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Abstract

This paper, building upon ideas of Mather, Moser, Fathi, E and others, applies
PDE (partial differential equation) methods to understand the structure of certain
Hamiltonian flows. The main point is that the “cell” or “corrector” PDE, intro-
duced and solved in a weak sense by Lions, Papanicolaou and Varadhan in their
study of periodic homogenization for Hamilton-Jacobi equations, formally induces
a canonical change of variables, in terms of which the dynamics are trivial. We
investigate to what extent this observation can be made rigorous in the case that the
Hamiltonian is strictly convex in the momenta, given that the relevant PDE does
not usually in fact admit a smooth solution.

1. Introduction

This is the first of a projected series of papers that develop PDE techniques to
understand certain aspects of Hamiltonian dynamics with many degrees of freedom.

1.1. Changing variables

The basic issue is this. Given a smooth HamiltonianH : R
n × R

n → R,
H = H(p, x), we wish to examine the Hamiltonian flow

ẋ = DpH(p, x),

ṗ = −DxH(p, x)
(1.1)

under a canonical change of variables

(p, x) → (P,X), (1.2)
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where
p = Dxu(P, x),

X = DPu(P, x)
(1.3)

for a generating functionu : R
n × R

n → R, u = u(P, x). Here we writeDx =
( ∂
∂x1

), . . . , ∂
∂xn

) andDP = ( ∂
∂P1

. . . , ∂
∂Pn

). Assuming that we can find a smooth
functionu to solve the Hamilton-Jacobi type PDE

H(Dxu(P, x), x) = H̄ (P ) in R
n, (1.4)

and supposing as well that we can invert the relationships(1.3) to solve forP,X

as smooth functions ofp, x, a calculation shows that we thereby transform(1.1)
into the trivial dynamics

Ẋ = DH̄(P),

Ṗ = 0.
(1.5)

In terms of mechanics,P is an “action” andX an “angle” or “rotation” variable, as
for instance inGoldstein [Gd].

Of course we cannot really carry out this classical procedure in general, since
the PDE(1.4) does not usually admit a smooth solution and, even if it does, the
transformation(1.2), (1.3) is not usually globally defined. Only very special Hamil-
tonians are integrable in this sense.

1.2. Homogenization

On the other hand, under some reasonable hypotheses we can in fact build
appropriateweak solutions of(1.4), as demonstrated within another context in the
classic-but-unpublished paper byLions, Papanicolaou & Varadhan [L-P-V].
These authors look at the initial value problem for the Hamilton-Jacobi PDE

uεt + H
(
Dxu

ε,
x

ε

)
= 0 in R

n × (0,∞),

uε = g onR
n × {t = 0},

(1.6)

under the primary assumption that the mappingx �→ H(p, x) is T
n-periodic,

whereT
n denotes the flat torus, that is, the unit cube inR

n, with opposite faces
identified. Consequently asε → 0, the nonlinearity in(1.6) is rapidly oscillating;
and the problem is to understand the limiting behavior of the solutionsuε. Lionset
al. show under some mild additional hypotheses on the Hamiltonian thatuε → u,
the limit functionu solving a Hamilton-Jacobi PDE of the form

ut + H̄ (Dxu) = 0 in R
n × (0,∞),

u = g onR
n × {t = 0}. (1.7)

HereH̄ : R
n → R, H̄ = H̄ (P ), is theeffective (or averaged) Hamiltonian,

and is built fromH as follows.
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1.3. How to construct H̄

First, consider for fixedP ∈ R
n thecell (or corrector) problem

H(P + Dxv, x) = λ in R
n,

x �→ v is T
n-periodic.

As proved inLions, Papanicolaou & Varadhan [L-P-V] (and recounted in [E2]
and inBraides & Defranceschi [B-D, Sect. 16.2]), there exists a unique real
numberλ for which there exists a viscosity solution. We may thendefine

H̄ (P ) := λ,

and so rewrite the foregoing as

H(P + Dxv, x) = H̄ (P ) in R
n,

x �→ v is T
n-periodic.

(1.8)

Once we set
u(P, x) := P · x + v(P, x), (1.9)

the PDE in(1.8) is just(1.4).

Remark. We pause here to draw attention to some simple observations relating
the cell problem(1.8) and semiclassical approximations in quantum mechanics for
periodic potentials. These comments are intended as further motivation.

Consider the time-independent Schr¨odinger equation

− h̄2

2
�ψ + Vψ = Eψ in R

n, (1.10)

whereh̄ is Planck’s constant,V : R
n → R is a T

n-periodic potential, andE is
the energy corresponding to the eigenstateψ : R

n → C. A standard textbook
procedure is to look for a solution having theBloch wave form

ψ = e
i P ·x

h̄ φ, (1.11)

whereφ : R
n → C isT

n-periodic. We further supposeφ to have the WKB structure

φ = ae
i
v
h̄ (1.12)

for periodica, v : R
n → R. Substituting(1.11), (1.12) into (1.10) and taking real

parts yields
1
2|P + Dxv|2 + V (x) = E, (1.13)

up to terms formally of sizeO(h̄).
Thus in the semiclassical limit̄h → 0, we heuristically obtain the cell problem

(1.8) for the HamiltonianH(p, x) = 1
2|p|2 + V (x) andH̄ (P ) = E.
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1.4. Questions, absolute minimizers

The procedure outlined in Subsection 1.3 provides us with at least a theoretical
construction ofH̄ and of a generating functionu. Returning then to the comments
in Subsection 1.1, we can now formulate these

Basic Questions. To what extent can we employ H̄ and u to understand the
solutions of the Hamiltonian flow (1.1)? In particular, how is information about
the dynamics “encoded” into H̄?

These are really hard issues, and to make at least a little progress we will need
some additional hypotheses on both the Hamiltonian and the particular trajectories
of the ODE (ordinary differential equation) we examine. Let us henceforth suppose
that the mappingp �→ H(p, x) is uniformly convex, in which case we can associate
with H theLagrangian

L(q, x) := max
p

(p · q − H(p, x)).

Consider then a Lipschitz curvex(·)which minimizes the associated action integral,
meaning that ∫ T

0
L(ẋ, x) dt �

∫ T

0
L(ẏ, y) dt (1.14)

for each timeT > 0 and each Lipschitz curvey(·) with x(0) = y(0), x(T ) = y(T ).
We callx(·) a (one-sided)absolute minimizer. If we as usual define themomentum

p := DqL(ẋ, x),

then(x(·),p(·)) satisfy Hamilton’s ODE(1.1).
A discovery ofAubry [A], Mather [Mt1,Mt2,Mt3,Mt4], Fathi [F1,F2,F3],

Moser [Ms], E [EW2], etc., is that solutions of(1.1) corresponding to absolute
minimizers are somehow “better” than other solutions. Indeed, these authors have
shown that the Hamiltonian dynamics are in some sense “integrable” for such
special trajectories. The main goal of our work is to continue this analysis, with
particular emphasis upon PDE methods (based upon viscosity solutions of(1.8)),
applied to problems with many degrees of freedom.

1.5. Outline

In Section 2 below we review the definition of the effective HamiltonianH ,
introduce the corresponding effective LagrangianL̄, and recall the connections
with the large-time asymptotics of absolute minimizersx(·).

We then rescale in timex(·) andp(·) in Section 3, and introduce certain Young
measures{νt }t�0 on phase space, which record the oscillations of the rescaled func-
tions in asymptotic limits. These measures contain information about the Hamil-
tonian flow, and so our goal in subsequent sections is understanding their struc-
ture. In§4 we show that eachν = νt is supported on the graph of the mapping
p = Dxu(P, x) and furthermore “stays away” from the discontinuities inDxu.
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In Section 5 we prove thatu is well behaved on the support ofσ , the projection
of ν ontox-space. For this, we firstly derive the formalL2 bound∫

Tn

|D2
xu|2dσ � C (1.15)

and then theL∞ estimate
|D2

xu| � C σ -a.e. (1.16)

We rigorously establish some analogues of(1.15), (1.16), entailing difference quo-
tients in thex-variables. As an application, we provide in Section 6 a newproof
of Mather’s theorem thatν is supported on ann-dimensional Lipschitz continuous
graph.

