Research



     Research interests
 
Operator Theory, Complex Analysis, Riemann-Hilbert problems, integrable systems, applications to Physics and Engineering.


     Research papers

1.
M.C.Câmara, A.B.Lebre, F.-O.Speck: Meromorphic factorization, partial index estimates and elastodynamic difraction problems; Math. Nachr.,157(1992),291-372.

2. M.C.Câmara, A.B.Lebre, F.-O.Speck: Generalized factorization for a class of Jones-form matrix functions; Proc. R. Soc. Ed.,123A(1993),401-422.

3. M.C.Câmara, A.F.dos Santos: Generalized factorization for a class of nxn matrix functions - Partial indices and explicit formulas; Int. Eq. Op. Th.,20(1994),198-230.

4. M.C.Câmara, A.F.dos Santos, M.A.Bastos: Generalized factorization for Daniele-Khrapkov matrix functions - Partial indices; J. Math. An. Appl.,190(1995),142-164.

5. M.C.Câmara, A.F.dos Santos, M.A.Bastos: Generalized factorization for Daniele-Khrapkov matrix functions - Explicit formulas; J. Math. An. Appl.,190(1995),295-328.

6. M.C.Câmara: Factorization in a Banach Algebra and the Gelfand transform; Math. Nachr., 176 (1995), 17-37.

7. M.C.Câmara, A.F.dos Santos: A non-linear approach to generalized factorization of matrix functions; Operator Theory: Advances and Applications,Vol.102(1998),21-37.

8. M.C.Câmara, A.F.dos Santos: Wiener-Hopf factorization of a generalized Daniele-Khrapkov class of 2x2 matrix symbols; Math. Meth. Appl. Sci.,22(1999),461-484.

9. M.C.Câmara, A.F.dos Santos: Wiener-Hopf factorization for a class of oscillatory symbols; Int. Eq. Op. Th., 36(2000),409-432.

10. M.C.Câmara, M.T.Malheiro: Wiener-Hopf factorization for a group of exponentials of nilpotent matrices; Linear Alg. Appl.,320(2000),79-96.

11. M.C.Câmara, A.F.dos Santos, N. Mnojlovic: Generalized factorization for NxN Daniele-Khrapkov matrix functions; Math. Meth. Appl. Sci.,24(2001),993-1020.

12. M.C.Câmara, A.F.dos Santos, M.P.Carpentier: Explicit Wiener-Hopf factorization and non-linear Riemann-Hilbert problems; Proc. R. Soc. Ed.,132A(2002),45-74.

13. M.C.Câmara, M.C.Martins, A.F.dos Santos: A new approach to factorization of a class of almost-periodic triangular symbols and related Riemann-Hilbert problems; J. Funct. Anal., 235(2006)559-592.

14. M.C.Câmara, M.C.Martins: Explicit almost-periodic factorization for a class of triangular matrix functions; J. Anal. Math.103(2007),221-260.

15. M.C.Câmara, A.F.dos Santos, P.F.dos Santos:  Lax Equations, Factorization and Riemann-Hilbert Problems;  Port. Math.(N.S.),64(2007)no. 4,509-533.

16. M.C.Câmara, C.Diogo: Invertibility of Toeplitz operators and corona conditions in a strip; J. Math. Anal. Appl. 342(2008)no.2,1297-1317.

17. M.C.Câmara, M.T.Malheiro: Meromorphic factorization revisited and application to a group of matrices; Complex Anal. Oper. Theory 2(2008)no.2,299-326.

18. M.C.Câmara, A.F.dos Santos, Pedro F. dos Santos: Matrix Riemann-Hilbert problems and factorization on Riemann surfaces; J. Funct. Anal. 255(2008)no.1,228-254.

19. M.C.Câmara, Yu.I.Karlovich, I.M.Spitkovsky: Almost periodic factorization of some triangular matrix functions; Modern analysis and applications.The Mark Krein Centenary Conference. Vol.1:Operator theory and related topics,171-190,2009.

20. C.Benhida, M.C.Câmara, C.Diogo: Some properties of the kernel and the cokernel of Toeplitz operators with matrix symbols; Linear Algebra Appl. 432(2010)no.1,307-317.

21.
M.C.Câmara, Yu.I.Karlovich, I.M.Spitkovsky: Constructive almost periodic factorization of some triangular matrix functions; J. Math. Anal. Appl. 367(2010)416-433.

