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Abstract

This paper, building upon ideas of Mather, Moser, Fathi, E and others, applies
PDE (partial differential equation) methods to understand the structure of certain
Hamiltonian flows. The main point is that the “cell” or “corrector” PDE, intro-
duced and solved in a weak sense by Lions, Papanicolaou and Varadhan in their
study of periodic homogenization for Hamilton-Jacobi equations, formally induces
a canonical change of variables, in terms of which the dynamics are trivial. We
investigate to what extent this observation can be made rigorous in the case that the
Hamiltonian is strictly convex in the momenta, given that the relevant PDE does
not usually in fact admit a smooth solution.

1. Introduction

This is the first of a projected series of papers that develop PDE techniques to
understand certain aspects of Hamiltonian dynamics with many degrees of freedom.

1.1. Changing variables

The basic issue is this. Given a smooth Hamiltoniéan: R"” x R" — R,
H = H(p, x), we wish to examine the Hamiltonian flow

X = D,H(p,X),

11

under a canonical change of variables

(p,x) > (P, X), 1.2
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where
p = Dyxu(P, x),

X = Dpu(P, x) €3

for a generating function : R” x R" — R, u = u(P, x). Here we writeD, =
(ain), o, %ﬂ) andDp = (alpl o adTn)- Assuming that we can find a smooth
functionu to solve the Hamilton-Jacobi type PDE

H(Dyu(P,x),x) = H(P) inR", (1.4

and supposing as well that we can invert the relationsli® to solve forP, X
as smooth functions g, x, a calculation shows that we thereby transfaiini)
into the trivial dynamics

X = DH(P),

. 15
P=0. (45

In terms of mechanics; is an “action” andX an “angle” or “rotation” variable, as
for instance inGoLDsTEIN [Gd].

Of course we cannot really carry out this classical procedure in general, since
the PDE(1.4) does not usually admit a smooth solution and, even if it does, the
transformatior(1.2), (1.3) is not usually globally defined. Only very special Hamil-
tonians are integrable in this sense.

1.2. Homogenization

On the other hand, under some reasonable hypotheses we can in fact build
appropriateveak solutions of(1.4), as demonstrated within another context in the
classic-but-unpublished paper byons, PAPANICOLAOU & VARADHAN [L-P-V].

These authors look at the initial value problem for the Hamilton-Jacobi PDE

ut +H (Dxuf, ’—C) =0 inR" x (0, c0).
I

u®* =g onR" x {t =0},

(1.6)

under the primary assumption that the mapping> H(p, x) is T"-periodic,
whereT” denotes the flat torus, that is, the unit cubeRih with opposite faces
identified. Consequently as— 0, the nonlinearity in1.6) is rapidly oscillating;
and the problem is to understand the limiting behavior of the solutibrisions et
al. show under some mild additional hypotheses on the Hamiltoniamthat u,
the limit functionu solving a Hamilton-Jacobi PDE of the form

u; + HDyu) =0 inR" x (0, 00),

(1.7)
u=g onR"x {r=0}

HereH : R" — R, H = H(P), is theeffective (or averaged) Hamiltonian,
and is built fromH as follows.
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1.3. How to construct H

First, consider for fixed® € R”" thecell (or corrector) problem

H(P + Dyv,x) =A InR",
x — v is T"-periodic.
As proved inLioNs, PAPANICOLAOU & VARADHAN [L-P-V] (and recounted in [E2]

and in BRAIDES & DEFRANCEScHI [B-D, Sect. 16.2]), there exists a unique real
numberx for which there exists a viscosity solution. We may tlefine

H(P) := A,
and so rewrite the foregoing as

H(P + Dyv,x) = H(P) inR",

18
x — v is T"-periodic. (€8

Once we set
u(P,x): =P -x+v(P,x), (1.9

the PDE in(1.8) is just(1.4).

Remark. We pause here to draw attention to some simple observations relating

the cell problen(1.8) and semiclassical approximations in quantum mechanics for

periodic potentials. These comments are intended as further motivation.
Consider the time-independent Sotiriger equation

2
_%Al/, +Vy =Ey inR", (1.10

wheref: is Planck’s constanty : R" — R is aT"-periodic potential, and& is
the energy corresponding to the eigenstate R” — C. A standard textbook
procedure is to look for a solution having tBkoch wave form

P-x

v=¢r ¢, (111

whereg : R" — CisT"-periodic. We further suppogeto have the WKB structure

St

¢=ael

(1.12)

for periodica, v : R* — R. Substituting(1.11), (1.12) into (1.10) and taking real
parts yields

3P+ D+ V(x) = E, (113
up to terms formally of siz&® (h).

Thus in the semiclassical limit — 0, we heuristically obtain the cell problem
(1.8) for the HamiltonianH (p, x) = %|p|2 +V(x)andH(P) =E.
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1.4. Questions, absolute minimizers

The procedure outlined in Subsection 1.3 provides us with at least a theoretical
construction ofd and of a generating functian Returning then to the comments
in Subsection 1.1, we can now formulate these

Basic Questions. To what extent can we employ H and u to understand the
solutions of the Hamiltonian flow (1.1)? In particular, how is information about
the dynamics “ encoded” into H?

These are really hard issues, and to make at least a little progress we will need
some additional hypotheses on both the Hamiltonian and the particular trajectories
of the ODE (ordinary differential equation) we examine. Let us henceforth suppose
thatthe mapping — H (p, x) is uniformly convex, in which case we can associate
with H thelLagrangian

L(g,x):= mpax(p -q — H(p, x)).

Consider then a Lipschitz curxg-) which minimizes the associated action integral,
meaning that

T T
/ L(X,X)dt < / L(y,y)dt (1.14)
0 0

for each timel' > 0 and each Lipschitz curwg-) with x(0) = y(0), x(T) = y(T).
We callx(-) a (one-sidedabsolute minimizer. If we as usual define theomentum

p := DyL(X,X),

then(x(-), p(-)) satisfy Hamilton's ODE1.1).

A discovery of AUBRY [A], MATHER [Mt1, Mt2, Mt3, Mt4], FatHi1 [F1,F2,F3],
Moser [Ms], E [EW2], etc., is that solutions ofl.1) corresponding to absolute
minimizers are somehow “better” than other solutions. Indeed, these authors have
shown that the Hamiltonian dynamics are in some sense “integrable” for such
special trajectories. The main goal of our work is to continue this analysis, with
particular emphasis upon PDE methods (based upon viscosity solutigh8yf
applied to problems with many degrees of freedom.