Section 7 extends the techniques from Section 5 to establish what amounts to
anL2 estimate for the mixed second partial derivatives,∫

Tn

|D2
xP u|2dσ � CD2H̄ (P ). (1.17)

More precisely, we prove a similar inequality involving difference quotients in the
variableP .An application of this bound appears in Section 8, where we demonstrate
the strict convexity ofH̄ in certain directions.

In Section 9 we draw some further deductions under the assumptions thatH̄ is
differentiable atP and the components ofQ := DH̄(P )are rationally independent.

A forthcoming companion paper [E-G2] addresses problems with time-depend-
ent Hamiltonians. The primary new topics developed there include a weak inter-
pretation of the “adiabatic invariance of the action” and a discussion of the Berry-
Hannay geometric phase correction, computed in terms of effective Hamiltonians.

Our work is strongly related to some extremely interesting papers ofFathi [F1,
F2,F3], which develop his “weak KAM (Kolmogorov-Arnol’d-Moser) theory”. We
hope later to work out more clearly some of the connections with Fathi’s discoveries.

Some other relevant papers includeMather [Mt1,Mt2,Mt3,Mt4],Weinan E
[EW1,EW2],Gomes [G], Sobolevskii [So1,So2],Mañé [Mn2,Mn3], Jauslin,
Kreiss & Moser [J-K-M], Iturriaga [I], Dias Carneiro [DC], Arisawa [Ar],
etc. A good survey isMather & Forni [M-F], and we have foundMañé’s book
[Mn1] to be very useful.

SeeConcordel [C1,C2],Chou & Duffin [C-D], Nussbaum [N], etc. for
connections with nonlinear additive eigenvalue problems.Fathi [F4], Namah &
Roquejoffre [N-F], Roquejoffre [R], Barles & Souganidis [B-S] andFathi
& Mather [F-M] discuss some related questions about large-time asymptotics of
solutions to Hamilton-Jacobi equations. Similar problems for stochastic homoge-
nization have been studied byRezakhanlou [Rz] andSouganidis [S].

There is also a large literature for time-dependent Hamiltonians with one degree
of freedom. In this setting ordering properties for minimizing trajectories provide
powerful tools unavailable in higher dimensions. SeeMather & Forni [M-F],
Aubry [A], Bangert [B2], etc. for more.
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2. Effective Hamiltonians and Lagrangians

2.1. The Hamiltonian and Lagrangian

As in the introduction,Tn denotes the standard flat torus.

Hypotheses on the Hamiltonian. Assume now that the given, smooth Hamiltonian
H : R

n × R
n → R, H = H(p, x), satisfies these conditions:

(i) periodicity:

For eachp ∈ R
n, the mappingx �→ H(p, x) is T

n-periodic. (2.1)

(ii) strict convexity:

There exist constants&, γ > 0 such that

γ |ξ |2 �
n∑

i,j=1

∂2H

∂pi∂pj
ξiξj � &|ξ |2 for eachp, x, ξ ∈ R

n.
(2.2)

The Lagrangian. We define the associatedLagrangian L : R
n × R

n → R,
L = L(q, x), by duality:

L(q, x) := sup
p
(p · q − H(p, x)) (2.3)

for q ∈ R
n. In view of (2.1), (2.2) we see thatL is smooth.

For eachq ∈ R
n, the mappingx �→ L(q, x) is T

n-periodic. (2.4)

There exist constants&, γ > 0 such that

γ |ξ |2 �
n∑

i,j=1

∂2L

∂qi∂qj
(q, x)ξiξj � &|ξ |2 for all q, x, ξ ∈ R

n. (2.5)

We physically interpretx as position,p as momentum andq as velocity. The
corresponding capital lettersX,P,Q will likewise respectively denote position,
momentum and velocity in new coordinates.

2.2. The effective Hamiltonian and Lagrangian

As explained in the Introduction, we intend next to “average”H , following
Lions, Papanicolaou & Varadhan [L-P-V]:

Theorem 2.1. (i) For each P ∈ R
n there exists a unique real number, denoted

H̄ (P ), such that the cell problem

H(P + Dxv, x) = H̄ (P ) in R
n (2.6)

has a T
n-periodic, Lipschitz continuous solution v.
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(ii) In addition, there exists a constant α such that

D2
xv � αI in R

n (2.7)

in the distribution sense.

We call the function
H̄ : R

n → R (2.8)

so defined theeffective or averaged Hamiltonian.

Remarks. (i) We understandv to solve(2.6) in the sense of viscosity solutions.
This means that ifφ = φ(x) is a smooth function and

v − φ has a maximum (minimum) at a pointx0 ∈ R
n, then

H(P + Dφ(x0), x0) � H̄ (P ) (� H̄ (P )).
(2.9)

We will in fact mostly need only thatv is differentiable a.e. with respect to
n-dimensional Lebesgue measure, and thatv solves the PDE(2.6) at any point
of differentiability.

(ii) The inequality(2.7) means that

the functionv̄(x) := v(x) − α

2
|x|2 is concave onRn. (2.10)

(iii) If v is a solution of(2.6), we will hereafter often write

v = v(P, x) (P, x ∈ R
n)

to emphasize the dependence onP .

GivenH̄ as above, we define also theeffective Lagrangian

L̄(Q) := sup
P

(P · Q − H̄ (P )) (2.11)

for Q ∈ R
n.

2.3. Properties of H̄ and L̄

Proposition 2.2. The mappings

P �→ H̄ (P ), Q �→ L̄(Q)

are convex and real-valued. Furthermore, H̄ and L̄ are superlinear:

lim|P |→∞
H̄ (P )

|P | = lim|Q|→∞
L̄(Q)

|Q| = +∞. (2.12)
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Proof. (1) SeeLions, Papanicolaou & Varadhan [L-P-V] (or [E2]) for a proof
thatH̄ is convex. The convexity of̄L is immediate from(2.11).

(2) In view of (2.2),

H̄ (P ) � α|P + Dxv|2 − β � α|P |2 + 2αP · Dxv − β a.e. (2.13)

for appropriate constantsα > 0, β � 0. We integrate this inequality overT
n and

recallv is periodic, to deduce

H̄ (P ) � α|P |2 − β.

ThusH̄ is superlinear, and in particularL̄(Q) < ∞ for eachQ. On the other hand,
by constructionH̄ (P ) < ∞ for eachP ; whence the duality formula

H̄ (P ) = sup
Q

(P · Q − L̄(Q))

impliesL̄ is superlinear. ��
In later sections we will relatēH, L̄ to appropriately rescaled minimizers of the

action functionals, and for this will several times invoke the following results of
Lions, Papanicolaou & Varadhan [L-P-V, §IV]. (See alsoWeinan E [EW1],
Braides & Defranceschi [B-D, § 16.2].)

Theorem 2.3. (i) If X : [0, T ] → R
n is a Lipschitz continuous curve and xε(·) →

X(·) uniformly, then

∫ T

0
L̄(Ẋ) dt � lim inf

∫ T

0
L

(
ẋε,

xε
ε

)
dt. (2.14)

(ii) Define

Sε(x, y, t) := inf

{∫ t

0
L

(
ẋ,

x
ε

)
ds | x(t) = x, x(0) = y

}
(2.15)

for x, y ∈ R
n, t > 0. Then

Sε(x, y, t) → tL̄

(
x − y

t

)
as ε → 0, (2.16)

uniformly on compact subsets of R
n × R

n × (0,∞).

3. Young measures

Next we study the asymptotic behavior ast → ∞ of certain curves that mini-
mize the action.
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3.1. Hamilton’s ODE, rescalings

Definition. A Lipschitz continuous curvex : [0,∞) → R
n is called a (one-sided)

absolute minimizer if

∫ T

0
L(ẋ, x) dt �

∫ T

0
L(ẏ, y) dt (3.1)

for each timeT > 0 and each Lipschitz continuous curvey : [0,∞) → R
n such

that

x(0) = y(0), x(T ) = y(T ).