22. M.C.Câmara, C. Diogo, L.Rodman: Fredholmness of Toeplitz operators and corona problems; J. Funct. Anal. 259(2010)no.5 1273-1299.

23.
M.C.Câmara, C. Diogo, Yu.I.Karlovich, I.M.Spitkovsky: Factorization, Riemann-Hilbert problems and the corona theorem;J. Lond. Math. Soc.(2) 86 (2012) no.3, 852-878.
https://arxiv.org/abs/1103.1935 

24.
M.C.Câmara, M.T.Malheiro: Factorization in a torus and Riemann-Hilbert problems; Journal of Mathematical Analysis and Applications 386 (2012), pp. 343-363.

https://arxiv.org/abs/1010.5460
 
25. M.C.Câmara, Yu. I. Karlovich, I. M. Spitkovsky: Kernels of asymmetric Toeplitz operators and applications to almost periodic factorization; Complex Anal. Oper. Theory, 7
(2013) no.2, 375-407. 

26.
M.C.Câmara, L.Rodman, I. M. Spitkovsky: One sided invertibility over commutative rings, corona problems, and Toeplitz operators with matrix symbols; Linear Algebra Appl. 459 (2014), 58-82.

https://arxiv.org/abs/1403.6231
 
27. M.C.Câmara,J.R.
Partington: Near invariance and kernels of Toeplitz operators; J. Anal. Math.124(2014), 235-260.

28. M.C.Câmara, M.T.Malheiro: Riemann-Hilbert problems, Toeplitz operators and Q-classes; Integral Equations Operator Theory 80(2014),no.2, 239-264.

29. M.C. Câmara, C. Diogo, I. M. Spitkovsky: Toeplitz operators of finite interval type and the table method; J. Math. Anal. Appl. 432 (2015),no. 2, 1148-1173.


30. M.Cristina Câmara, J.R.Partington: Spectral properties of truncated Toeplitz operators by equivalence after extension, J. Math. Anal. and Appl., 433 (2016), 762-784.

31. M.C.Câmara, M.T.Malheiro, and J.R.Partington: Model spaces and Toeplitz kernels in reflexive Hardy spaces; Operators and Matrices, 10(2016),no. 1, 127-148.

https://arxiv.org/abs/1507.05797
 

32. M.C.Câmara, J.R.Partington: Finite-dimensional Toeplitz kernels and nearly-invariant subspaces; J. Operator Theory, 75 (2016), no.1, 75-90.


33. M.Cristina Câmara and J.R.Partington: Asymmetric truncated Toeplitz operators and Toeplitz operators with matrix symbol, J. Operator Theory, 77 (2017), 455-479. 
https://arxiv.org/abs/1504.06446

34. Cristina Câmara, Joanna Jurasik, Kamila Klis-Garlicka and Marek Ptak: Characterizations of asymmetric truncated Toeplitz operators, Banach J. Math. Anal., Volume 11, Number 4 (2017), 899-922. 
https://arxiv.org/abs/1607.03342

35. M.C.Câmara, G.L.Cardoso, T.Mohaupt and S.Nampuri: A Riemann-Hilbert approach to rotating attractors, J. High Energy Phys. 2017, no. 6, 123, 73 pp.
https://arxiv.org/abs/1703.10366


36. M.Cristina Câmara: Toeplitz operators and Wiener-Hopf factorisation: an introduction, Concr. Oper. 2017; 4: 130-145.
https://arxiv.org/abs/1710.11572


37. M. Cristina Câmara and Jonathan R. Partington: Toeplitz kernels and model spaces, The diversity and beauty of applied operator theory, 139-153, Oper. Theory Adv. Appl., 268, Birkhauser/Springer, Cham,
2018.

https://arxiv.org/abs/1711.04511


38. M. Cristina Câmara and Jonathan R. Partington: Multipliers and equivalences between Toeplitz kernels, J. Math. Anal.
Appl. 465 (2018), no. 1, 557-570.
https://arxiv.org/abs/1611.08429

 

39. M. Cristina Câmara, Kamila Klis-Garlicka and Marek Ptak:  Asymmetric truncated Toeplitz operators and its characterizations by rank two operators, RIMS Kôkyûroku, 2073:110 (2018)

http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/2073-01.pdf


40. M. Cristina Câmara, Kamila Klis-Garlicka and Marek Ptak: Asymmetric truncated Toeplitz operators and conjugations, FILOMAT, Vol 33, No 12 (2019)
http://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/7050
https://arxiv.org/pdf/2001.00400.pdf