1.5. Outline

In Section 2 below we review the definition of the effective Hamiltonian
introduce the corresponding effective Lagrangianand recall the connections
with the large-time asymptotics of absolute minimizefs.

We then rescale in time(-) andp(-) in Section 3, and introduce certain Young
measure$v; },>o on phase space, which record the oscillations of the rescaled func-
tions in asymptotic limits. These measures contain information about the Hamil-
tonian flow, and so our goal in subsequent sections is understanding their struc-
ture. In§4 we show that each = v, is supported on the graph of the mapping
p = D,u(P, x) and furthermore “stays away” from the discontinuitiesDu.
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In Section 5 we prove thatis well behaved on the support@f the projection
of v ontox-space. For this, we firstly derive the formiat bound

/ |D2u|?do < C (1.15)

and then the.*° estimate
|D?u| < C o-ae. (1.16)

We rigorously establish some analogueglol5), (1.16), entailing difference quo-
tients in thex-variables. As an application, we provide in Sent®a newproof
of Mather’s theorem that is supported on an-dimensional Lipschitz continuous
graph.

Section 7 extends the techniques from Section 5 to establish what amounts to
an L2 estimate for the mixed second partial derivatives,

/ |D2,u|?do < CD?H(P). (117
Tn

More precisely, we prove a similar inequality involving difference quotients in the
variableP . An application of this bound appears in Section 8, where we demonstrate
the strict convexity off in certain directions.

In Section 9 we draw some further deductions under the assumptiors ihat
differentiable ai” and the components ¢f := D H (P) are rationally independent.

A forthcoming companion paper [E-G2] addresses problems with time-depend-
ent Hamiltonians. The primary new topics developed there include a weak inter-
pretation of the “adiabatic invariance of the action” and a discussion of the Berry-
Hannay geometric phase correction, computed in terms of effective Hamiltonians.

Our work is strongly related to some extremely interesting papdtsiofi [F1,
F2,F3], which develop his “weak KAM (Kolmogorov-Arnol'd-Moser) theory”. We
hope later to work out more clearly some of the connections with Fathi’'s discoveries.

Some other relevant papers includaTHer [Mt1, Mt2, Mt3, Mt4], WEINAN E
[EW1,EW2], GoMEs [G], SoBOLEVSKII [S01,S02] MARE [Mn2,Mn3], JAUSLIN,
KRrEIss & MosEeR [J-K-M], ITURRIAGA [I], Dias CARNEIRO [DC], Arisawa [Ar],
etc. A good survey iMATHER & Fornt [M-F], and we have foun®aRE's book
[Mn1] to be very useful.

SeeConcorpEL [C1,C2], CHou & DurrIN [C-D], NussBaum [N], etc. for
connections with nonlinear additive eigenvalue problefassi [F4], NAMAH &
ROQUEJOFFRE [N-F], ROQUEJOFFRE [R], BARLES & SOUGANIDIS [B-S] andFATHI
& MATHER [F-M] discuss some related questions about large-time asymptotics of
solutions to Hamilton-Jacobi equations. Similar problems for stochastic homoge-
nization have been studied BgzakHaNLouU [Rz] andSouGanipis [S].

There is also a large literature for time-dependent Hamiltonians with one degree
of freedom. In this setting ordering properties for minimizing trajectories provide
powerful tools unavailable in higher dimensions. 3éerHER & Forni [M-F],
AuUBRY [A], BANGERT [B2], etc. for more.
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2. Effective Hamiltonians and L agrangians

2.1. The Hamiltonian and Lagrangian

As in the introductionT” denotes the standard flat torus.

Hypotheseson theHamiltonian. Assume now thatthe given, smooth Hamiltonian
H:R"xR" - R, H= H(p, x), satisfies these conditions:

(i) periodicity:
For eachp € R", the mapping: — H(p, x) is T"-periodic. (2.1

(i) strict convexity:
There exist constants, y > 0 such that
(2.2

nooa2
0°H
yIEP < Y 8pi8pj§i$j < I'|g|? for eachp, x, £ € R".

ij=1

The Lagrangian. We define the associatddigrangian L : R" x R" — R,
L = L(q, x), by duality:

L(g,x) :=suplp-q — H(p, x)) 2.3
p

for ¢ € R". In view of (2.1), (2.2) we see thaL is smooth.
For eachy € R", the mapping: — L(g, x) is T"-periodic. (2.4
There exist constants, y > 0 such that

n 2
0°L
yIEPS Y

(q.0)&E < T|glforallg,x. £ eR". (D
(=1 09i04;

We physically interpret as position,p as momentum ang as velocity. The
corresponding capital lettegs, P, Q will likewise respectively denote position,
momentum and velocity in new coordinates.

2.2. The effective Hamiltonian and Lagrangian

As explained in the Introduction, we intend next to “averagg”following
LioNs, PAPANICOLAOU & VARADHAN [L-P-V]:

Theorem 2.1. (i) For each P € R" there exists a unique real number, denoted
H (P), such that the cell problem

H(P + Dyv,x) = H(P) inR" (2.6)

has a T"-periodic, Lipschitz continuous solution v.
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(i) In addition, there exists a constant « such that
D>v<al inR" 2.7
in the distribution sense.

We call the function
H:R"—>R (2.8

so defined theffective or averaged Hamiltonian.

Remarks. (i) We understana to solve(2.6) in the sense of viscosity solutions.
This means that i = ¢ (x) is a smooth function and

v — ¢ has a maximum (minimum) at a poing € R”, then

N : (2.9
H(P + D¢ (x0), x0) = H(P) (2 H(P)).

We will in fact mostly need only that is differentiable a.e. with respect to
n-dimensional Lebesgue measure, and tteailves the PDE2.6) at any point
of differentiability.

(i) The inequality(2.7) means that

the function(x) := v(x) — %|x|2 is concave ofiR”. (2.10)

(iii) If v is a solution of(2.6), we will hereafter often write
v=1uv(P,x) (P,x e R")
to emphasize the dependencemn
Given H as above, we define also thifective Lagrangian

L(Q) = sgp(P -Q—H(P)) (211
for 0 e R".

2.3. Propertiesof H and L
Proposition 2.2. The mappings
P+ H(P), Qr L(Q)

are convex and real-valued. Furthermore, H and L are superlinear:

lim H(P): lim @=+oo
|P|—oco | P] Ql—>o0 |Q]

(2.12)
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Proof. (1) Seel.ioNs, PAPANICOLAOU & VARADHAN [L-P-V] (or [E2]) for a proof
that H is convex. The convexity af is immediate from2.11).
(2) In view of (2.2),
H(P) = a|P + Dwv|>— B = a|P|?+2eP - Dyv— B ae. (2.13)

for appropriate constants > 0, 8 = 0. We integrate this inequality ovél" and
recallv is periodic, to deduce

H(P) = a|P|* - B.