Given as above an absolutely minimizing curvex(·), define the corresponding
momentum

p(t) := DqL(ẋ(t), x(t)) (3.2)

for t � 0. Then

ẋ(t) = DpH(p(t), x(t)),

ṗ(t) = −DxH(p(t), x(t))
(3.3)

for t � 0.
We wish to understand the pair(x(·),p(·)) for large times, and to this end

introduce therescaled dynamics

xε(t) := εx(t/ε), pε(t) := p(t/ε),

xε(0) = εx(0), pε(0) = p(0).

It follows from (3.3) that

ẋε(t) = DpH

(
pε(t),

xε(t)
ε

)
,

ṗε(t) = −1

ε
DxH

(
pε(t),

xε(t)
ε

) (3.4)

for t � 0.

Remark. Since d
dt
H

(
pε(t),

xε(t)
ε

)
= 0, we have supt�0 H

(
pε(t),

xε(t)
ε

)
� C for

some constantC, independent ofε. ButH(p, x) � γ
2 |p|2 − C, and so

sup
t�0

{|pε(t)|, |ẋε(t)|} < ∞. (3.5)
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3.2. Recording oscillations

We expect the functionspε(·) and xε(·)
ε

(modT
n) to oscillate asε → 0, and so

introduce measures on phase space to record these motions. Invoking for instance
the methods from§1.E of [E1], we have

Proposition 3.1. There exists a sequence εk → 0 and for a.e. t > 0 a Radon
probability measure νt on R

n × T
n such that

3

(
pεk (t),

xεk (t)
εk

)
⇀ 3̄(t) :=

∫
Rn

∫
Tn

3(p, x) dνt (p, x) (3.6)

for each bounded, continuous function

3 : R
n × R

n → R, 3 = 3(p, x),

such that x �→ 3(p, x) is T
n-periodic.

We call{νt }t�0 Young measures associated with the dynamics(3.4).

Remark. The limit (3.6) means∫ T

0
3

(
pεk ,

xεk
εk

)
ζ dt →

∫ T

0
3̄ζ dt (3.7)

for eachT > 0 and each smooth functionζ : [0, T ] → R.

Lemma 3.2. The support of the measure νt is bounded, uniformly in t .

This is clear from(3.5).

Lemma 3.3. For each C1 function 3 as above,∫
Rn

∫
Tn

{H,3} dνt = 0 (3.8)

for a.e. t � 0, where

{H,3} := DpH · Dx3 − DxH · Dp3 (3.9)

is the Poisson bracket.

The identity(3.8) means that the measureνt is invariant under the Hamiltonian
flow (3.3).

Proof. We have
d

dt
3

(
pε,

xε
ε

)
= Dp3 · ṗε + Dx3 · ẋε

ε

= 1

ε
{H,3}

according to(3.4). Takeζ : [0, T ] → R to be smooth, with compact support. Then∫ T

0
{H,3}

(
pε,

xε
ε

)
ζ dt = −

∫ T

0
εζ̇3

(
pε,

xε
ε

)
dt.

Sendingε = εk → 0, we deduce(3.8). ��
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3.3. Convergence of trajectories, the action vector

From (3.5), we conclude that the curves{xε(·)}ε>0 are uniformly Lipschitz
continuous. Hence we may assume (passing if necessary to a further subsequence)
that

xεk → X (3.10)

uniformly on compact subsets of[0,∞), whereX : [0,∞) → R
n is Lipschitz

continuous,X(0) = 0.

Lemma 3.4. For a.e. t � 0,

Ẋ(t) = Q(t) (3.11)

where

Q(t) :=
∫

Rn

∫
Tn

DpH(p, x) dνt . (3.12)

Proof. The limit (3.10) implies

ẋεk ⇀ Ẋ;
whence(3.11), (3.12) follow from (3.4). ��
Theorem 3.5. (i) For a.e. time t � 0

L̄(Q(t)) =
∫

Rn

∫
Tn

L(DpH(p, x), x) dνt . (3.13)

(ii) Furthermore, there exists P ∈ R
n such that

P ∈ ∂L̄(Q(t)), Q(t) ∈ ∂H̄ (P ) (3.14)

for a.e. t � 0.

Recall that if3 : R
n → R is convex, we writey ∈ ∂3(x) to mean

3(x) + y · (z − x) � 3(z) for all z ∈ R
n.

Remarks. (i) The point is thatP does not depend ont . We callP an action
vector for the rescaled trajectories{xε(·)}ε>0.

(ii) The second assertion above can be restated{
Ẋ ∈ ∂H̄ (P)
Ṗ = 0

for a.e.t � 0,

and this formulation should be compared with(1.5).
(iii) The existence ofP is also a consequence of the Pontryagin Maximum Princi-

ple; cf.Clarke [Cl].
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Proof. (1) Letyε := xε(0) = εx(0) → 0. According to Theorem 2.3,

Sεk (x, yεk , t) → tL̄
(x
t

)
(x ∈ R

n, t > 0), (3.15)

uniformly on compact subsets. But

Sε(x, yε, t) = inf

{∫ t

0
L

(
ẋ,

x
ε

)
ds | x(t) = x, x(0) = yε

}
,

and so

Sε(xε(t), yε, t) =
∫ t

0
L

(
ẋε,

xε
ε

)
ds, (3.16)

since the curvexε(·) is an absolute minimizer.
(2) From(3.10), (3.15) we see that

Sεk (xεk (t), yεk , t) → tL̄

(
X(t)

t

)
. (3.17)

But then(3.16) implies that

L

(
ẋεk ,

xεk
εk

)
⇀

d

dt

(
tL̄

(
X
t

))
. (3.18)

Now

d

dt

(
tL̄

(
X
t

))
∈ L̄

(
X
t

)
+ ∂L̄

(
X
t

) (
Ẋ − X

t

)
� L̄(Ẋ), (3.19)

by convexity. Consequently, sinceẋε = DpH
(
pε,

xε
ε

)
, we deduce from(3.18) that∫

Rn

∫
Tn

L(DpH(p, x), x) dνt � L̄(Ẋ(t)) (3.20)

for a.e.t > 0.
Conversely, Theorem 2.3 implies

∫ b

a

L̄(Ẋ(t)) dt � lim
ε→0

∫ b

a

L
(

ẋε,
xε
ε

)
dt =

∫ b

a

∫
Rn

∫
Tn

L(DpH, x) dνt dt

for all 0 � a < b < ∞ and so

L̄(Ẋ(t)) �
∫

Rn

∫
Tn

L(DpH(p, x), x) dνt

for a.e.t . This and(3.20) establish(3.13).
(3) In particular,

d

dt

(
tL̄

(
X(t)

t

))
= L̄(Ẋ(t)) = L̄(Q(t)) a.e.;
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and so
1

T

∫ T

0
L̄(Q(t)) dt = 1

T

∫ T

0

d

dt

(
tL̄

(
X(t)

t

))
dt

= L̄

(
X(T )

T

)

= L̄

(
1

T

∫ T

0
Q(t) dt

)
.

(3.21)

This identity, valid for each timeT > 0, implies that{Q(t)}t�0 lies in a supporting
domain ofL̄. This means that

P ∈ ∂L̄(Q(t)) for a.e. timet � 0 (3.22)

for some vectorP ∈ R
n. Equivalently,Q(t) ∈ ∂H̄ (P ).

To confirm(3.22), fix a timeT > 0, write Q̄ := 1
T

∫ T

0 Q(t) dt , and take any
P ∈ ∂L̄(Q̄). Then owing to(3.21) we have

L̄(Q(t)) = L̄(Q̄) + P · (Q(t) − Q̄)

for a.e. time 0� t � T . ThusQ(t) is a minimizer of the convex function̄L(Q) −
L̄(Q̄) − P · (Q − Q̄), and soP ∈ ∂L̄(Q(t)), for a.e. time 0� t � T . Taking a
sequence of timesTk → ∞ and passing if necessary to a subsequence, we obtain
a vectorP satisfying(3.22). ��

4. Structure of minimizing measures

We next fix one of the Young measuresνt and hereafter writeν = νt . Our goal
is to understand the form of this measure, and in particular to describe its support.