41. M. Cristina Câmara and C. Carteiro: Toeplitz kernels and finite rank truncated Toeplitz operators, Contemporary Mathematics 737 (2019) 43-62.

https://www.ams.org/books/conm/737

42.
M. Cristina Câmara, Kamila Klis-Garlicka and Marek Ptak: Complex symmetric completions of partial operator matrices, Linear and Multilinear Algebra, doi.org/10.1080/03081087.2019.1631246 (2019).
https://www.tandfonline.com/doi/full/10.1080/03081087.2019.1631246?scroll=top&needAccess=true

43.
M. Cristina Câmara and Jonathan R. Partington: Scalar-type kernels for block Toeplitz operators, J. Math. Anal. and Appl., (2020) doi.org/10.1016/j.jmaa.2020.124111 .
https://arxiv.org/abs/1810.09789

44.
M. Cristina Câmara, Kamila Klis-Garlicka, Bartosz Lanucha and Marek Ptak: Conjugations in L^2 and their invariants, Analysis and Mathematical Physics, volume 10, Article number: 22 (2020).
https://arxiv.org/abs/1912.13265

45. M. C. Câmara and W.T. Ross: The dual of the compressed shift, Canadian Mathematical Bulletin (2020)
http://dx.doi.org/10.4153/S0008439520000260.

https://arxiv.org/abs/2001.02587

46. P. Aniceto, M. C. Câmara, G.L. Cardoso and M. Rosselló: Weyl metrics and Wiener-Hopf factorization, J. High Energ. Phys.,124 (2020) https://doi.org/10.1007/JHEP(2020)124.

https://arxiv.org/abs/1910.10632

47.
M. Cristina Câmara, Kamila Klis-Garlicka, Bartosz Lanucha and Marek Ptak: Invertibility, Fredholmness and kernels of dual truncated Toeplitz operators, Banach Journal of Mathematical Analysis (2020), to appear.
https://arxiv.org/abs/1912.13266M.
 
48.
Cristina Câmara, Kamila Klis-Garlicka, Bartosz Lanucha and Marek Ptak: Conjugations in L^2(H).
https://arxiv.org/abs/1912.13270

49.
 
M. Cristina Câmara, M. Teresa Malheiro and Jonathan R. Partington: Kernels of unbounded Toeplitz operators and factorization of symbols.
https://arxiv.org/abs/2004.09985
 
50. M. Cristina Câmara, Kamila Klis-Garlicka, Bartosz Lanucha and Marek Ptak:Compressions of multiplication operators and their characterizations, preprint.


   
Other publications

M. C. Câmara: Generalized factorization and singular integral equations in L_2(R), Técnica nº1/1990.

M. C. Câmara, C. Diogo: Generalized factorization and corona problems,preprint 3, DMIST Preprints,2006.

M. C. Câmara: Toeplitz operators with 2x2 symbols and factorization in a Riemann surface; Proc. of the 7th Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control,14-19 September 2009, Nemecka, Slovak Republic, p. 19-20 (editors: Igor Bock and Michal Zajac).





    Conferences and seminars
  


Invited talks:

1. Sommerfeld ’96 Workshop, Modern Mathematical Methods in Diffraction Theory and Applications in Engineering, Freudenstadt, Alemanha, 30 September-4 October 1996: Some Recent Developments in the Wiener-Hopf Factorization of 2x2 Symbols.


2.
Seminário do Grupo de Análise Funcional da Universidade de Aveiro, Portugal
, 22 November 2002: Factorização de funções matriciais e problemas de Riemann-Hilbert.

3. Seminário do CMAT, Centro de Matemática da Universidade do Minho
, 30 September 2005: Factorização generalizada de uma classe de matrizes quase-periódicas.

4.
Seminar of the Department of Applied Mathematics, University of Agriculture in Krakow, Poland, 26 July 2007: Finite interval difference equations, Riemann-Hilbert problems and Wiener-Hopf factorization.
 
5. International Conference on Operator Algebras and Applications in Morocco, Marrakesh, Morocco, 14-18 April 2008: Fredholm properties of Toeplitz operators and Riemann-Hilbert problems.

6. Seminario de espacios de funciones analiticas y teoria de operadores, Sevilha, Espanha
, 17 June  2008: Toeplitz operators, Riemann-Hilbert problems and factorization.