ThusH is superlinear, and in particulan Q) < oo for eachQ. On the other hand,
by constructionH (P) < oo for eachP; whence the duality formula

H(P) = SSIO(P -0 - L(Q)

implies L is superlinear. O
In later sections we will relatél , L to appropriately rescaled minimizers of the
action functionals, and for this will several times invoke the following results of

Lions, PAPaANICOLAOU & VARADHAN [L-P-V, §IV]. (See alsoWEINAN E [EW1],
BRAIDES & DEFRANCESCHI [B-D, § 16.2].)

Theorem 2.3. (i) If X : [0, T] — R" isa Lipschitz continuous curve and X, (-) —
X(-) uniformly, then

T . T X
/ L) dr < liminf / L (xs, i) dr. (2.14)
0 0 &
(ii) Define
! X
Se(x, y, 1) == inf {/ L (x —) ds | () = x, X(0) = y} (2.15)
0 &
for x,y e R", ¢t > 0. Then
- (x—Yy
Se(x,y,t) > tL (T) ase — 0, (2.16)

uniformly on compact subsets of R” x R" x (0, o0).

3. Young measures

Next we study the asymptotic behaviorras> oo of certain curves that mini-
mize the action.
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3.1. Hamilton’s ODE, rescalings

Definition. A Lipschitz continuous curve : [0, co) — R" is called a (one-sided)
absolute minimizer if

T T
/L()‘(,x)dt§/ L(y,y)dt (3.1)
0 0

for each timel' > 0 and each Lipschitz continuous curye [0, co) — R" such
that

X(0) =y(0), x(T) = y(T).

Given as above an absolutely minimizing cur(e), define the corresponding
momentum

P(t) := Dy L(X(1), X(1)) 3.2
forr 2 0. Then

X(1) = DpH(p(1), X(1)),

. (33
P(t) = =Dy H(p(7), X(1))

fortr = 0.
We wish to understand the paix(-), p(-)) for large times, and to this end
introduce therescaled dynamics

Xe (1) 1= eX(t/e), Pe(t) :=p(t/e),
X (0) = ex(0), pe(0) = p(0).

It follows from (3.3) that

Xe (1) = DpH <ps(1), Xg:t)) s
(3.4

. 1 Xe (1)
Pe(t) = ——DxH <|Os(t), )

&

forr = 0.

Remark. Sincej—tH (pg(z‘), X"T(”) = 0, we have supo H (pg(t), XFT(’)) < Cfor
some constant, independent of. But H(p, x) = §|p|2 — C,and so

SURIPe (1)1, [Xe ()]} < o0. (3.5
=20
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3.2. Recording oscillations

We expect the functiong, (-) andX&‘T(‘)(mod T") to oscillate ag — 0, and so
introduce measures on phase space to record these motions. Invoking for instance
the methods fronj1.E of [E1], we have

Proposition 3.1. There exists a sequence ¢ — 0 and for a.e. + > 0 a Radon
probability measure v, on R" x T" such that

o (pgk(o, Xﬁk(”) B = / ” / e 0du(p ) 36

Ek

for each bounded, continuous function
P:R"xR" > R, ®=(p,x),
suchthat x — ®(p, x) isT"-periodic.
We call{v,};>0 Young measures associated with the dynami¢3.4).

Remark. The limit (3.6) means

T T
/ ® (pak, Xﬂ) ¢ dt — / b¢ dr @7
0 Ek 0

for eachT > 0 and each smooth functian: [0, T] — R.
Lemma 3.2. The support of the measure v, is bounded, uniformly inz.
This is clear from(3.5).

Lemma 3.3. For each C1 function ® as above,
/ / {H, ®}dv; =0 (3.8
for a.e.t = 0, where

{H,®}:= D,H - Dy® — D,H - D,® 3.9
isthe Poisson bracket

The identity(3.8) means that the measurgis invariant under the Hamiltonian
flow (3.3).

Proof. We have
d Xg N )‘(S
o (pg,?) = Dy®-p; + Dy =~
1
&

according ta3.4). Take¢ : [0, T] — R to be smooth, with compact support. Then

/OT{H, ) (pg, %) cdt = —/OT el d (pg, );—8) dt.

Sendings = ¢ — 0, we deducé3.8). O
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3.3. Convergence of trajectories, the action vector

From (3.5), we conclude that the curvdg.(-)}.-o are uniformly Lipschitz
continuous. Hence we may assume (passing if necessary to a further subsequence)
that

Xg, — X (3.10)

uniformly on compact subsets @9, co), whereX : [0, co) — R” is Lipschitz
continuous X (0) = 0.

Lemma 3.4. For a.e.t = 0,

X(0) = Q) (3.11)
where
Q@) = /1;{'1 /11‘" D,H(p, x)dv;. 3.12
Proof. The limit (3.10) implies
Xe, — X;

whence(3.11), (3.12) follow from (3.4). O

Theorem 3.5. (i) For a.e.timer =0

Z(Q(t)):/ fTL(DpH(p,x),x)dvt. (3.13

(i) Furthermore, there exists P € R” such that
P € dL(Q(1)), Q) € dH(P) (3.14
fora.er = 0.
Recall that if® : R" — R is convex, we writey € 0®(x) to mean
DPx)+y-(z—x) S dP(z) forallz e R".