Our further deductions will be based entirely upon certain conclusions reached
above. These are firstly thatν is a compactly supported Radon probability measure
onR

n × T
n, for which we define

Q :=
∫

Rn

∫
Tn

DpH(p, x) dν,

as in(3.12) above. In addition, we have∫
Rn

∫
Tn

{H,3} dν = 0 (4.1)

for eachC1 function3 that isT
n-periodic in the variablex, and furthermore

L̄(Q) =
∫

Rn

∫
Tn

L(DpH(p, x), x) dν. (4.2)

These are, respectively, assertions(3.8) and(3.13) above.

Remarks. Our ν is therefore aminimal measure in the sense ofMather [Mt1],
except that we work in phase space. The advantage is that the flow invariance
condition(4.1) is fairly simple, and very useful, in the(p, x) variables.
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Notation. (i) We writeM := spt(ν) and callM theAubry-Mather set.
(ii) We denote byσ theprojection of ν onto thex-variables. That is,

σ(E) := ν(Rn × E)

for each Borel subsetE of T
n.

Take now anyP ∈ ∂L̄(Q) and letv = v(P, x) be any viscosity solution of the
corresponding cell problem

H(P + Dxv, x) = H̄ (P ) in R
n,

x �→ v(P, x) is T
n-periodic,

(4.3)

satisfying the semiconcavity condition(2.7). We hereafter set

u(P, x) := P · x + v(P, x).

4.1. Differentiability on the support of ν

Theorem 4.1. (i) The function u is differentiable in the variable x σ -a.e., and
σ -a.e. point is a Lebesgue point for Dxu.

(ii) This equality holds:

p = Dxu(P, x) ν-a.e.

(iii) Furthermore,

∫
Rn

∫
Tn

H(p, x) dν =
∫

Tn

H(Dxu, x) dσ = H̄ (P ); (4.4)

and if H̄ is differentiable at P ,

∫
Rn

∫
Tn

DpH(p, x) dν =
∫

Tn

DpH(Dxu, x) dσ = DH̄(P ).

In particular, the PDE(4.3) holds pointwise,σ -a.e.

Remarks. Formula(4.4) explicitly displaysH̄ as an average ofH ; but for this to
be useful, we need to know more about the measureσ . We will later, in Section 9,
discover a bit more about the structure ofσ .

Observe also that from(4.4) we deduce

H̄ (P ) = H̄ (P̃ ) if P, P̃ ∈ ∂L̄(Q). (4.5)

Finally, compare assertion (ii) with the canonical change of variables(1.3).
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Proof. (1) To ease notation, we do not display the dependence ofu on the variable
P , and we writeDu for Dxu.

Takeηε to be a smooth, nonnegative, radial convolution kernel, supported in
the ballB(0, ε). Then set

uε := ηε ∗ u.

The strict convexity ofH implies for allp, q ∈ R
n that

H(q, x) � H(p, x) + DpH(p, x) · (q − p) + γ

2
|q − p|2.

Takeq = Du(y), p = Duε(x) = ∫
Rn ηε(x − y)Du(y) dy in this expression,

multiply by ηε(x − y), and then integrate with respect toy:

H(Duε(x), x) �
∫

Rn

ηε(x − y)H(Du(y), x) dy

− γ

2

∫
Rn

ηε(x − y)|Du(y) − Duε(x)|2dy.

Since the PDEH(Dxu, x) = H̄ (P ) holds pointwise a.e., we conclude that

βε(x) + H(Duε(x), x) � H̄ (P ) + Cε (4.6)

for eachx ∈ T
n, where

βε(x) := γ

2

∫
Rn

ηε(x − y)|Du(y) − Duε(x)|2 dy. (4.7)

(2) Recalling again the strict convexity ofH with respect to the variablep, we
deduce

γ

2

∫
Rn

∫
Tn

|Duε(x) − p|2 dν

�
∫

Rn

∫
Tn

H(Duε(x), x) − H(p, x) − DpH(p, x) · (Duε(x) − p) dν.

(4.8)
NowDuε = P + Dvε, wherevε = ηε ∗ v is periodic. Consequently∫

Rn

∫
Tn

DpH · Dvε dν = 0,

according to(4.1). This observation and(4.6) imply

γ

2

∫
Rn

∫
Tn

|Duε − p|2 dν +
∫

Tn

βε dσ

� H̄ (P ) −
∫

Rn

∫
Tn

H + DpH · (P − p) dν + Cε.

(4.9)
Next,P ∈ ∂L̄(Q) implies

L̄(Q) + H̄ (P ) = P · Q.
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Furthermore

L(DpH(p, x), x) + H(p, x) = DpH(p, x) · p.
Recalling thatQ = ∫

Rn

∫
Tn DpH dν and substituting this into(4.9), we find

γ

2

∫
Rn

∫
Tn

|Duε − p|2 dν +
∫

Tn

βε dσ

� −L̄(Q) +
∫

Rn

∫
Tn

L(DpH, x) dν + Cε

= Cε,

(4.10)

according to(4.2).
(3) Now sendε → 0. Passing as necessary to a subsequence we deduce first

from (4.10) that
βε → 0 σ -a.e.

Thusσ -a.e. pointx is a point of approximate continuity ofDu, andDu is σ -
measurable. Sinceu = x ·P + v andv is semiconcave as a function ofx (Theorem
2.1 (ii)), it follows thatu is differentiable inx, σ -a.e. Thus

Duε → Du

pointwise,σ -a.e., and so(4.10) in turn forces

p = Du(x) = P + Dv(x) ν-a.e.

This proves assertion (ii), and (iii) follows then from the cell PDE.��
Remark. As a consequence of the foregoing proof, we have the identity∫

Rn

∫
Tn

DpH(p, x) · Dxv dν =
∫

Tn

DpH(Dxu, x) · Dxv dσ = 0, (4.11)

which we will need later. To confirm this, recall from above that∫
Rn

∫
Tn

DpH · Dxv
ε dν = 0.

SinceDxv
ε → Dxv boundedly,ν-a.e., we can apply the Dominated Convergence

Theorem.

5. Derivative estimates in the variable x

We devote this section to showing that our solutionu of the cell problem is
“smoother” on the support ofσ than it may be at other points ofT

n. This is a sort
of “partial regularity” assertion.
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5.1. Formal L2 and L∞ estimates

First of all, we provide for the reader some purely formalL2 andL∞ estimates
forD2

xu on the support ofσ , calculations which provide motivation for the rigorous
bounds obtained afterwards.

L2 inequalities. We assume for this that the generating functionu is smooth, then
differentiate the cell PDE twice with respect toxi , and finally sum fori = 1, . . . , n:

Hpkpl (Dxu, x)uxkxi uxlxi + Hpk (Dxu, x)uxkxixi

+ 2Hpkxi (Dxu, x)uxkxi + Hxixi (Dxu, x) = 0.

The first term on the left-hand side is greater than or equal toγ |D2
xu|2. Thus

γ

∫
Tn

|D2
xu|2 dσ +

∫
Tn

DpH · Dx(�xu) dσ � C + C

∫
Tn

|D2
xu| dσ.

Since�xu = �xv is periodic, the second term on the left-hand side equals zero,
according to(4.1). We consequently conclude that∫

Tn

|D2
xu|2 dσ � C, (5.1)

for some constantC depending only onH andP . ��
L∞ inequalities. We can similarly differentiate the cell PDE twice in any unit
directionξ , to find

Hpkpl (Dxu, x)uxkξuxlξ + Hpk (Dxu, x)uxkξξ

+ 2Hpkξ (Dxu, x)uxkξ + Hξξ (Dxu, x) = 0,

for uξξ := ∑n
i,j=1 uxixj ξiξj . Take a nondecreasing, function3 : R → R, and write

φ := 3′ � 0. Multiply the above identity byφ(uξξ ), and integrate with respect to
σ . After some simplifications, we find

γ

2

∫
Tn

|Dxuξ |2φ(uξξ ) dσ +
∫

Tn

DpH · Dx(3(uξξ )) dσ � C

∫
Tn

φ(uξξ ) dσ.

