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ABSTRACT 

In this paper we present a statistical analysis of wave characteristics in ocea- 
nographic data, using a transformed Gaussian random process for modelling, 
and to compare theoretical distributions of wave period and amplitude with 
observations. A natural transform (estimable from the data) is used through- 
out, the model compared with that based on purely (untransformed) Gaussian 
assumptions. The data are measurements of a sea state in deep and shallow 
water, at different geographical locations. 

One of the purposes of the paper is to use an appropriately sophisticated 
method to test the correctness of a Gaussian hypothesis in modelling wave data 
for ew!luation of extreme values and for fatigue analysis. Copyright © 1996 
Elsevier Science Ltd 

Key words: crest-trough distribution, crossings, extremes, Gaussian 
processes, local maxima and minima, non-Gaussian processes, ocean-waves. 

I N T R O D U C T I O N  

Let X(t) b,e the height o f  the sea level at a fixed point as a function of  time t. 
In oceanographic applications, X(t) is often viewed as a sequence of  waves 
where each wave can be described by means of  its highest and lowest values 
(crest, trough), or by means of  its 'amplitude'  ( =  c res t - t rough)  and 'wave 
period',  describing the durat ion of  a single wave. There is no general agree- 
ment about  the formal definition of  a wave and two useful alternatives are 
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considered here. The first of these is the commonly used 'mean downcrossing 
wave', where a wave is considered as a part of a function between the 
consecutive downcrossings of the mean sea level, as follows: 

Definition 1. Let X(t), O<_t<_T, be a smooth function, in the sense of 
having a finite number of local extremes, and let u. be a fixed reference level, 
usually the mean of  X. Denote by ti, O<_tl<t2<...<tn<_T, the times of  
downcrossings of u.. The crest and trough M~i , rn~, say, of the ith wave are 
the global maximum and the global minimum of X(t), ti < t</i+l, respec- 
tively. Of special interest is the so called 'crest front amplitude' H*, defined 
as the difference between the crest and the trough, i.e., 

= M ~ - m  7=- max X ( t ) -  min X(t), 
li<l<ti+l li<t<li+l 

and the 'half wave period' T* is defined as the distance between a down- 
crossing and the following upcrossing of u. (see Fig. 1). 

The important applications of wave analysis are in prediction of  large 
waves and hence small oscillations superimposed on major waves are 
neglected, explaining the frequent use of 'mean crossing waves' considered 
above. However, for fatigue accumulation in marine structures, it is well 
known that even small oscillations can contribute to the damage and hence 
have to be analyzed. To do this, the distribution of the so called 'rainflow 
cycles', which are local maxima and minima of X, paired using the hysteresis 
properties of the material are often studied (see Rychlik [1] for a detailed 
discussion). We here use a simpler definition, the so called min-max cycle 
which is useful for such purposes and also for approximation. 

Definition 2. As before, let X(t), 0<t<T,  be a smooth function. The 
sequence of  heights of local minima and the following maxima in X, denoted 
by m;, M;, i = 1, 2 ..... respectively, is called a sequence of  turning points. Then 
the waveform between mi and Mi will be termed the 'ith min-max cycle' and 
referred to for brevity as the cycle (mi, Mi). Further, the period and the 
amplitude of the ith cycle is the pair (Ti, Hi = Mi-m~), where 7",. is the time 
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Fig. !. Definition of  mean downcrossing waves and 
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between local minimum mi and the following local maximum Mi (see Fig. 1). 
Note that, for clarity, the properties in Definitions 1 and 2 will, as far as 

possible, be distinguished by the words 'wave' and 'cycle', respectively. 
Some important statistical characteristics of waves are the (crest, trough)- 

and (waw: period, amplitude)-distributions. The distributions can obviously 
be described empirically by fitting arbitrary parametric distributions to the 
observations or using nonparametric estimation techniques. However, it is 
also important to find a statistical model for sea state data based on more 
mathematical principles and it is natural to model X(t) as a stochastic 
processes. An important problem is to compute the distributions of wave 
characteristics from the properties of X(t). 

The aim of this paper is to present methods, programmed in the form of a 
toolbox WAVE in MATLAB ~>, for the analysis of wave characteristics of 
marine data. (The toolbox is presented in Ref. 2). We examine sea-waves 
from both deep and shallow water at different geographical locations. The 
data sets were supplied by M. Olagnon] IFREMER, France and P. Palo, US 
Naval Facilities Engineering Service Center. 