Remarks. (i) The point is thatP does not depend on We call P an action
vector for the rescaled trajectorig®. (-)}¢>0.
(i) The second assertion above can be restated

>.( €IH(P) fora.e.r = 0,
P=0
and this formulation should be compared with5).
(i) The existence of? is also a consequence of the Pontryagin Maximum Princi-
ple; cf. CLARKE [CI].
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Proof. (1) Lety, := X.(0) = ¢x(0) — 0. According to Theorem.3,
Se, (X, Ve 1) — 1L (;) (x eR", 1> 0), (3.15)

uniformly on compact subsets. But

t
Se(x, ye, t) = inf {/ L ()‘(, 5) ds | x(t) = x, x(0) = ys} ,
0 &
and so t .
Se(Xe (1), ye. 1) = /O L (5. ) as, (3.16)

since the curve, (-) is an absolute minimizer.
(2) From(3.10), (3.15) we see that

/X
Se, (Ko, (1), Ver o 1) — 1L (4) . (3.17)

But then(3.16) implies that

o, ) (X
L (xgk, g) T (tL<t>>' (3.18
d - (X - (X - (X . X -

by convexity. Consequently, singe = D, H (pg, 2—8) we deduce fron(3.18) that

Now

//L(D,,H(p,x),x)dv,gi(X(t)) (3.20)
n T)l

fora.e.r > 0.
Conversely, Theorem.2 implies

b o x, b
/a LX) di gl@o/a L(xg,?> dt:/a /n/nL(DpH,x)dv,dt

forall0<a < b < oo and so

Z(>‘<<t>)§/ / L(DpH(p, x), x)dv,
Rn ’H‘n

for a.e.t. This and(3.20) establish(3.13).
(3) In particular,

d - ) sy 5 .
n (tL (T)) = L(X()) = L(Q(t)) a.e.;
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1 7. 1 Ta (- (XD
7/0 L(Q(t))dt_7/0 E(tL<T>) dt

- (X(T)
—L <T) (3.20)

_/1 (T
:L<7/o Q(t)dt).

This identity, valid for each tim& > 0, implies tha{Q(#)},>¢ lies in a supporting
domain ofL. This means that

and so

P € dL(Q(r)) fora.e.timer >0 (3.22)

for some vectoP € R”. Equivalently,Q(¢) € dH (P).
To confirm(3.22), fix a timeT > 0, write Q := %fOT Q(t) dt, and take any
P € 9L(Q). Then owing ta(3.21) we have
LQW)=L(Q) +P- Q1) — 0)

for a.e. time O< ¢ < 7. ThusQ(r) is a minimizer of the convex functioh(Q) —
L(Q)— P -(Q — Q),and soP € dL(Q(r)), for a.e. time 0< ¢ < T. Taking a
sequence of time§, — oo and passing if necessary to a subsequence, we obtain
a vectorP satisfying(3.22). O

4, Structure of minimizing measures
We next fix one of the Young measungsand hereafter write = v,. Our goal
is to understand the form of this measure, and in particular to describe its support.
Our further deductions will be based entirely upon certain conclusions reached

above. These are firstly thais a compactly supported Radon probability measure
onR" x T", for which we define

0 :=f / DyH (p, x)dv,
n ’]1')1
as in(3.12) above. In addition, we have

/ {H,®}dv =0 (4.1)
n ’]I‘Vl
for eachC? function ® that isT”-periodic in the variable, and furthermore

Z(Q):/n/w L(D,H(p, x), x)dv. (4.2)

These are, respectively, assertigBs8) and(3.13) above.

Remarks. Our v is therefore aninimal measure in the sense o0MATHER [Mt1],
except that we work in phase space. The advantage is that the flow invariance
condition(4.1) is fairly simple, and very useful, in thg, x) variables.
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Notation. (i) We write M := spt(v) and callM the Aubry-Mather set.
(i) We denote by theprojection of v onto thex-variables. That is,

o(E) :=v(R" x E)
for each Borel subsdf of T”.

Take now anyP € dL(Q) and letv = v(P, x) be any viscosity solution of the
corresponding cell problem

H(P + Dyv,x) = H(P) inR", 43
x = v(P, x) is T"-periodic, '
satisfying the semiconcavity conditi@@.7). We hereafter set

u(P,x):=P- -x+v(P,x).

4.1. Differentiability on the support of v
Theorem 4.1. (i) The function u is differentiable in the variable x o-a.e, and

o-a.e. point isa Lebesgue point for D, u.
(i) Thisequality holds:

p = Dyu(P,x) v-ae

(iii) Furthermore,
/ H(p,x)dv :/ H(Dyu,x)do = H(P); (4.4)
n ’]TVL ’]I‘n
and if H isdifferentiable at P,

/ / D,H(p,x)dv = / D,H(Dxu, x)do = DH(P).
n n ’]I‘n
In particular, the PDEA4.3) holds pointwiseg-a.e.
Remarks. Formula(4.4) explicitly displaysH as an average df; but for this to
be useful, we need to know more about the measuk&'e will later, in Section 9,
discover a bit more about the structuresof

Observe also that fror#.4) we deduce

H(P)=H(P) if P, P € dL(Q). (4.5)

Finally, compare assertion (ii) with the canonical change of variafil&s.
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Proof. (1) To ease notation, we do not display the dependene@ofthe variable
P, and we writeDu for D, u.

Taken. to be a smooth, nonnegative, radial convolution kernel, supported in
the ballB(0, ). Then set

uf :=ng xu.

The strict convexity o implies for all p, g € R" that
)4
H(g,x) 2 H(p,x) + DpH(p, %) - (g = p) + 51g — pI*.

Takeqg = Du(y), p = Du(x) = [ n:(x — y)Du(y)dy in this expression,
multiply by n.(x — y), and then integrate with respectyto

HOu' 0.0 < [ e = HDuG). 0 dy

—g/'%u—wmww—Dqu@.
Rn

Since the PDEH (D,u, x) = H(P) holds pointwise a.e., we conclude that
Be(x) + H(Du®(x), x) < H(P) + Ce (4.6)

for eachx € T", where
Be(x) = g/R Ne(x — y)[Du(y) — DuS(X)IZdy- 4.7

(2) Recalling again the strict convexity &f with respect to the variablg, we
deduce

Z/ |Du8(x)—p|2dv
2 n Tﬂ

< [ HOW @0 = H(p) = Dy H(p. ) - (D () = p) d
(4.8)
Now Du® = P + Dv?, wherev® = n, * v is periodic. Consequently

f f D,H - Dv®dv =0,

according ta(4.1). This observation an@.6) imply

Z/ |Du5—p|2dv~|—/ B, do
2 n 'Irn Tn

gH(P)—/ H+ DyH - (P — p)dv + Ce.
n ’]I‘n

i (4.9)
Next, P € dL(Q) implies

L(Q)+H(P)=P-Q.
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Furthermore
L(D,H(p,x),x)+ H(p,x)=D,H(p, x) - p.

Recalling thatQ = [, [r» Dy H dv and substituting this int¢4.9), we find

Z/ / |Du8—p|2dv~|—/ B.do
2 n n ']Tn

g—l_,(Q)—l—/ / L(D,H,x)dv + Ce
= Ce,

(4.10)

according tao4.2).
(3) Now sends — 0. Passing as necessary to a subsequence we deduce first
from (4.10) that

B: —> 0 o-a.e.
Thuso-a.e. pointx is a point of approximate continuity abu, and Du is o-
measurable. Sinae= x - P 4+ v andv is semiconcave as a function.ofTheorem
2.1 (ii)), it follows thatu is differentiable inx, o-a.e. Thus
Du® — Du
pointwise,c-a.e., and s¢4.10) in turn forces
p=Du(x) =P+ Dv(x) v-a.e.

