞

0

L(x, ẋ)e−αtdt,

with the infimum taken over all Lipschitz trajectories x(·). There are two
distinct formulas more convenient for our purposes - both will be optimiza-
tion problems - the first one, which makes a connection between Mather’s
problem and viscosity solutions, is

H = − inf
µ

∫
Ldµ, (5)

in which the measure µ is a generalized curve, i.e.∫
vDxφdµ = 0,

for all smooth φ. This expression for H has a dual formula that consists
in an L∞ calculus of variations problem. This result was first proven in
[CIPP98], and in [Gom00] (and a stochastic generalization in [Gom01a])
using Legendre-Fenchel duality theory.

Theorem 5 (Contreras, Iturriaga, Paternain, Paternain).

H = inf
φ

sup
x
H(Dxφ, x), (6)

where the infimum is taken over all periodic smooth functions φ.

An interesting observation about (6) is that this formula holds as long
as the equation (1) has a viscosity solution. However it is not required that
H be convex in p.
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Unfortunately this representation formula forH does not yield a method
to compute the viscosity solution u. A sequence of minimizers un may or
may not converge to a viscosity solution of (1).

Now we discuss the Euler-Lagrange equations for this problem.

Proposition 4. Suppose u is a smooth solution of (1) (and therefore
is a minimizer of (6)). Then

sup
x
DpH(Dxu, x)Dxφ ≥ 0, (7)

for all smooth and periodic φ.

Proof. Assume u solves (1) and therefore is a minimizer of (6). Then
for any φ smooth and periodic

H(Dxu+ εDxφ, x) ≤ H(Dxu, x) + εDpH(Dxu, x)Dxφ+O(ε2).

Therefore

sup
x
H(Dxu+ εDxφ, x) ≤ H + ε sup

x
DpH(Dxu, x)Dxφ+O(ε2).

Since
sup

x
H(Dxu+Dxφ, x) ≥ H

we must have
sup

x
DpH(Dxu, x)Dxφ ≥ 0,

for any φ smooth and periodic. �

3. L2-PERTURBATION THEORY

In this section we assume the Hamiltonian to be

H(p, x; ε) = H0(p, x) + εH1(p, x),

as in (2). We assume that ε is always sufficiently small such that H(p, x; ε)
is strictly convex in p. The main objective is to obtain estimates that show
that the solution of the perturbed problem (ε 6= 0) is close to the unper-
turbed problem (ε = 0). In particular we prove that under appropriate
hypothesis ∫

|Dxu
ε −Dxu

0|2dν ≤ Cε2,

in which uε and u0 are solutions of (1) and ν is a Mather measure. Then
using the similar techniques we prove estimates on approximate solutions
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using an iterative procedure. In spirit, this is close to the KAM theory in
which a solution of (1) is obtained as a power series. However, because
viscosity solution theory guarantees the existence of a solution of (1) for
any ε (as long as the Hamiltonian is strictly convex) one can show that
such a series is asymptotic to the solution without having to worry about
convergence or existence of a solution.

We proceed as follows: first we study the dependence on ε of Hε. Then
we show that differentiability properties of Hε characterize L2 properties
of the viscosity solutions. More precisely, twice differentiability in ε of Hε

impliesDxu
ε is L2 close (with respect to a Mather measure) toDxu. Finally

we consider certain asymptotic approximations and prove L2 estimates
between the solution and approximate solutions of

H(P +Dxu
ε, x; ε) = Hε(P ). (8)

Proposition 5. Suppose H(p, x; ε) = H0(p, x) + εH1(p, x) with H0

strictly convex in p and H1 bounded with bounded derivatives. Then for
each P and ε sufficiently small there exists a unique Hε(P ) and a viscosity
solution uε of (8). Furthermore the function Hε(P ) is convex in P and
Lipschitz in ε.

Proof. The existence of Hε(P ) as well as convexity in P follows from
the results in [LPV88]. Thus it suffices to prove the Lipschitz property.
Observe that

|Hε1 −Hε2 | ≤ |ε1 − ε2| sup
|p|≤R

sup
x
|H1(p, x)|

with R being an upper bound on the Lipschitz constant for the viscosity
solutions of (1). �

An interesting observation is that if H1(p, x) = V (x) (no dependence
on p) then H is a convex function of ε. To see this note that

L(x, v) = L0(x, v)− εV (x),

(L0 is the Legendre transform of H0) and from (5)

H = sup
µ
−

∫
Ldµ,

in which the supremum is taken over all probability measures, invariant
under (3). Since −L is a convex function of ε, and the supremum of convex
functions is convex, H is convex in ε and therefore twice differentiable in ε
almost everywhere.
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In the next theorem we compute an expansion of Hε close to ε = 0 in
terms of Mather measures and viscosity solutions. In theorem 8 we will
show that such an expansion implies that regularity of Hε yields regularity
for the viscosity solutions.