7. SWOT 2008 - Small Workshop on Operator Theory, Cracóvia, Polónia , 28 June-1 July 2008: Almost periodic factorization for a class of triangular matrix symbols.

8. IWOTA 2008 - International Workshop in Operator Theory and its Applications, Williamsburg, Virginia, EUA, 22 - 26
July 2008: Matrix Wiener-Hopf factorization and Riemann-Hilbert problems In a Riemann surface.

9. Seminar on Operator Theory, Function Theory and Applications, Université Mohamed V, Rabat, Morocco, 12 March 2010: On some properties of the kernels of Toeplitz operators.

10. 13th Workshop on Applications and Generalizations of Complex Analysis, Aveiro, Portugal, 25 - 26 March 2011: Toeplitz operators, matrix Wiener-Hopf factorization and Riemann-Hilbert problems in a Riemann surface.

11. Functional Analysis Seminar, Department of Pure Mathematics, University of Leeds, UK, 17 May 2011: Toeplitz operators and Riemann-Hilbert problems.

12. Seminário do CMAT, Centro de Matemática da Universidade do Minho, 25 May 2011: Toeplitz operators, matrix Wiener-Hopf factorization and Riemann-Hilbert problems in a Riemann surface.

13. IWOTA 2011 - International Workshop in Operator Theory and its Applications, Sevilla, Spain, 3-9 Julho 2011; Special session on Analytic Function Spaces, Riemann-Hilbert problems and Toeplitz operators:  Kernels of asymmetric oeplitz operators and applications to almost periodic factorization.

14. 6th European Congress of Mathematics, Krakow, Poland, 2-7 July 2012; Satellite Thematic Session on Special Classes of Hilbert Space Operators : Kernels of asymmetric Toeplitz operators and finite interval convolution operators in L2.

15. Conference on Operator Theory, Operator Algebras and Applications, Oujda, Morocco, 14-19 December 2012: One sided invertibility, corona problemas and applications to Toeplitz operators.

16. Mathematical aspects of the physics of non self adjoint operators, Edinburgh, UK, 11-15 March 2013: A Riemann-Hilbert approach to Toeplitz operators and the corona theorem.

17. Workshop on Operator Theory and Complex Analysis, Lille, France, 27-29 May 2013:  On some properties of the kernels of Toeplitz operators.

18. Meeting on Riemann-Hilbert problems and their applications, Reading, UK, 29-30 May 2013 :  On some properties of the kernels of Toeplitz operators.

19. Operators on Banach Spaces, Castro Urdiales, Espanha, 10-14 June 2013: A Riemann-Hilbert approach to Toeplitz operators and the corona theorem.

20. Sz.-Nagy Centennial Conference, Szeged, Hungary, 24-28 June 2013: One-sided invertibility, corona problems and applications to Toeplitz operators.

21. LARSyS 2013 - Robotics and Systems in Engineering and Science, Lisboa, 4-5 July 2013: Convolution equations via Riemann-Hilbert problems.

22. Journées d'Analyse 2013, Bordeaux, France, 9-11 October 2013: Kernels of Toeplitz operators, near invariance and model spaces.

23. Kent Spectral Meeting, University of Kent, Canterbury, UK, 14-17 April 2014: A Riemann-Hilbert approach to Toeplitz operators and the corona theorem.

24. Seminário do CMAT, Centro de Matemática da Universidade do Minho, 21 May 2014: A Riemann-Hilbert approach to some spectral properties of Toeplitz operators.

25. WIMCS-CIDMA Wiener-Hopf Workshop, Aveiro, Portugal, 23-24 June 2014: Maximal and minimal functions in model spaces.

26. SWOT 2014, Krakow, Poland, 8-12 July 2014: Kernels of Toeplitz operators, maximal functions and model spaces.

27. IWOTA 2014, Amsterdam, Netherlands, 14-18 July 2014
Special Session on Toeplitz Operators and Related Topics: Asymmetric truncated Toeplitz operators.

28. IWOTA 2014, Amsterdam, Netherlands, 14-18 July 2014
Special Session on Operators, Matrices and Indefinite Inner Products: Toeplitz operators, one sided invertibility of matrices and corona problems.

29. Seminar of the Department of Applied Mathematics, University of Agriculture in Krakow, Poland, 18 May 2015: Truncated Toeplitz operators and their spectra.