This proves assertion (ii), and (iii) follows then from the cell PDE

Remark. As a consequence of the foregoing proof, we have the identity
/n /” D,H(p,x) - Dyv dv = /11"" D,H(Dxu,x) - Dyv do =0, (4.11
which we will need later. To confirm this, recall from above that
/n . D,H - Dyv® dv =0.

SinceD,v®* — D,v boundedlyy-a.e., we can apply the Dominated Convergence
Theorem.

5. Derivative estimatesin thevariable x

We devote this section to showing that our solutioof the cell problem is
“smoother” on the support ef than it may be at other points @f'. This is a sort
of “partial regularity” assertion.
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5.1. Formal L2 and L™ estimates

First of all, we provide for the reader some purely forrhAlandL> estimates
for D?u on the support of, calculations which provide motivation for the rigorous
bounds obtained afterwards.

L?inequalities. We assume for this that the generating functida smooth, then
differentiate the cell PDE twice with respecttg and finally sumfot = 1, ..., n:

Hpkpl (Dyu, x)uxkxiuxlxi + Hpk (Dyu, x)uxkx,'x,'
+ 2Hpkxl- (Dyu, x)uxkxi + Hx,-x,- (Dxu,x) =0.

The first term on the left-hand side is greater than or equg| @u|?. Thus

y/T" |D§u|2da +/11‘" DyH - Dy(Acu)do <C +C/11‘" |D§u|d0.

SinceA,u = A,v is periodic, the second term on the left-hand side equals zero,
according tao4.1). We consequently conclude that

/ |D?u|?do < C, (5.1)

for some constant depending only orH andP. O

L* inequalities. We can similarly differentiate the cell PDE twice in any unit
directioné, to find

Hpyp (Dxtt, X) gty + Hp (D, X) et
+ 2Hp, e (Dyu, x)uyg + Heg(Dyu, x) =0,

foruge == Z,’.szl uy,x;€:€;. Take a nondecreasing, functién: R — R, and write
¢ = @ 2 0. Multiply the above identity by (uz¢), and integrate with respect to
o . After some simplifications, we find

%/ |Dxu§|2¢(u§§)d0+/ DyH - Dy(®(uge)) do < c/ ¢ (use) do.
T}’l ']1"71 I'J:rrl

Sinceug: = vgg is periodic, the second term on the left-hand side is zero. We select

1 ifz<—u

$@) = {O if z>—u,

for a constanf: > 0. Sincel D ug|? = uf,, we conclude that ({ugz < —pu}) =0
if 1 is large enough. Becaug2.10) provides the opposite estimaig; < «, we
thereby derive the formal bound

|ugg| é C oc-a.e, (5.2

the constant depending only upon known quantities
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Remark. As the interested reader may wish to confirm, the foregoing derivations
are especially transparent for the classical Hamiltonian

H(p,x) = 31p° + V),
in which case the cell PDEL.3) is theeikonal equation

3IDcul? +V(x) = H(P)
and(4.1) corresponds to thieansport equation

div(ic D,yu) = 0.
A clear message is that these two PDE should be considered together as a pair, in
accordance with formal semiclassical limits. (See the Remark in Subsection 1.3.)
5.2. An L2-estimate of difference quotientsin x

We now establish an analogue of estim@@d), with difference quotients re-
placing some of the derivatives.

Theorem 5.1. There exists a constant C, depending only on H and P, such that
|Dyu(P, x +h) — Dyu(P, x)[?do < Clh|? (5.3)
’]I‘n

for h € R".

Remark. If Dyu(P, x + h) is multivalued, we interprets.3) to mean

|&§ — Dyul?do < Clh|? (5.4)
’H‘n

for someos-measurable selectighe D,u(P, - + h).

Proof. (1) To simplify notation we do not display the dependence oh P, and
just write Du for D, u.
Fix h € R" and define the shifted function

u(-) :=u(-+h).

Then .
H(Di,x +h)=H(P) a.e.inR".

Mollifying as in the proof of Theorem.4, we have
H(Dif,x+h) < H(P)+Ce inR".
Therefore

H(Dif,x) — H(Du,x) < Ce + H(Du®,x) — H(Du®, x + h)
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o-a.e., and consequently

%/ \Dii® — Du|?do +/ D, H(Du, x) - (Dii* — Du)do
Tn Tll

< Ce+ H(Du®,x) — H(Dia®, x + h)do (5.5
T)l

§C(s+|h|2)—/ D, H(Dii®, x) - hdo.
’H‘n

(2) SinceDi* — Du = Dv® — Dv, the second term on the left-hand side of
(5.5) vanishes, in view of4.1), (4.11). Therefore

g |Dﬁs—Du|2d0§C(e+|h|2)—/ DyH(Du, x) - hdo
" Tn
+C/ |Dii® — Dul||h|do,
’]I‘VL
and thus
% |Dﬁ5—Du|2da§C(s+|h|2)—/ / D.H -hdv.
Tﬂ n n

However(4.1) implies the last term here is zero; whence

|Dii® — Dul?do < C(e + |h|?). (5.6)
’ﬂ‘ll

(3) We send — 0. Passing as necessary to a subsequence we have
Dii® — ¢ weakly inL?

and
&€ — Dul?do < C|h|2. (5.7)
(4) To conclude, we mar;t show
& e Du=Du(-+h) o-a.e., (5.8)
which means that fos-a.e. pointx there exists a consta@tsuch that
i) Sax) +E&- (y—x) +Cly — x| (5.9)

for all y. To confirm this, recall thai, and so als@®, are semiconcave:
i (y) £ i (x) + Dit* (x) - (v — x) + Cly — x|

forall x, y. Takeg € L2, g > 0. Then fixingy and integrating the variablewith
respect tar, we find

0= /Tn(—ﬁe(y) + i (x) + Dii* (x) - (v — x) + Cly — x[))g(x) do (x).
Lete — 0 and notei® — & uniformly. We conclude that
0 [ () + 0+ (v =)+ Cly = 2 Pyg) do ).

This inequality is true for aly as above; whenog.7) holds foro-a.e. pointc and
ally. o
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5.3. L™ estimates of difference quotientsin x

We next refine the integration arguments above, to derivé&&nbound on
second-order difference quotients. This will be a variant of the formal estimate
(5.2) above.