STOCHASTIC MODELLING OF SEA DATA 

The standard assumptions for the sea state under stationary conditions is that 
the model X(t) is a stationary and ergodic stochastic process with mean E[X(t)] 
assumed to be zero and spectral density S ( f ) .  Standard classes of spectral 
densities S ( f )  which are suitable to describe sea state data are well established 
from experimental studies. The important problem is the computation of the 
wave characteristic distributions when S ( f )  is given. This is not possible in 
general, but if X(t) is assumed to be a Gaussian process, then S ( f )  fully defines 
the statistical properties of X(t) and the wave characteristic distributions. Even 
for Gaussian processes, there are no known explicit exact solutions to the 
problem, except in some degenerate cases, but very accurate numerical 
approximations do exist, (e.g., Refs 3-7). These are based on Slepian model 
processes and a regression method. The Slepian model is an explicit random 
function representation of a process after a level crossing and consists of a 
regression term and one residual process. The regression approximation of a 
crossing wtriable is defined as the corresponding variable in the regression term 
and its distribution can be evaluated numerically as a finite-dimensional inte- 
gral. For further details on the Slepian model and regression approximation 
[7]-[9]. Tile wave characteristic distributions derived using the regression 
approximation method will be referred to as the 'theoretical distributions', 
since they differ from the distributions defined in the mathematical model by a 
numerical error which can be made arbitrarily small. There are other approa- 
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ches to obtain the distributions based on simplifications of the model for X to 
the degree that the distributions can be computed analytically. The two most 
frequently used distributions of that type are derived by Longuet-Higgins [10] 
and by Cavani6 et al. [11]. It is well known that the distributions proposed by 
Longuet-Higgins, Cavani6 et al. agree well with the theoretical distributions 
for a narrow band Gaussian model [5]. However, since the distributions 
depend only on a few spectral moments the agreement is lost for wider spectra. 
Further, since the Gaussian model may not be an accurate description of the 
observed sea elevation X, it is not obvious that theoretical distributions derived 
under the Gaussian assumption agree better with data than the simpler analy- 
tical formulas. In Srokosz & Challenor[12] a comparison between distributions 
proposed by Longuet-Higgins, Cavani6 et al. and Lindgren [3] with measured 
wave periods and amplitudes have been reported with the conclusion that 
Lindgren's method was the most accurate one. This uses a few terms in the so 
called Longuet-Higgins series of factorial moments to construct upper and 
lower bounds for the period and amplitude distribution in a Gaussian process 
and hence can be regarded as an alternative way to compute the theoretical 
distribution. Note also that Lindgren's distribution used in Ref. 12 coincides 
with the simplest case of regression approximation for min-max period and 
amplitude distribution. The Longuet-Higgins and Cavani6 et al. distributions 
will not be used in this paper. 

Real data X(t) seldom perfectly support the Gaussian assumption for the 
process X(t). However, since the Gaussian case is well understood, the sea 
state is often modelled using Gaussian processes. Obviously, if the wave 
characteristics derived from S ( f ) ,  using the Gaussian assumption, do not 
agree with observations, then a broader class of models is needed. In 
previous work [9] we have extended the regression approximation method to 
processes which are functions of a vector Gaussian process, 

x( t )  = c ( k ,  (t), ..., k , ( t ) ) ,  

where ki(t) are zero-mean stationary Gaussian processes with variance one 
and G is a deterministic function, such as the Cram6r-Leadbetter envelope of 
a function or Morisson force. However, the complexity of the methods 
grows rapidly with n and for n > 2 the amount  of numerical computations in 
the approximations and data necessary to estimate the transformation, G 
become prohibitive. 

In this paper, we shall use the simplest (but widely effective) model where 
X(t) is a function of a single Gaussian process ~'(t) 

X( t) = G( )(( t) ), (1) 

where G is a continuously differentiable function with positive derivative. 
Note that, once the distributions of  crests, troughs, amplitudes or wave 
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periods in ,~(t) are computed, then the corresponding wave distributions in 
X(t) are obtained by simple variable transformations involving only the 
inverse of G which we shall denote by g. 