Theorem 6. Let µ be a Mather measure corresponding to the unper-
turbed problem (ε = 0) and ν its projection in the x coordinates. Then

Hε ≥ H0 + εH1 + γ

∫
|Dxu

ε −Dxu|2dν +O(ε2), (9)

in which
H1 =

∫
H1(Dxu, x)dν,

u and uε are viscosity solutions of (1) for ε = 0, ε and Dxu
ε denotes a

version of Dxu
ε.

Proof. Observe that for any version of Dxu
ε

Hε ≥ H0(Dxu
ε, x) + εH1(Dxu

ε, x)

and so by strict convexity

Hε ≥H0 + εH1(Dxu, x)+

+DpH0(Dxu
ε −Dxu) + γ|Dxu

ε −Dxu|2 +O(ε2).

Integrate with respect to dν and use the fact that∫
DpH0(Dxu

ε −Dxu)dν = 0

to get

Hε ≥ H0 + εH1 + γ

∫
|Dxu

ε −Dxu|2dν +O(ε2).

�
This theorem implies that Hε has always non-empty subdifferential at

ε = 0 (Hε ≥ H0 + εH1 +O(ε2)). Therefore if Hε is differentiable at ε = 0
its derivative is H1. Next we discuss a converse inequality and prove that
under suitable conditions Hε = H0 + εH1 + O(ε2), and therefore Hε is
differentiable at ε = 0.

Theorem 7. Assume u is a smooth solution of the unperturbed problem
corresponding to ε = 0. Let ν be, as in the previous theorem, the projection
of a Mather measure corresponding to ε = 0. Suppose there exists a smooth
function v and a number H1 such that

DpH0(Dxu, x)Dxv +H1(Dxu, x) = H1. (10)
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Then
H1 =

∫
H1(Dxu, x)dν, (11)

and
Hε ≤ H0 + εH1 +O(ε2). (12)

Proof. Let ν be the x projection of a Mather measure corresponding
to the unperturbed problem (ε = 0). First observe that (10) implies (11)
simply by integration with respect to dν. Recall that

Hε ≤ sup
x
H0(Dxu+ εDxv, x) + εH1(Dxu+ εDxv, x).

Since

H0(Dxu+ εDxv, x) + εH1(Dxu+ εDxv, x) = H0 + εH1 +O(ε2),

it follows
Hε ≤ H0 + εH1 +O(ε2),

as claimed. �
The next step in our program is to show that regularity of Hε actually

implies regularity for the viscosity solutions uε.

Theorem 8. Suppose Hε twice differentiable in ε. Then, for any Mather
measure µ (and corresponding projection ν) there exists a version of Dxu

ε

such that ∫
|Dxu

ε −Dxu|2dν ≤ Cε2.

Proof. Observe that for any version of Dxu
ε

Hε ≥Hε(Dxu
ε, x) ≥

≥H0(Dxu, x) +DpH0(Dxu, x)(Dxu
ε −Dxu) + γ|Dxu

ε −Dxu|2+
+ εH1(Dxu, x)− Cε|Dxu

ε −Dxu|.

Integrating with respect to the projection ν and using theorem 4.

Hε −H0 − εH1 +O(ε2) ≥ γ

2

∫
|Dxu

ε −Dxu|2dν.

Since Hε is twice differentiable in ε (the remark after theorem 6 implies
that DεHε = H1 at ε = 0) we conclude∫

|Dxu
ε −Dxu|2dν ≤ Cε2.

�
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An alternate way to state the previous theorem is that for any y suffi-
ciently small (for instance |y| ≤ ε2) we have

lim sup
T→∞

1
T

∫ T

0

|Dxu
ε(x(t) + y)−Dxu(x(t))|2dt ≤ Cε2, (13)

provided Hε is twice differentiable at ε = 0 and x(t) is a orbit of (3) for
ε = 0 with initial conditions on the Mather set.

The remaining part of this section is dedicated to the study of high-
order methods. The idea is that given an integer n ≥ 0, by solving a
hierarchy of equations, one can compute a function ũε such that

H0(Dxũ
ε, x) + εH1(Dxũ

ε, x) = H0 + εH1 + . . .+ εn−1Hn−1 +O(εn). (14)

We call such a function an approximate solution of order n. To compute
ũε write

ũε = u+ εv1 + ε2v2 + . . .