Theorem 5.2. There exists a constant C, depending only on H and P, such that
lu(P,x +h) — 2u(P,x) +u(P,x —h)| < Clh|? (5.10)
for all h € R" and each point x € spt(o).
Proof. (1) Takeh # 0, and write
u=u(-+h), i =u(-—h).
We consider, as before, the mollified functialfs i, where we take
0<e<nlhP? (5.11)
for smallny > 0. As in the earlier proofs, we have
H(Da®, x +h) < H(P) + Ce,
H(Di®,x —h) < H(P) + Ce.
Therefore fofo-a.e. pointx,

H(Du®, x) — 2H(Du, x) + H(Di?, x)
< Ce+ H(Du®,x) — H(Duf, x + h)
+ H(Duf, x) — H(Dit, x — h).

Hence
g(|Dﬁ€ — Dul? + |Di® — Du|?) + D, H(Du, x) - (Dii® — 2Du + Dii®)
< C(e + |h|?) + (DyH(Dit*, x) — DyH(Dii®, x)) - h,
and consequently
%(|Dﬁ€ — Dul? + |Dit* — Du|?)
+ D,H(Du, x) - (Dii — 2Du + Dif) < C(s + |h|?).

(2) Fix now a smooth, nondecreasing, functibn R — R, and write¢ :=
@ > 0. Multiply the last inequality above by (”g;lfl‘l‘#) and integrate with
respect ta:

it — 2 ~e
Zf (1Dii® — Dul + |Dif — Du?¢ (T 4o
4 Jn |h|2

+/ D,H(Du, x) - (Di® — 2Du + Di®)¢(---)do (5.1
Tﬂ

§C@+w%/¢«»w.
’H‘n
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Now the second term on the left-hand sidg®fl2) equals

Ih| / / D, H(p. x) - Dy @(” _é"‘;r” )du (5.13

and thus is zero. (To see this, note frofnl) that the expressio¢b.13) vanishes if
we replace: by a mollified functionu®. Let§ — 0, recalling the estimates in the
proof of Theorem 4L.)

So now dropping the above term frof12) and rewriting, we deduce

(us(x +h) — 2u(x) + uf(x — h))

/ |Duf (x + h) — Du® (x — h)|%}
Tn

|h|2
(5.14)

(3) We confront now a technical problem, @s14) entails a mixture of first-
order difference quotients fdbu® and second-order difference quotientsifor®.
We can however relate these expressions, sirisesemiconcave.

To see this, first of all define

E; = {x € Sptio) | u®(x + h) — 2u(x) + u®(x — h) < —ulh)?}, (5.15
the large constant > 0 to be fixed below. Now according t@.10), the functions
i(x) = ulx) — %|x|2, i (x) = u® (x) — %|x|2 (5.16)

are concave. Also a point e spt(o) belongs toE. if and only if

i€ (x 4 h) — 2i(x) + i (x —h) < —(u+ a)|h|2 (5.17)
Set
fe@s) =uf (x + s%) (—1h| £ s < |h)). (5.18

Then f is concave, and
U (x +h) = 2a° (x) + " (x —h) = f(hl) — 20 + f*(=|hl)

I,
- /w £ )] — IsD) ds

‘hl 1 "
> || / £ (s)ds  (sincefs’ <0)
—|h|

= [RI(fE (kD) = € (—Ih]))
= (Dﬁg(x +h) — Dﬁs(x —h)) - h.

Consequently it € E,, this inequality and5.17) together imply

2lit° (x) — it (x)| + |Dit* (x + h) — Dit® (x — h)[|h] Z ( + o) ||,
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Now |izé (x) —iu(x)| £ Ce onT", sinceu is Lipschitz continuous. We may therefore
taken in (5.11) small enough to deduce from the foregoing that

|Dii® (x + h) — Dii (x — h)| > (%—i—a)lhl. (5.19)

But then
& & M
|Duf (x + h) — Du® (x — h)| > (E—a>|h|. (5.20)

(4) Return now ta5.14). Takingu > 2« and

1 ifz< —pu,

we discover from5.14) that

2
(5 —a) o (E) < Cle+ o (Eo).

We fix 1 so large that
j 2
=z >
( > a) >C+1,

to deduce

(Ih]?> — Ce)o (Ee) £ 0.

Thuso (E;) = 0if in (5.11) is small enough, and this means
u® (x4 h) = 2u(x) +u(x = h) Z —plhf?
for o-a.e. pointc. Now lete — O:
u(x +h) — 2u(x) + u(x —h) = —plhl?

o-a.e. Since

u(x + h) — 2u(x) + u(x — h) < alh)?

owing to the semiconcavity, we have
lu(x +h) — 2u(x) +u(x — h)| < Clh|?

for o-a.e. point. Asu is continuous, the same inequality obtains foxadl spt(o).
|



Effective Hamiltonians and Averaging for Hamiltonian Dynamics | 23

6. Application: Lipschitz estimatesfor the support of v

We next improve the second derivative bounds from the previous section, and

then show as a simple consequence thavsfies on a Lipschitz continuous graph.

Theorem 6.1. (i) There exists a constant C, depending only on H and P, such
that

u(P, y) = u(P, x) = Dyu(P,x) - (y = )| < Clx — y|? (6.1

for all y € T" and o-a.e. point x € T".
(i) Furthermore,
|Dyu(P,y) — Dyu(P, x)| = Clx — y| (6.2)

for all y € T" and for o-a.e. point x € T".
(i) Infact, u isdifferentiable at each point x € spt(o), and estimates (6.1), (6.2)
hold for all y € T", x € spt(o).

Remark. WhenD,u(P, y) is multivalued,(6.2) asserts
|€ — Dyu(P,x)| < Clx — y

forall & € D,u(P, y). In particular, for multivalued, u(P, y) we have the esti-
mate
diam(D,u(P, y)) < Cdist(y, spt(0)),

providing a quantitative justification to the informal assertion that(gpmisses
the shocks imDu".

Proof. (1) Fix y € R" and take any point € spt(c) at whichu is differentiable.
According to Theorem 5.2 with := y — x, we have

u(y) = 2u(x) +u(2x — y)| < Clx = y[% 6.3
By semiconcavity, we have
u(y) — u(x) — Du(x) - (y —x) < Clx — y|%, (6.4)
and also
w(2x — y) —u(x) — Du(x) - (2x —y —x) < Clx — y|°. (6.5
Use(6.5) in (6.3):
u(y) = u(x) = Du(x) - (v = x) 2 =Clx — y|%.