Sinceuξξ = vξξ is periodic, the second term on the left-hand side is zero. We select

φ(z) =
{

1 if z � −µ

0 if z > −µ,

for a constantµ > 0. Since|Dxuξ |2 � u2
ξξ , we conclude thatσ({uξξ � −µ}) = 0

if µ is large enough. Because(2.10) provides the opposite estimateuξξ � α, we
thereby derive the formal bound

|uξξ | � C σ -a.e., (5.2)

the constantC depending only upon known quantities.��
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Remark. As the interested reader may wish to confirm, the foregoing derivations
are especially transparent for the classical Hamiltonian

H(p, x) = 1
2|p|2 + V (x),

in which case the cell PDE(4.3) is theeikonal equation

1
2|Dxu|2 + V (x) = H̄ (P )

and(4.1) corresponds to thetransport equation

div(σDxu) = 0.

A clear message is that these two PDE should be considered together as a pair, in
accordance with formal semiclassical limits. (See the Remark in Subsection 1.3.)

5.2. An L2-estimate of difference quotients in x

We now establish an analogue of estimate(5.1), with difference quotients re-
placing some of the derivatives.

Theorem 5.1. There exists a constant C, depending only on H and P , such that∫
Tn

|Dxu(P, x + h) − Dxu(P, x)|2 dσ � C|h|2 (5.3)

for h ∈ R
n.

Remark. If Dxu(P, x + h) is multivalued, we interpret(5.3) to mean∫
Tn

|ξ − Dxu|2 dσ � C|h|2 (5.4)

for someσ -measurable selectionξ ∈ Dxu(P, · + h).

Proof. (1) To simplify notation we do not display the dependence ofu onP , and
just writeDu for Dxu.

Fix h ∈ R
n and define the shifted function

ũ(·) := u(· + h).

Then
H(Dũ, x + h) = H̄ (P ) a.e. inR

n.

Mollifying as in the proof of Theorem 4.1, we have

H(Dũε, x + h) � H̄ (P ) + Cε in R
n.

Therefore

H(Dũε, x) − H(Du, x) � Cε + H(Dũε, x) − H(Dũε, x + h)
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σ -a.e., and consequently

γ

2

∫
Tn

|Dũε − Du|2 dσ +
∫

Tn

DpH(Du, x) · (Dũε − Du) dσ

� Cε +
∫

Tn

H(Dũε, x) − H(Dũε, x + h) dσ

� C(ε + |h|2) −
∫

Tn

DxH(Dũε, x) · h dσ.

(5.5)

(2) SinceDũε − Du = Dṽε − Dv, the second term on the left-hand side of
(5.5) vanishes, in view of(4.1), (4.11). Therefore

γ

2

∫
Tn

|Dũε − Du|2 dσ � C(ε + |h|2) −
∫

Tn

DxH(Du, x) · h dσ

+ C

∫
Tn

|Dũε − Du||h| dσ,
and thus

γ

4

∫
Tn

|Dũε − Du|2 dσ � C(ε + |h|2) −
∫

Rn

∫
Tn

DxH · h dν.
However(4.1) implies the last term here is zero; whence∫

Tn

|Dũε − Du|2 dσ � C(ε + |h|2). (5.6)

(3) We sendε → 0. Passing as necessary to a subsequence we have

Dũε ⇀ ξ weakly inL2
σ

and ∫
Tn

|ξ − Du|2 dσ � C|h|2. (5.7)

(4) To conclude, we must show

ξ ∈ Dũ = Du(· + h) σ -a.e., (5.8)

which means that forσ -a.e. pointx there exists a constantC such that

ũ(y) � ũ(x) + ξ · (y − x) + C|y − x|2 (5.9)

for all y. To confirm this, recall that̃u, and so alsõuε, are semiconcave:

ũε(y) � ũε(x) + Dũε(x) · (y − x) + C|y − x|2
for all x, y. Takeg ∈ L2

σ , g � 0. Then fixingy and integrating the variablex with
respect toσ , we find

0 �
∫

Tn

(−ũε(y) + ũε(x) + Dũε(x) · (y − x) + C|y − x|2)g(x) dσ(x).
Let ε → 0 and notẽuε → ũ uniformly. We conclude that

0 �
∫

Tn

(−ũ(y) + ũ(y) + ξ · (y − x) + C|y − x|2)g(x) dσ(x).
This inequality is true for allg as above; whence(5.7) holds forσ -a.e. pointx and
all y. ��
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5.3. L∞ estimates of difference quotients in x

We next refine the integration arguments above, to derive anL∞ bound on
second-order difference quotients. This will be a variant of the formal estimate
(5.2) above.

Theorem 5.2. There exists a constant C, depending only on H and P , such that

|u(P, x + h) − 2u(P, x) + u(P, x − h)| � C|h|2 (5.10)

for all h ∈ R
n and each point x ∈ spt(σ ).

Proof. (1) Takeh �= 0, and write

ũ = u(· + h), û = u(· − h).

We consider, as before, the mollified functionsũε, ûε, where we take

0 < ε � η|h|2 (5.11)

for smallη > 0. As in the earlier proofs, we have

H(Dũε, x + h) � H̄ (P ) + Cε,

H(Dûε, x − h) � H̄ (P ) + Cε.

Therefore forσ -a.e. pointx,

H(Dũε, x) − 2H(Du, x) + H(Dûε, x)

� Cε + H(Dũε, x) − H(Dũε, x + h)

+ H(Dûε, x) − H(Dûε, x − h).

Hence
γ

2
(|Dũε − Du|2 + |Dûε − Du|2) + DpH(Du, x) · (Dũε − 2Du + Dûε)

� C(ε + |h|2) + (DxH(Dûε, x) − DxH(Dũε, x)) · h,
and consequently

γ

4
(|Dũε − Du|2 + |Dûε − Du|2)

+ DpH(Du, x) · (Dũε − 2Du + Dûε) � C(ε + |h|2).
(2) Fix now a smooth, nondecreasing, function3 : R → R, and writeφ :=

3′ � 0. Multiply the last inequality above byφ
(
ũε−2u+ûε

|h|2
)
, and integrate with

respect toσ :

γ

4

∫
Tn

(|Dũε − Du|2 + |Dûε − Du|2)φ
(
ũε − 2u + ûε

|h|2
)

dσ

+
∫

Tn

DpH(Du, x) · (Dũε − 2Du + Dûε)φ(· · · ) dσ

� C(ε + |h|2)
∫

Tn

φ(· · · ) dσ.

(5.12)
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Now the second term on the left-hand side of(5.12) equals

|h|2
∫

Rn

∫
Tn

DpH(p, x) · Dx3

(
ũε − 2u + ûε

|h|2
)

dν (5.13)

and thus is zero. (To see this, note from(4.1) that the expression(5.13) vanishes if
we replaceu by a mollified functionuδ. Let δ → 0, recalling the estimates in the
proof of Theorem 4.1.)

So now dropping the above term from(5.12) and rewriting, we deduce∫
Tn

|Duε(x + h) − Duε(x − h)|2φ
(
uε(x + h) − 2u(x) + uε(x − h)

|h|2
)

dσ

� C(ε + |h|2)
∫

Tn

φ

(
uε(x + h) − 2u(x) + uε(x − h)

|h|2
)

dσ.

(5.14)
(3) We confront now a technical problem, as(5.14) entails a mixture of first-

order difference quotients forDuε and second-order difference quotients foru, uε.
We can however relate these expressions, sinceu is semiconcave.