The first equation is
H0(Dxu, x) = H0,

the second is
DpH0(Dxu, x)v1 +H1(Dxu, x) = H1

with H1 =
∫
H1(Dxu, x)dν, the remaining equations are

DpH0(Dxu, x)vk + fk(Dxu,Dxv1, . . . , Dxvk−1, x) = Hk

with Hk =
∫
fk(Dxu,Dxv1, . . . , Dxvk−1, x)dν, here fk is some function

that can be computed by assembling together the remaining terms of order
εk. Assuming that such equations can be solved we have immediately

Hε ≤ H0 + εH1 + . . . εn−1Hn−1 +O(εn), (15)

as in theorem (7).
Let ν̃ be a measure defined by∫

φdν̃ = lim
T→∞

1
T

∫ T

0

φ(x(t))dt,

in which ẋ(t) = DpH0(Dxũ
ε, x)+ εDpH1(Dxũ

ε, x) and φ is any continuous
periodic function. We call ν̃ an approximate Mather measure. Note that
if ϕ is smooth and periodic then∫

Dxϕ [DpH0(Dxũ
ε, x) + εDpH1(Dxũ

ε, x)] dν̃ = 0, (16)

and as before, if ϕ is Lipschitz then (16) holds for a version of Dxϕ.
Let uε be a solution of (1). Our objective is to estimate Dxu

ε −Dxũ
ε.
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Theorem 9. Let uε be a solution of (1) and ũε an approximate solution
of order n. Then there exists a version of Dxu

ε such that∫
|Dxu

ε −Dxũ
ε|2 dν̃ ≤ Cεn. (17)

Proof. Observe that for any version of Dxu
ε and strict convexity of H0

Hε ≥ H0(Dxu
ε, x) + εH1(Dxu

ε, x).

Thus

Hε ≥H0(Dxũ
ε, x) + εH1(Dxũ

ε, x)+ (18)

+ [DpH0(Dxũ
ε, x) + εDpH1(Dxũ

ε, x)] (Dxu
ε −Dxũ

ε) +

+
γ

2
|Dxu

ε −Dxũ
ε|2 .

Integrate with respect to ν̃ and use the fact that∫
[DpH0(Dxũ

ε, x) + εDpH1(Dxũ
ε, x)] (Dxu

ε −Dxũ
ε) dν̃ = 0.

Then using (14) we get

Hε +O(εn) ≥ H0 + εH1 + . . .+ εn−1Hn−1 +
γ

2

∫
|Dxu

ε −Dxũ
ε|2 dν̃.

But then (15) implies (17). �

4. UNIFORM CONTINUITY

The results on the previous section show that viscosity solutions of (1)
have some degree of regularity in ε. This apparently contradicts the exam-
ples in which (1) does not have a unique solution (for fixed ε). Obviously,
adding any constant to a viscosity solution of (1) produces another viscosity
solution. Furthermore we know that even up to constants the viscosity so-
lutions are not unique. It is therefore surprising that, under certain general
conditions, we can prove that

uε(x) → u(x)

uniformly on the support of an uniquely ergodic Mather measure (provided
an appropriate constant is added to uε). This in particular implies unique-
ness of solution on each uniquely ergodic component of the support of a
Mather measure.
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Proposition 6. Suppose µ is a Mather measure and ν its projection.
Let εn → 0. Then there exists a point x in the support of ν and a corre-
sponding optimal trajectory x∗(t) such that for any T

sup
0≤t≤T

|u(x∗(t))− uεn(x∗(t))| → 0,

as n→∞, provided uεn(x) = u(x).

Proof. We start by proving an auxiliary lemma

Lemma 1. There exist a point (x, p) in the support of µ, and sequences
xn, x̃n → x, pn, p̃n → p, with (xn, pn) ∈ suppµ optimal pair for ε = 0, and
(x̃n, p̃n) optimal pairs for ε = εn.

Remark. The non-trivial point of the lemma is that the limits of pn and
p̃n are the same.
Proof. Take a generic point (x0, p0) in the support of µ. Let x∗(t) be
the optimal trajectory for ε = 0 with initial condition (x0, p0). Then for all
t > 0

H0(Dxu(x∗(t)), x∗(t)) = H0.