This and(6.4) establish(6.1).

(2) Estimateg(6.2) follows from (6.1), as follows. Takex, y as above. Let be
a point to be selected later, with — z| < 2|x — y|.

The semiconcavity af implies that

u(z) L uy)+ Du(y) - (z —y) + Clz — y|2. (6.6)
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Also,
u(z) = u(x) + Du(x) - (z — x) + 0(Ix — z/%),
u(y) = u(x) + Du(x) - (y — x) + O(lx — y|?),
according ta(6.1). Insert these indentities in{®.6) and simplify:
(Du(x) — Du(y)) - (z = y) < Clx — y|%.
Now take

Du(x) — Du(y)
[Du(x) — Du(y)|

2=y +[x =y
to deducg6.2).

(3) Now take any point € spt(o), andfixy. There existpoints; € spt(o)(k =
1, ...) such that; — x andu is differentiable af;. According to estimate (6.1),

lu(y) — u(e) — Dux) - (v — x| < Cha —y1* (k=1,...).

The constanC does not depend dnor y. Now letk — oo. Owing to(6.2), we
see tha{Du(x;)} converges to some vectgy for which

() —u@x) =n- (v =0 = Clx = y|2.

Consequently is differentiable att andDu(x) =»n. O

As an application of these bounds, we show next that th&tet spt(v) lies on

ann-dimensional Lipschitz continuous graph. This theorem (in position-velocity

variables) is due originally tMATHER [Mt2].

Theorem 6.2. There exists a constant C, depending only on P and H, such that
[Dxu(P, x1) — Dyu(P, x2)| = Clx1 — x2| (6.7

for o-a.e. pair of points x1, x».

Proof. In view of (6.2) we can extend the mapping— Du(x) to a uniformly

Lipschitz function defined on all df”. The support ob lies on the graph of this
mapping. O

7. Derivative estimatesin the variable P

We turn next to some bounds involving variationsfinThese are rather subtle
and involve the smoothness propertiegbf(See Bschel [P, pp. 656—657] for an
explicit linear example, showing thatcan be less well behaved mthan inx.)
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7.1. Aformal L? estimate
As in Subsection 5.1, we begin with a simple, but unjustified, calculation that
suggests the later proof. So for the moment suppased H are smooth, differen-
tiate the cell PDE twice with respect #, and sum ori:

H[)k[)[(Dxus x)uXkP,'MX[P,' + Hpk(Dxua -x)u)(kP,'P,' = I:IP,'P,'(P)' (71)

The first term on the left-hand side is greater than or equallmfpmz. Conse-
quently

/ |D? pul dcr+/ DyH - Dy(A,u)do < AH(P),

whereAH = ApH is the Laplacian off in P. SinceA,u = A,v is periodic,
the second term on the left-hand side equals zero. Therefore

/ |D?pu|?do < CAH(P). (7.2)
']Tn

7.2. An L? estimate of difference quotientsin P

We next provide a rigorous version of the foregoing calculation, replacing
derivatives by difference quotients.

Theorem 7.1. There exists a positive constant C, depending only on H, such that
/ |Du(P, x) — Dyu(P, x)[*do < C(H(P) — H(P) — Q- (P — P)) (7.3)
’]I‘n

for all P € R".

Remark. Recall thatQ = fR,, S D H(p,x)dv = fp DpH(Dyu, x)do and
thatQ € 9H(P). In (7.3), u(P,x) = P - x + v(P,x) andv = v(P, x) is any
viscosity solution of the cell problem

H(P + Dyv,x) = H(P) inR"

- ) o (7.4)
x — v(P, x) is T"-periodic.

If D,u(P,x) is multivalued, we interpref7.3) to mean
& — Dyu(P,x)1?do < C(H(P)— H(P)— Q- (P — P))
’H‘n

for someo-measurable selectio}ne Du(P, ).
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Proof. Write 3(-) = v(P, -), ii = x - P + 9. Mollifying, we have
H(Dii%, x) < H(P) + Cs. (7.5)
Therefore foro almost every point
g|Dﬁ€ — Du|? + D,H(Du, x) - (Dii* — Du) < H(Di®, x) — H(Du, x)

< H(P)— H(P) + Ce.

i (7.6)
Observe thaDii® — Du = P — P + (Dv® — Dv) and
/ / D,H - (D% — Dv)dv = 0.
R}l Tn
Consequently7.6) yields
% \Dii® — Du?do < H(P) — H(P)
’]I‘n
—/ D,H(Du,x) - (P — Pydo +Ce ("D
'H‘n
=H(P)—H(P)— Q- (P — P)+Ce.
Lete - 0. O
Remark. For use later, we record the estimate
limsup | Bedo < H(P)—H(P)— Q- (P —P), (7.8)
e—0 T
for
Be(x) = ng ne(x — )| Deu(P, y) — Dou (P, x)[*dy. (7.9)

To see this, note that as in the proof of Theorem 4.1 we can replageby the
stronger inequality

Be(x) + H(Dit®, x) < H(P) + Ce.
Corollary 7.2. (i) For each P € R",

/ |Dyu(P,x) — Dyu(P,x)[?°do < O(|P — P|) asP — P.
’]I‘n

(i) If H isdifferentiable at P,

f |Du(P, x) — Deu(P,x)|°do < o(|lP — P|) asP — P.

(iii) If H istwice-differentiable at P,

/ |Dyu(P, x) — Dyu(P,x)[°do < O(|P — P|? asP — P.
']Tn
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8. Application: strict convexity of H in certain directions

The next estimate allows us to deduce certain strict convexity propertigs of

Theorem 8.1. (i) There exists a positive constant C such that, for each R € R”,

] _ 20 Tp 1/2
_R.Q,R.Qgc(limme(PﬂR) 2H(P)+ H(P IR)) |

t—0t 12
o ) 8.1
where 0, Q € 9H (P).
(ii) In particular, if H istwice differentiable at P, then
IDH(P) - R| < C(R- D*H(P)R)Y? (8.2)

for each R € R".
Proof. (1) Fix R € R",t > 0, and take
i=u(P+tR,"), i =u(P—1tR,).
Then foro-a.e. pointx:
H(Dif, x)—2H (Du, x)+H(Dié, x) < H(P+tR)—2H(P)+ H(P—tR)+Ce.
Similarly to the proof in Section.2, we deduce

/ |Dii® — Du|?+|Dii* —Du|?do < C(H(P+tR)—2H (P)+H(P—tR))+Ce.