To see this, first of all define

Eε := {x ∈ spt(σ ) | uε(x + h) − 2u(x) + uε(x − h) � −µ|h|2}, (5.15)

the large constantµ > 0 to be fixed below. Now according to(2.10), the functions

ū(x) := u(x) − α

2
|x|2, ūε(x) := uε(x) − α

2
|x|2 (5.16)

are concave. Also a pointx ∈ spt(σ ) belongs toEε if and only if

ūε(x + h) − 2ū(x) + ūε(x − h) � −(µ + α)|h|2. (5.17)

Set

f ε(s) := ūε
(
x + s

h

|h|
)

(−|h| � s � |h|). (5.18)

Thenf is concave, and

ūε(x + h) − 2ūε(x) + ūε(x − h) = f ε(|h|) − 2f ε(0) + f ε(−|h|)

=
∫ |h|

−|h|
f ε′′

(x)(|h| − |s|) ds

� |h|
∫ |h|

−|h|
f ε′′

(s) ds (sincef ε′′ � 0)

= |h|(f ε′
(|h|) − f ε′

(−|h|))
= (Dūε(x + h) − Dūε(x − h)) · h.

Consequently ifx ∈ Eε, this inequality and(5.17) together imply

2|ūε(x) − ū(x)| + |Dūε(x + h) − Dūε(x − h)||h| � (µ + α)|h|2.
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Now |ūε(x)−ū(x)| � Cε onT
n, sinceu is Lipschitz continuous. We may therefore

takeη in (5.11) small enough to deduce from the foregoing that

|Dūε(x + h) − Dūε(x − h)| �
(µ

2
+ α

)
|h|. (5.19)

But then

|Duε(x + h) − Duε(x − h)| �
(µ

2
− α

)
|h|. (5.20)

(4) Return now to(5.14). Takingµ > 2α and

φ(z) =
{

1 if z � −µ,

0 if z > −µ,

we discover from(5.14) that

(µ
2

− α
)2|h|2σ(Eε) � C(ε + |h|2)σ (Eε).

We fixµ so large that (µ
2

− α
)2

� C + 1,

to deduce

(|h|2 − Cε)σ(Eε) � 0.

Thusσ(Eε) = 0 if η in (5.11) is small enough, and this means

uε(x + h) − 2u(x) + uε(x − h) � −µ|h|2

for σ -a.e. pointx. Now letε → 0:

u(x + h) − 2u(x) + u(x − h) � −µ|h|2

σ -a.e. Since

u(x + h) − 2u(x) + u(x − h) � α|h|2

owing to the semiconcavity, we have

|u(x + h) − 2u(x) + u(x − h)| � C|h|2

for σ -a.e. pointx.Asu is continuous, the same inequality obtains for allx ∈ spt(σ ).
��
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6. Application: Lipschitz estimates for the support of ν

We next improve the second derivative bounds from the previous section, and
then show as a simple consequence that spt(ν) lies on a Lipschitz continuous graph.

Theorem 6.1. (i) There exists a constant C, depending only on H and P , such
that

|u(P, y) − u(P, x) − Dxu(P, x) · (y − x)| � C|x − y|2 (6.1)

for all y ∈ T
n and σ -a.e. point x ∈ T

n.
(ii) Furthermore,

|Dxu(P, y) − Dxu(P, x)| � C|x − y| (6.2)

for all y ∈ T
n and for σ -a.e. point x ∈ T

n.
(iii) In fact, u is differentiable at each point x ∈ spt(σ ), and estimates (6.1), (6.2)

hold for all y ∈ T
n, x ∈ spt(σ ).

Remark. WhenDxu(P, y) is multivalued,(6.2) asserts

|ξ − Dxu(P, x)| � C|x − y|
for all ξ ∈ Dxu(P, y). In particular, for multivaluedDxu(P, y) we have the esti-
mate

diam(Dxu(P, y)) � C dist(y, spt(σ )),

providing a quantitative justification to the informal assertion that “spt(σ ) misses
the shocks inDu”.

Proof. (1) Fix y ∈ R
n and take any pointx ∈ spt(σ ) at whichu is differentiable.

According to Theorem 5.2 withh := y − x, we have

|u(y) − 2u(x) + u(2x − y)| � C|x − y|2. (6.3)

By semiconcavity, we have

u(y) − u(x) − Du(x) · (y − x) � C|x − y|2, (6.4)

and also

u(2x − y) − u(x) − Du(x) · (2x − y − x) � C|x − y|2. (6.5)

Use(6.5) in (6.3):

u(y) − u(x) − Du(x) · (y − x) � −C|x − y|2.
This and(6.4) establish(6.1).

(2) Estimate(6.2) follows from (6.1), as follows. Takex, y as above. Letz be
a point to be selected later, with|x − z| � 2|x − y|.

The semiconcavity ofu implies that

u(z) � u(y) + Du(y) · (z − y) + C|z − y|2. (6.6)
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Also,

u(z) = u(x) + Du(x) · (z − x) + O(|x − z|2),
u(y) = u(x) + Du(x) · (y − x) + O(|x − y|2),

according to(6.1). Insert these indentities into(6.6) and simplify:

(Du(x) − Du(y)) · (z − y) � C|x − y|2.

Now take

z := y + |x − y| Du(x) − Du(y)

|Du(x) − Du(y)|
to deduce(6.2).

(3) Now take any pointx ∈ spt(σ ), and fixy.There exist pointsxk ∈ spt(σ )(k =
1, . . . ) such thatxk → x andu is differentiable atxk. According to estimate (6.1),

|u(y) − u(xk) − Du(xk) · (y − xk)| � C|xk − y|2 (k = 1, . . . ).

The constantC does not depend onk or y. Now let k → ∞. Owing to(6.2), we
see that{Du(xk)} converges to some vectorη, for which

|u(y) − u(x) − η · (y − x)| � C|x − y|2.

Consequentlyu is differentiable atx andDu(x) = η. ��

As an application of these bounds, we show next that the setM = spt(ν) lies on
ann-dimensional Lipschitz continuous graph. This theorem (in position-velocity
variables) is due originally toMather [Mt2].

Theorem 6.2. There exists a constant C, depending only on P and H , such that

|Dxu(P, x1) − Dxu(P, x2)| � C|x1 − x2| (6.7)

for σ -a.e. pair of points x1, x2.

Proof. In view of (6.2) we can extend the mappingx �→ Du(x) to a uniformly
Lipschitz function defined on all ofTn. The support ofν lies on the graph of this
mapping. ��

7. Derivative estimates in the variable P

We turn next to some bounds involving variations inP . These are rather subtle
and involve the smoothness properties ofH̄ . (See P¨oschel [P, pp. 656–657] for an
explicit linear example, showing thatu can be less well behaved inP than inx.)
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7.1. A formal L2 estimate

As in Subsection 5.1, we begin with a simple, but unjustified, calculation that
suggests the later proof. So for the moment supposeu andH̄ are smooth, differen-
tiate the cell PDE twice with respect toPi , and sum oni:

Hpkpl (Dxu, x)uxkPi
uxlPi

+ Hpk (Dxu, x)uxkPiPi
= H̄PiPi

(P ). (7.1)

The first term on the left-hand side is greater than or equal toγ |D2
xP u|2. Conse-

quently

γ

∫
Tn

|D2
xP u|2 dσ +

∫
Tn

DpH · Dx(�P
u) dσ � �H̄(P ),

where�H̄ = �P H̄ is the Laplacian ofH̄ in P . Since�
P
u = �

P
v is periodic,

the second term on the left-hand side equals zero. Therefore∫
Tn

|D2
xP u|2 dσ � C�H̄(P ). (7.2)

7.2. An L2 estimate of difference quotients in P

We next provide a rigorous version of the foregoing calculation, replacing
derivatives by difference quotients.

Theorem 7.1. There exists a positive constant C, depending only on H , such that∫
Tn

|Dxu(P̃ , x) − Dxu(P, x)|2 dσ � C(H̄ (P̃ ) − H̄ (P ) − Q · (P̃ − P)) (7.3)

for all P̃ ∈ R
n.

Remark. Recall thatQ = ∫
Rn

∫
Tn DpH(p, x) dν = ∫

Tn DpH(Dxu, x) dσ and
thatQ ∈ ∂H̄ (P ). In (7.3), u(P̃ , x) = P̃ · x + v(P̃ , x) andv = v(P̃ , x) is any
viscosity solution of the cell problem

H(P̃ + Dxv, x) = H̄ (P̃ ) in R
n

x �→ v(P̃ , x) is T
n-periodic.