ESTIMATION OF THE TRANSFORMATION 

Obviously, in order to use the model eqn (1) it is necessary to estimate the 
transformation G and the spectral density function S ( f )  from the observed 
sample )6(0. Since we are mainly interested in the wave characteristic distri- 
butions for the process X and not in simulations of X(t), we need to estimate 
the inverse function g(u) = G -n (u). There are some parametric formulae for 
g proposed in the literature, e.g., by Ochi & Ahn [13]. The validation of such 
formulae on a wide collection of data sets from different geographical loca- 
tions is of great interest and we plan such an approach in the future. Here, a 
natural nonparametric method will be used to estimate g. 

As mentioned before, two major uses of wave characteristic distributions 
are to predict extreme waves and fatigue lifetimes of marine structures. In 
both case:s, the most fundamental information about waves is the number of 
times a sea level crosses different levels. The expected crossing 'rate' as a 
function of the level u, say, will be denoted by It(u) and called the crossing 
intensity. More precisely, (writing • for mean, i.e., 'expected value') let 

It(u) = E[numberofupcrossingsof thelevelubyX(t) ,  t E [0, 1]] (2) 

1 
T number ofupcrossings of the level u by X(t), t E [0, T] 

1 
= T~i  I(m"M')(U) = ~(U), 

where/~(u) is the empirical upcrossing rate observed in time T. Furthermore, 
I(m,,M,)(U) = 1, ifmi < u < Mi, and zero otherwise, and (mi, Mi) is again the 
sequence of min-max cycles (see Rychlik [1] for more detailed discussion). 
Note that the observed intensity of upcrossings/~(u) is a stepwise constant 
discontinuous function while It(u)is usually a smooth (differentiable) func- 
tion. Consequently, the definition of an upcrossing is modified so that the 
empirical crossing intensity becomes a left continuous function 

1 
/~(u) = ~ .  I (,,,,,M,] (U). (3) 

i 

We wish to find g =  G -n so that the crossing intensity of our model 
X(t) = G(f((t)) agrees well with the empirical crossing intensity ~(u). This 
strategy is; motivated by the following observations: 
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• The  empirical crossing intensity, defined by eqn (3), is linked to the 
distribution of  local extrema by the following: in ocean data,  after 
cus tomary smoothing in order  to eliminate small oscillations, it is often 
observed that  there are no local minima above a high level u so that  each 
upcrossing of  u corresponds to a local max imum above u and vice-versa. 
Hence, #(u) is approximately propor t ional  to the density of  high local 
maxima (above u). (Similar reasoning is valid for low local minima.)  I f  
high maxima do not  cluster an accurate approximat ion  can be given, 
based on #(u), for the distribution of  a global maximum.  This so called 
Poisson approximat ion,  estimates the probabili ty that  there are crests 
above u in an interval [0, 7] by 1 - exp ( -T# (u ) )  ~ T#(u), if T is fixed 
and T#(u) ~ 0 (see Leadbet ter  et al.) [14] 

• In fatigue analysis one often uses a wave ampli tude,  such as rain- 
flow- or min-max-ampl i tude  H (see Defini t ion 2) to describe the 
variability of  a funct ion relevant for a fatigue process. I f  Hi denote  a 
sequence of  ampl i tudes  in a load, then the fatigue life t ime predictor  
is often based on the sum 1/T~E[t~i] ,  fl _> 1. For  the rainflow and 
min-max-ampl i tudes  it can be shown that  1/T~_,E[Hi],= J'#(u)du. 
Similarly, we have that  1 / T ~ H i  = f~(u)du. For  this result and a 
discussion of  other  applicat ions of  crossing intensity to fatigue 
analysis, see Refs 1, 15. 

Consequently,  if the proposed theoretical model  accurately predicts the 
crossing intensities of  measured sea states, both  extreme properties of  wave 
crests as well as the average ampli tudes derived f rom the model  will agree 
with observations. 

We turn now to the est imation of  g. It is well known that, for a zero mean 
Gaussian process X(t), the crossing intensity ~(u), say, is given by Rice's 
formula,  

_ 1 a ~ e x p  - , (4) 

2 2 where e~, o e, are the variances of  2 ( 0  and the derivative ~ ( t ) ,  respectively 
(see Leadbetter  et al. [14]). In the following computat ions ,  the observed data  
X(t) will be normalized so that  the max imum of  the crossing intensity is 

2 2 (2~) -1. Hence, we may assume that  a~? = a2, = 1. (However, all figures 
presented in this paper  will have correct units.) For  a t ransformed process 
x( t )  = a ( 2 ( 0 ) ,  we thus have that  

#(u) = ~(g(u)) = ~-~exp , (5) 
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where g =: G -~. Note that #(u) has only one local maximum, at u = G(0). 
Consequently, if the crossing intensity of sea waves is unimodal, as is 
usually observed in practice, then eqn (5) can be inverted, giving the 
transformation g. 