(8.3)
(2) SinceH (Dit?, x) < H(P +tR) + Ce, we have

H(P)—HP +tR) < | H(Du,x)— H(Dif,x)do + Ce
E (8.4)

1/2
<cC ( |Du — Da€|2da> + Ce.
’H‘Vl
Likewise,

_ _ 1/2
H(P)—H(P —tR)<C ( |Du — Dﬁ5|2d0> +Cs.  (85)

Tn
Combining(8.3)—(8.5), sendings — 0, and recalling the convexity df, we find
—tQ@t)- R, tO(t)- R < C(H(P +tR) — 2H(P) + H(P — tR))Y/?

for any A
Q@) € dH(P +1tR), Q(t) € 9H(P — tR).

Taking any, — 0,wemayassum@ () — 0, O(n) — QwithQ, O € IH(P).
Estimate(8.1) follows. O
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Remarks. (i) From (8.1) we deduce thaH is strictly convex in any directio®

(ii)

which is not tangent to the level §&f = H (P)}, providedH is differentiable
at P. (Compare this assertion withurriaga [I].)

More generally, ifH (P) > ming: H, and so 0¢ 3 H (P), there exists an open
convex cone of direction® in which H is strictly convex atP. Therefore
the graph offf can contain am-dimensional flat region only possibly at its
minimum value. This can in fact happen, even thodflis uniformly con-
vex in the variablep: seeLioNs, PAPANICOLAOU & VARADHAN [L-P-V] or
BRAIDES & DEFRANCESCHI [B-D, p. 149]. ConsulConcorpeL [C1, C2] for
more. Physically, a flat region at the minimummfcorresponds to “nonbal-
listic” trajectories for the dynamics.

(iii) See alsoBANGERT [B1] and WEINAN E [EW2] for an example showing that

the level sets oH can have corners and/or flat parts.

9. Application: averaging in the variable X

Assume for this section thal is differentiable at? and furthermore thap =

D H (P) satisfies thaonresonance condition:

O -k #0 foreachvectok € Z", k # 0. 9.1

Notation. Forh > 0, we write the vector of difference quotients

Dhu(P,x) == ( i +hel’2) —uP 1), > , 9.2)
fore;:=(0,...,1,...,0), the 1in the"*-position.
Theorem 9.1. Suppose Q = D H (P) satisfies (9.1). Then
=, im /T d(Dhu(P,x))do = / d(X)dX 9.3

for

each continuous, T"-periodic function .

Proof. (1) Letu;(:) := u(P + hey, ), anduj :=ne xu;, fori =1,...,n.

SinceH is smooth, we have for ap, ¢ lying in a compact subset @" that

H(g,x)=H(p,x)+DyH(p,x) (g — p) +R,

with [R| £ Clg — p|?. Takeg = Du;(y), p = Duf (x) = [gu ne(x —y)Duy(y) dy,
multiply by n.(x — y), and integrate with respect to

H(Duj (x), x) = fRn ne(x — y)H (Du;(y), x)dy — fRn ne(x —y)Rdy. (9.4

Furthermore the PDE (Du;, x) = H(P + he;) holds pointwise a.e., and so we
can conclude that

H(Duf,x) = H(P + he;) + v/, (9.5
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where the error term is estimated by
PR CE:A)

for

BL(x) = %/R ne(x — )| Dur(y) — Du (v)2 dy.

(2) We introduce the partially smoothed vector of difference quotients

8_
Dhut (P, x) = (”lh ”) (9.6)

and take then a vector of integérs= (k1, ..., k), kK # 0.
Next, observe that the function

o2ik-Dipu _ 2mikex 2mik-Dipv®
is T"-periodic, even thoung’}Jus is not periodic. Hence

O:/ D,H(Du, x) - Dy (eznik.DP;)”s) o

. h e " ME — U (97)
= 2mi eZrik-Dput ZkszH(Du, x) - Dy(--—) do.
T — h
(3) Now (9.5) implies
H(Duf,x) — H(Du,x) = H(P + he;) — H(P) + y!.
Consequently
D,H(Du,x) - D(uf —u) = H(P + he;) — H(P) + T,
where
ITLI < C(e + BL + |Duf — Dul?) (9.8)
foril=1,...,n.
Therefore
uj —u
D, H(Du, x) - Dy ( )
9.9

H(P + he;) — H(P 1
=Q1+< P+ e}i) ()—Q,+Erfg>.
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(4) Insert(9.9) into (9.7), and then estimate

‘(Q . k) eZﬂik-D’},uE do_
TYI

§%+CZ<H(P+h2)—H(P)_Ql>
=1
C n
" (H(P — H(P
§%+C2< ( +he}i) U—Qz)
=1

C n
!
! " 121: ™ Pe do.

the last inequality following frong7.7) in the proof of Theorem 7.1.
Next, send — 0, and remembg(7.8):

<cy (H(P—i—he,) —H(P) Qz>.

=1 h

‘(Q k)/ eznik'Di;,M do
"

SinceQ; = Hp,(P) andQ - k # 0, we conclude that

— Iim/ eZrik-Dpu g5 —
/’l*)O "

forall k € Z",k # 0. Because any continuoug;-periodic funtion® can be
uniformly approximated by trigonometric polynomials, this implies asse(f@).
O

Remarks. (i) Recalling the formal change of variablék3), we interpret(9.3)
to assert

“do = |detD?pu| dx” (9.12)
in some weak sense, providédll) holds. See [E-GZ%5.1] for related formal
computations.
(i) Theorem 9.1 provides a partial, but rigorous, interpretation of the following
heuristics.
Suppose that our generating functiois smooth, and induces the global change
of variableq p, x) — (P, X) by (1.3). Then the dynamicgl.1) becomg1.5); that
is, ) _
X =DH(P),
P=0.
ConsequentlX () = Qt + Xo, P(t) = P. In view therefore of the nonresonance
condition(9.1), we have

1 [T
Tlinooﬁ/o CD(X(t))dt:/TnCD(X)dX
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for eachh > 0. However

AT 1 AT
s d (X = d(D P
T ), (X(@))dt AT/O (Dpu(P,x(1)))dt
1 [* 1
= —/ & (Dpu(P, Xg(t)))dr fore = =
A 0 & T
1 A
— —/ / ®(Dpu(P,x))do;dt.
)\. 0 n
Consequently
/ ®(Dpu(P, x))do; =/ O(X)dX
n ’]I‘ﬂ
forallr = 0.
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