(7.4)

If Dxu(P̃ , x) is multivalued, we interpret(7.3) to mean∫
Tn

|ξ̃ − Dxu(P, x)|2 dσ � C(H̄ (P̃ ) − H̄ (P ) − Q · (P̃ − P))

for someσ -measurable selectioñξ ∈ Dxu(P̃ , ·).
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Proof. Write ṽ(·) = v(P̃ , ·), ũ = x · P̃ + ṽ. Mollifying, we have

H(Dũε, x) � H̄ (P̃ ) + Cε. (7.5)

Therefore forσ almost every point

γ

2
|Dũε − Du|2 + DpH(Du, x) · (Dũε − Du) � H(Dũε, x) − H(Du, x)

� H̄ (P̃ ) − H̄ (P ) + Cε.

(7.6)
Observe thatDũε − Du = P̃ − P + (Dṽε − Dv) and∫

Rn

∫
Tn

DpH · (Dṽε − Dv) dν = 0.

Consequently(7.6) yields

γ

2

∫
Tn

|Dũε − Du|2 dσ � H̄ (P̃ ) − H̄ (P )

−
∫

Tn

DpH(Du, x) · (P̃ − P) dσ + Cε

= H̄ (P̃ ) − H̄ (P ) − Q · (P̃ − P) + Cε.

(7.7)

Let ε → 0. ��
Remark. For use later, we record the estimate

lim sup
ε→0

∫
Tn

βε dσ � H̄ (P̃ ) − H̄ (P ) − Q · (P̃ − P), (7.8)

for

βε(x) := γ

2

∫
Tn

ηε(x − y)|Dxu(P̃ , y) − Dxu
ε(P̃ , x)|2 dy. (7.9)

To see this, note that as in the proof of Theorem 4.1 we can replace(7.5) by the
stronger inequality

βε(x) + H(Dũε, x) � H̄ (P̃ ) + Cε.

Corollary 7.2. (i) For each P ∈ R
n,∫

Tn

|Dxu(P̃ , x) − Dxu(P, x)|2 dσ � O(|P̃ − P |) as P̃ → P.

(ii) If H̄ is differentiable at P ,∫
Tn

|Dxu(P̃ , x) − Dxu(P, x)|2 dσ � o(|P̃ − P |) as P̃ → P.

(iii) If H̄ is twice-differentiable at P ,∫
Tn

|Dxu(P̃ , x) − Dxu(P, x)|2 dσ � O(|P̃ − P |2) as P̃ → P.
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8. Application: strict convexity of H̄ in certain directions

The next estimate allows us to deduce certain strict convexity properties ofH̄ .

Theorem 8.1. (i) There exists a positive constant C such that, for each R ∈ R
n,

−R · Q̃, R · Q̂ � C

(
lim inf
t→0+

H̄ (P + tR) − 2H̄ (P ) + H̄ (P − tR)

t2

)1/2

,

(8.1)
where Q̃, Q̂ ∈ ∂H̄ (P ).

(ii) In particular, if H̄ is twice differentiable at P , then

|DH̄(P ) · R| � C(R · D2H̄ (P )R)1/2 (8.2)

for each R ∈ R
n.

Proof. (1) Fix R ∈ R
n, t > 0, and take

ũ = u(P + tR, ·), û = u(P − tR, ·).
Then forσ -a.e. pointx:

H(Dũε, x)−2H(Du, x)+H(Dûε, x) � H̄ (P+tR)−2H̄ (P )+H̄ (P−tR)+Cε.

Similarly to the proof in Section 5.2, we deduce∫
Tn

|Dũε−Du|2+|Dûε−Du|2 dσ � C(H̄ (P+tR)−2H̄ (P )+H̄ (P−tR))+Cε.

(8.3)
(2) SinceH(Dũε, x) � H̄ (P + tR) + Cε, we have

H̄ (P ) − H̄ (P + tR) �
∫

Tn

H(Du, x) − H(Dũε, x) dσ + Cε

� C

(∫
Tn

|Du − Dũε|2 dσ
)1/2

+ Cε.

(8.4)

Likewise,

H̄ (P ) − H̄ (P − tR) � C

(∫
Tn

|Du − Dûε|2 dσ
)1/2

+ Cε. (8.5)

Combining(8.3)–(8.5), sendingε → 0, and recalling the convexity of̄H , we find

−tQ̃(t) · R, tQ̂(t) · R � C(H̄ (P + tR) − 2H̄ (P ) + H̄ (P − tR))1/2

for any
Q̃(t) ∈ ∂H̄ (P + tR), Q̂(t) ∈ ∂H̄ (P − tR).

Taking anytk → 0, we may assumẽQ(tk) → Q̃,Q̂(tk) → Q̂with Q̃, Q̂ ∈ ∂H̄ (P ).
Estimate(8.1) follows. ��
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Remarks. (i) From (8.1) we deduce that̄H is strictly convex in any directionR
which is not tangent to the level set{H̄ = H̄ (P )}, providedH̄ is differentiable
atP . (Compare this assertion withIturriaga [I].)

(ii) More generally, ifH̄ (P ) > minRn H̄ , and so 0/∈ ∂H̄ (P ), there exists an open
convex cone of directionsR in which H̄ is strictly convex atP . Therefore
the graph ofH̄ can contain ann-dimensional flat region only possibly at its
minimum value. This can in fact happen, even thoughH is uniformly con-
vex in the variablep: seeLions, Papanicolaou & Varadhan [L-P-V] or
Braides & Defranceschi [B-D, p. 149]. ConsultConcordel [C1,C2] for
more. Physically, a flat region at the minimum ofH̄ corresponds to “nonbal-
listic” trajectories for the dynamics.

(iii) See alsoBangert [B1] andWeinan E [EW2] for an example showing that
the level sets ofH̄ can have corners and/or flat parts.

9. Application: averaging in the variable X

Assume for this section that̄H is differentiable atP and furthermore thatQ =
DH̄(P ) satisfies thenonresonance condition:

Q · k �= 0 for each vectork ∈ Z
n, k �= 0. (9.1)

Notation. Forh > 0, we write the vector of difference quotients

Dh
Pu(P, x) :=

(
. . . ,

u(P + hel, x) − u(P, x)

h
, . . .

)
, (9.2)

for el := (0, . . . ,1, . . . ,0), the 1 in thelth-position.

Theorem 9.1. Suppose Q = DH̄(P ) satisfies (9.1). Then

→
h→0

lim
∫

Tn

3(Dh
P u(P, x)) dσ =

∫
Tn

3(X) dX (9.3)

for each continuous, T
n-periodic function 3.

Proof. (1) Letul(·) := u(P + hel, ·), anduεl := ηε ∗ ul , for l = 1, . . . , n.
SinceH is smooth, we have for allp, q lying in a compact subset ofRn that

H(q, x) = H(p, x) + DpH(p, x) · (q − p) + R,

with |R| � C|q−p|2. Takeq = Dul(y),p = Duεl (x) = ∫
Rn ηε(x−y)Dul(y) dy,

multiply by ηε(x − y), and integrate with respect toy:

H(Duεl (x), x) =
∫

Rn

ηε(x − y)H(Dul(y), x) dy −
∫

Rn

ηε(x − y)R dy. (9.4)

Furthermore the PDEH(Dul, x) = H̄ (P + hel) holds pointwise a.e., and so we
can conclude that

H(Duεl , x) = H̄ (P + hel) + γ l
ε , (9.5)



Effective Hamiltonians and Averaging for Hamiltonian Dynamics I 29

where the error term is estimated by

|γ l
ε | � C(ε + βl

ε)

for

βl
ε(x) := γ

2

∫
Rn

ηε(x − y)|Dul(y) − Duεl (x)|2 dy.

(2) We introduce the partially smoothed vector of difference quotients

Dh
Pu

ε(P, x) :=
(
. . . ,

uεl − u

h
, . . .