30. Seminar of the Department of Applied Mathematics, University of Agriculture in Krakow, Poland, 26 June 2015: Q-classes of matrix functions and Toeplitz operators.
 
31. AMS-EMS-SPM International Meeting, Porto, Portugal, 10-13 June 2015, Special Session on Operator Theory and Its Applications: Asymmetric truncated Toeplitz operators.


32. Doppler Institute Seminar, Prague, Czech Republic, 6 October 2015: Spectral properties of truncated Toeplitz operators .
 
33. ACOTCA 2016, Ville-sur-Jarnioux/Lyon, France, 13-15 June 2016:
Mini-course on Wiener-Hopf factorisation and Toeplitz operators.

34. 5th Summer Workshop on Operator Theory - SWOT 2016, Krakow, Poland, 5-9 July 2016: Asymmetric truncatd Toeplitz and their symbols.

35. Operator Theory, Analysis and Mathematical Physics - OTAMP 2016, Euler International Mathematical Institute, St. Petersburg, Russia, 2-7 August 2016: Spectral properties of truncated Toeplitz operators.

36. Mathematical aspects of the physics with non-self-adjoint operators, CIRM, Marseille, France, 5-9 June 2017
: Truncated Toeplitz operators.

37. XIV Advanced course in Operator Theory and Complex Analysis,
Instituto de Ciencias Matematicas, Madrid, Spain, June 19 - 22, 2017: Conjugations and asymmetric truncated Toeplitz operators.

38. Encontro com a Ciência e a Tecnologia em Portugal, Sessão 15.Matemática,
Lisboa, Portugal, 3-5 July 2017: The Riemann-Hilbert method: from Toeplitz operators to black holes.

39. ILAS 2017: MS-23 Toeplitz matrices and Riemann-Hilbert problems, Iowa State University, Ames, USA, July 24-28 2017
: Truncated Toeplitz operators and their spectra.

40.
Colloquium of the Mathematics Department, Instituto Superior Técnico-University of Lisbon, 8 March 2018: From Toeplitz operators to black holes, and beyond.

41.
Recent Trends in Operator Theory and Applications, Memphis, USA, 3-5 May 2018: I - From Toeplitz matrices to black holes, and beyond; II - Multipliers and equivalences between Toeplitz kernels.

42.
Operator Theory 27, Timisoara, Romenia, 2-6 July 2018: Scalar type kernels for block Toeplitz operators.

43.
6th Summer Workshop on Operator Theory, Krakow, Poland, 9-13 July 2018: Completions of partial operator matrices.

44.
IWOTA 2018, Shangai, China, 23-27 July 2018, Special Session on Operator Theory on Reproducing Kernel Hilbert Spaces: Multipliers and equivalences between Toeplitz kernels.

45.
EWM- European Women in Mathematics General Meeting 2018, Linear Operator
Theory and Applications, Graz, Austria, 3-7 September 2018:
Multipliers and equivalences between Toeplitz kernels.

46.
7th Iberian Mathematical Meeting, Harmonic and Complex Analysis, Évora, Portugal, 12-14 October 2018: Multipliers between Toeplitz kernels.

47.
Young Functional Analysts Workshop YFAW 2019, Leeds, UK, 3-5 April 2019: Completions of partial operator matrices.

48.
Korea Operator Theory and its Applications - KOTAC 2019, Gyeongju, Korea, 27-29 June 2019: Scalar type kernels for block Toeplitz operators.

49.
Special Session on Operators on Reproducing Kernel Hilbert Spaces, IWOTA 2019,Lisbon, Portugal, 22-26 July 2019: Dual truncated Toeplitz operators.

50.
Factorisation of matrix functions: New techniques and applications - Isaac Newton Institute Workshop, Cambridge, UK, 12-16 August 2019: A Riemann-Hilbert approach to Einstein field equations.


 

  
Other talks at international conferences:

1. International Workshop on Operator Theory and Applications - IWOTA 95, University of Regensburg, Germany,
31 July-4 August 1995: A non-linear method for generalized factorization - applications to Daniele-Khrapkov symbols.

2. Workshop on Operator Factorization and Applications, I.S.T., Lisbon,
12-13 February 1997: A non-linear method for Wiener-Hopf factorization and application to a class involving oscillatory functions.

3. Workshop on Operator Factorization and Applications,Faro, Portugal,
2-3 October 1998: Wiener-Hopf factorization for a class of oscillatory symbols.