Also, for almost every y

H(Dxu
εn(x∗(t) + y), x∗(t)) = Hεn

+O(|y|),

for almost every t. Choose yn with |yn| ≤ εn such that the previous identity
holds. By strict convexity of H in p and Lipschitz continuity of Hε in ε

ẋ∗(t)ξ + θ|ξ|2 ≤ C|εn|,

where
ξ = [Dxu(x∗(t))−Dxu

εn(x∗(t) + yn)] ,

ẋ∗(t) = −DpH0(Dxu(x∗(t)), x∗(t)),

and θ > 0. Note that∣∣∣∣∣ 1
T

∫ T

0

ẋ∗(t)ξ

∣∣∣∣∣ ≤|u(x∗(0))− u(x∗(T ))|
T

+

+
|uεn(x∗(0) + yn)− uεn(x∗(T ) + yn)|

T
.

Therefore we may choose T (depending on n) such that∣∣∣∣∣ 1
T

∫ T

0

ẋ∗(t)ξ

∣∣∣∣∣ ≤ εn.
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Thus
1
T

∫ T

0

|Dxu(x∗(t))−Dxu
εn(x∗(t) + yn)|2 ≤ Cεn.

Choose 0 ≤ tn ≤ T for which

|Dxu(x∗(tn))−Dxu
εn(x∗(tn) + yn)|2 ≤ Cεn.

Let xn = x∗(tn), x̃n = x∗(tn) + yn, and

pn = P +Dxu(x∗(tn), P ) p̃n = Dxu
εn(x∗(tn) + yn).

By extracting a subsequence, if necessary, we may assume xn → x, x̃n → x,
etc.

To see that the lemma implies the proposition, let x∗n(t) be the optimal
trajectory for ε = 0 with initial conditions (xn, pn). Similarly, let x̃∗n(t) be
the optimal trajectory for ε = εn with initial conditions (x̃n, p̃n). Then

u(xn) =
∫ t

0

L0(x∗n, ẋ
∗
n) +H0ds+ u(x∗n(t)),

and

uεn(x̃n) =
∫ t

0

Lεn(x̃∗n, ˙̃x∗n) +Hεnds+ uεn(x̃∗n(t)).

Note that, as εn → 0, Lεn
→ L0 uniformly on compact sets (here Lε is the

Legendre transform of H = H0 + εH1). On 0 ≤ t ≤ T both x∗n and x̃∗n
converge uniformly, and, since by hypothesis,

u(xn), uεn(x̃n) → u(x),

we conclude that
uεn(x̃∗n(t))− u(x∗n(t)) → 0

uniformly on 0 ≤ t ≤ T . Therefore

uεn(x∗(t))− u(x∗(t)) → 0

uniformly on 0 ≤ t ≤ T . �
Given a viscosity solution u of (1) consider the differential equation

ẋ = −DpH(Dxu, x). (19)

Given an ergodic Mather measure µ (and respective projection ν) associ-
ated with u, (19) restricted to supp(ν) defines a flow. We say that the
flow (19) is uniquely ergodic if there ν is the unique invariant probability
measure with support contained in supp(ν).
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Theorem 10. Suppose µ is an ergodic Mather measure associated to
a viscosity solution u of (1) with ε = 0. Let ν denote the projection on µ.
Assume that the flow (19) restricted to supp(ν) is uniquely ergodic. Then

uε(x) → u(x),

as ε → 0, uniformly on the support of ν, provided that an appropriate
constant C(ε) is added to uε.

Proof. Fix κ > 0. We need to show that if n is sufficiently large then

sup
x∈supp(ν)

|uεn(x)− u(x)| < κ.

Choose M such that ‖Dxu(x)‖, ‖Dxu
εn(x)‖ ≤ M . Let δ = κ

8M . Cover
supp ν with finitely many balls Bi with radius ≤ δ. Choose (x, p) as in the
previous proposition. Let (x∗(t), p∗(t)) be the optimal trajectory for ε = 0
with initial condition (x, p). Then there exists Tδ and 0 ≤ ti ≤ Tδ such
that xi = x∗(ti) ∈ Bi. Choose n sufficiently large such that

sup
0≤t≤Tδ

|u(x∗(t))− uεn(x∗(t))| ≤ κ

2
.

Then, for each y in Bi

|u(y)− uεn(y)| ≤ |u(y)− u(yi)|+ |u(yi)− uεn(yi)|+

+ |uεn(yi)− uεn(y)| ≤ 4Mδ +
κ

2
≤ κ.

�
Actually, the unique ergodicity hypothesis is not too restrictive since

by Mane’s results [Mn96] “most” Mather measures are uniquely ergodic
(in the sense that after small generic perturbations to the Lagrangian the
restricted flow (19) is uniquely ergodic).
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