)
, (9.6)

and take then a vector of integersk = (k1, . . . , kn), k �= 0.
Next, observe that the function

e2πik·Dh
P u

ε = e2πik·xe2πik·Dh
P v

ε

is T
n-periodic, even thoughDh

Pu
ε is not periodic. Hence

0 =
∫

Tn

DpH(Du, x) · Dx

(
e2πik·Dh

P u
ε
)
dσ

= 2πi
∫

Tn

e2πik·Dh
P u

ε
n∑

l=1

klDpH(Du, x) · Dx(
uεl − u

h
) dσ.

(9.7)

(3) Now (9.5) implies

H(Duεl , x) − H(Du, x) = H̄ (P + hel) − H̄ (P ) + γ l
ε .

Consequently

DpH(Du, x) · D(uεl − u) = H̄ (P + hel) − H̄ (P ) + &l
ε,

where

|&l
ε| � C(ε + βl

ε + |Duεl − Du|2) (9.8)

for l = 1, . . . , n.
Therefore

DpH(Du, x) · Dx(
uεl − u

h
)

= Ql +
(
H̄ (P + hel) − H̄ (P )

h
− Ql + 1

h
&l
ε

)
.

(9.9)
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(4) Insert(9.9) into (9.7), and then estimate∣∣∣∣(Q · k)
∫

Tn

e2πik·Dh
P u

ε

dσ

∣∣∣∣
� Cε

h
+ C

n∑
l=1

(
H̄ (P + hel) − H̄ (P )

h
− Ql

)

+ C

h

n∑
l=1

∫
Tn

βl
ε + |Duεl − Du|2 dσ by (9.8)

� Cε

h
+ C

n∑
l=1

(
H̄ (P + hel) − H̄ (P )

h
− Ql

)

+ C

h

n∑
l=1

∫
Tn

βl
ε dσ,

(9.10)

the last inequality following from(7.7) in the proof of Theorem 7.1.
Next, sendε → 0, and remember(7.8):∣∣∣∣(Q · k)

∫
Tn

e2πik·Dh
P u dσ

∣∣∣∣ � C

n∑
l=1

(
H̄ (P + hel) − H̄ (P )

h
− Ql

)
.

SinceQl = H̄Pl
(P ) andQ · k �= 0, we conclude that

→
h→0

lim
∫

Tn

e2πik·Dh
P u dσ = 0

for all k ∈ Z
n, k �= 0. Because any continuous,T

n-periodic funtion3 can be
uniformly approximated by trigonometric polynomials, this implies assertion(9.3).
��
Remarks. (i) Recalling the formal change of variables(1.3), we interpret(9.3)

to assert
“ dσ = | detD2

xP u| dx ” (9.11)

in some weak sense, provided(9.1) holds. See [E-G2,§5.1] for related formal
computations.

(ii) Theorem 9.1 provides a partial, but rigorous, interpretation of the following
heuristics.
Suppose that our generating functionu is smooth, and induces the global change

of variables(p, x) → (P,X) by (1.3). Then the dynamics(1.1) become(1.5); that
is,

Ẋ = DH̄(P),

Ṗ = 0.

ConsequentlyX(t) = Qt + X0,P(t) ≡ P . In view therefore of the nonresonance
condition(9.1), we have

lim
T→∞

1

λT

∫ λT

0
3(X(t)) dt =

∫
Tn

3(X) dX
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for eachλ > 0. However

1

λT

∫ λT

0
3(X(t)) dt = 1

λT

∫ λT

0
3(DPu(P, x(t))) dt

= 1

λ

∫ λ

0
3(DPu(P,

xε(t)
ε

)) dt for ε = 1

T

→ 1

λ

∫ λ

0

∫
Tn

3(DPu(P, x)) dσt dt.

Consequently ∫
Tn

3(DPu(P, x)) dσt =
∫

Tn

3(X) dX

for all t � 0.

Acknowledgements. We are grateful toG. Barles, L. Barreira,M. Crandall,Weinan E,
W. Oliva, D. Serre andA. Weinstein for interesting suggestions and for references. LCE
was supported in part by NSF Grant DMS-9424342. DG was supported by Praxis XXI-BD
5228/95.

References

[Ar] M.Arisawa, Multiscale homogenization for first-order Hamilton-Jacobi-Bellman
equations,Advances in Differential Equations, to appear.

[A] S. Aubry, The twist map, the extended Frenkel-Kantorova model and the devil’s
staircase,Physica D 7 (1983), 240–258.

[B1] V. Bangert, Minimal geodesics,Ergodic Theory and Dyn. Systems 10 (1989),
263–286.

[B2] V. Bangert, Geodesic rays, Busemann functions and monotone twist mapsCal-
culus of Variations 2 (1994), 49–63.

[B-S] G. Barles & P. E. Souganidis, On the long time behavior of solutions of
Hamilton-Jacobi equations,J. Math. Analysis, to appear.

[B-D] A. Braides & A. Defranceschi, Homogenization of Multiple Integrals, Oxford
Univ. Press, 1998.

[C-D] W. Chou & R. J. Duffin, An additive eigenvalue problem of physics related to
linear programming,Advances in Appl. Math. 8 (1987), 486–498.

[Cl] F. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983.
[C1] M. Concordel, Periodic homogenization of Hamilton-Jacobi equations I: ad-

ditive eigenvalues and variational formula,Indiana Univ. Math. J. 45 (1996),
1095–1117.

[C2] M. Concordel, Periodic homogenisation of Hamilton-Jacobi equations II:
eikonal equations,Proc. Roy. Soc. Edinburgh 127 (1997), 665–689.

[DC] M. J. Dias Carneiro, On minimizing measure of the action of autonomous La-
grangians,Nonlinearity 8 (1995), 1077–1085.

[EW1] Weinan E, A class of homogenization problems in the calculus of variations,
Comm. Pure and Appl. Math. 44 (1991), 733–754.

[EW2] Weinan E, Aubry-Mather theory and periodic solutions of the forced Burgers
equation,Comm. Pure and Appl. Math. 52 (1999), 811–828.

[E1] L. C. Evans,Weak Convergence Methods for Nonlinear Partial Differential Equa-
tions, American Math. Soc., 1990.



32 L. C. Evans & D. Gomes

[E2] L. C. Evans, Periodic homogenization of certain fully nonlinear PDEProc. Royal
Society Edinburgh 120 (1992), 245–265.

[E-G2] L. C. Evans & D. Gomes, Effective Hamiltonians and Averaging for Hamiltonian
Dynamics II, preprint.

[F1] A.Fathi,Théorème KAM faible et théorie de Mather sur les syst`emes lagrangiens,
C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 1043–1046.

[F2] A. Fathi, Solutions KAM faibles conjugu´ees et barri`eres de Peierls,C. R. Acad.
Sci. Paris Sér. I Math. 325 (1997), 649–652.

[F3] A. Fathi, Orbites hétéroclines et ensemble de Peierls,C. R. Acad. Sci. Paris Sér.
I Math. 326 (1998), 1213–1216.

[F4] A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik,C. R. Acad. Sci.
Paris Sér. I Math. 327 (1998), 267–270.

[F-M] A. Fathi & J. Mather, Failure of convergence of the Lax-Oleinik semigroup in
the time-periodic case, preprint (2000)

[Gd] H. Goldstein, Classical mechanics (2nd ed.), Addison-Wesley, 1980.
[G] D. Gomes, Hamilton-Jacobi Equations, Viscosity Solutions and Asymptotics of

Hamiltonian Systems, Ph.D. Thesis, University of California, Berkeley (2000).
[J-K-M] H.R. Jauslin, H.O. Kreiss & J. Moser, On the forced Burgers equation with

periodic boundary conditions, preprint (1998).
[L-P-V] P.-L. Lions, G. Papanicolaou, & S. R. S. Varadhan, Homogenization of

Hamilton-Jacobi equations, unpublished, circa 1988.
[I] R. Iturriaga, Minimizing measures for time-dependent Lagrangians,Proc. Lon-

don Math Society 73 (1996), 216–240.
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