4. IWOTA - Portugal 2000, International Workshop on Theory and Applications, Faro, Portugal,
12-15 September 2000: NxN Daniele - Khrapkov class: explicit Wiener-Hopf factorization, structure of the factors and applications to integrable systems.

5. International Conference on Factorization, Singular Operators and Related Problems, in honour of Professor G. Litvinchuck, Funchal, Portugal,
28 January-1 February 2002: Factorization of Triangular Matrix Symbols. Structure of the Factors and Riemann-Hilbert problems.

6. IWOTA 2004, Newcastle upon Tyne, UK,
12-16 July: Polynomial almost periodic solutions for a class of oscillatory Riemann-hilbert problems.

7. First Czech-Catalan Conference in Mathematics, Prague, Czech Republic,
27-28 May 2005: Factorization of a class of almost-periodic triangular symbols and related Riemann-Hilbert problems.

8. 2nd Joint Meeting of AMS, DMV, OMG at Mainz, Mainz, Germany,
16-19 June 2005: A new approach to the invertibility of a class of Wiener-Hopf operators.

9. OTFUSA 2005 - Conference on Operator Theory, Funtion Spaces and Applications (7-9 july 2005), Aveiro, Portugal: "Factorization in a Riemann Surfaces".

10. Spaces of holomorphic functions and their operators (5-9 June 2006), Marseille, France: "Invertibility of a class of Toeplitz operators and corona problems".

11. The 21st International Conference on Operator Theory, (28 June-4 July 2006), Timisoara, Romenia: "Toeplitz operators, solutions transformations and corona problems".

12. WOAT 2006 - Operator Algebras, Operator Theory and Applications (1-5 September 2006), Lisbon, Portugal: "Toeplitz operators and corona problems".

13. First Joint International Meeting between the AMS and the PTM (31 July-3 August 2007), Warsaw, Poland:  "Invertibility of Toeplitz operators with analytic symbols and corona conditions".

14. The RAEx Oxford Symposium (13-15 August 2007), Oxford, UK: "On a class of Riemann-Hilbert problems with almost periodic polynomial solutions".

15. École de Printemps d'Analyse Fonctionnelle de Rabat (18-23 May 2009), Rabat, Morocco:On the applications of the corona theorem to the study of Toeplitz operators with analytic symbols".

16. 7th ISAAC Congress (13-18 July 2009), London, UK: "On the relations between the kernel of a Toeplitz operator and the solutions to some associated Riemann-Hilbert problems".

17. Workshop in Functional Analysis and its Applications in Mathematical Physics and Optimal Control (14-19 September 2009), Nemecka, Slovakia: "Toeplitz operators with 2x2 symbols and factorization in Riemann surfaces".

18. Operator Theory and Related Topics (31 May-4 June 2010), Lille, France: "Fredholmness of Toeplitz Operators and corona problems".

19. FAV 2010 - Functional Analysis Valencia (7-11 June 2010), Valencia, Spain: On the kernels of Toeplitz Operators with related symbols".

20. IWOTA 2010 -  21 International Workshop on Operator Theory and its Applications (12-16 July 2010), Berlin, Germany: Fredholm properties of Toeplitz operators and meromorphic corona problems".

21. Summer School in Analysis (30 August-3 September 2010), Touquet, France: "Factorization, Riemann-Hilbert problems and the corona theorem".

22. 5th Annual Workshop of the Functional Analysis and Applications Group, Universidade de Aveiro, Portugal, 24 May 2014: "On some properties of the kernels of Toeplitz operators".

23. Matrices & Operators - Workshop with Abraham Berman, Coimbra, Portugal, 3-4 June 2014: "One sided invertibility of matrices and Toeplitz operators".

24. Conference on Harmonic Analysis, Operator Theory and Applications, Bordeaux, France, 1-6 Jun 2015 : "Asymmetric truncated Toeplitz operators".

25. Operator Theory 26, Timisoara, Romenia, 27 June-2 July 2016: "Spectral properties of a class of truncated Toeplitz operators".





    Projects


Project: PTDC/MAT/81385/2006  Toeplitz Operators, Factorization and Corona Problems (PI)

Project: PTDC/MAT/121837/2010
  Toeplitz Operators and Riemann-Hilbert problems: at the crossroad of Operator Theory and Complex Analysis  (PI)