More precisely, assume that the crossing intensity #(u) is continuously 
differentiable and unimodal with maximum at u = u0. Then the transforma- 
tion g(u) ~given by 

{ X,/-21n(2n/~(u)) if u _> Uo, 

g(u) = -V/-21n(2n/~(u)) if u < u0, 

satisfies eqn (5). However, the crossing intensity/~(u) is usually unknown and 
has to be estimated from X. 

The algorithm used is as follows: first estimate (from X) a mean (m) and 
standard deviation (a) of X. Scale the empirical crossing intensity to have 
maximum (2n) - j ,  and define 

~k(u) = -21n(2n~(au + m)), - 5  < u < 5. 

The range of ~ is limited, since crossings of levels more than five standard 
deviations away from the mean are not expected. (This can be simply modi- 
fied.) Using the ~(u)-function, define the renormalized empirical transfor- 
mation 

~(u) = { ~ iffi0 < u < 5, 

- ~ / - ~  if - 5 < u < • 0 ,  (6) 

where ~0 iis the value of u which minimizes ~(u). 
Typically fi(u) converges to/~(u) as the number of observed waves increa- 

ses, so that 

g(u) ~ g ( ~ - )  • 

However, the observed crossing intensity ~ is not a continuous function 
and usually has many local maxima and minima. Hence, ~ is not contin- 
uous or one-to-one and hence must be smoothed in order to define the 
process X. 

This may be done in two steps. First, ~ is slightly smoothed (using a small 
window) so that the smoothed version ~S(u) is differentiable but still close to 
4. Next, a crude estimate g*(u) of g(au + m) is computed from 

{ V/~kS(u) - ~c~(ao) if ao < u < 5, 

g*(u) = -V/¢S(u) - ~ks(a0) if - 5  < u < a0, 
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where ~0 is the value of u which minimizes ~k'~(u). Now, by smoothing (with 
a broad window) the function g* and extrapolating linearly outside the 
interval [-5,5], we obtain a smooth approximation gS(u) to g(tru +m). 
Finally, the estimate of the transformation g, (also denoted by g) is defined 
by 

u m m  
g(u) = g ~ ( ~ - - ) , U  E R. (7) 

Two remarks conclude this section. First, it is obvious that a Gaussian model 
for the sea data X(t) = af((t) + m is obtained if gS(u) = u. Consequently, the 
difference between the empirical crossing intensity ~ and the theoretical 
intensity for a Gaussian model can be described using a function g~(u)-u. 
The L 2 distance between the observed g~ and that given by Gaussian 
assumption 

q )" e(g *) = (g~(u) - u)2du , (8) 
5 

will be used as a relevant measure of deviation of the data from a Gaussian 
model. 

Finally we stress that the important problem of extrapolating the trans- 
formation g'* to the levels which were not crossed by X, requires further 
study. This is a difficult problem closely related to statistical extreme value 
theory and the estimation of high quantiles. For the present, as mentioned 
above, we extrapolate g'~ linearly. 

ESTIMATION OF SPECTRAL DENSITY 

Assume that we have found a transformation g such that the crossing inten- 
sity p(u) agrees well with the observed intensity of upcrossings ~(u). The sea 
level may then be modeled by a stochastic process X( t )=  G(f((t)), where 
,('(t) is a zero-mean Gaussian process with the spectral density S ( f ) .  
Obviously, the spectral density has to be estimated from ~'(t) = g(X(t)). This 
has to be done cautiously, since the data are usually sampled in both time 
and space. The space sampling may cause the function k to be constant in 
some intervals, which adds high frequencies to the estimate of S ( f ) .  For the 
spectral estimates used in this paper, a very crude method is used to resolve 
this problem; first an 'irregularity factor' is estimated from the data (by 
dividing the maximum of/~(u) by the intensity of local maxima), and then 
high frequencies of S ( f )  are eliminated so that X has the same irregularity 
factor as the data. 
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THEORETICAL WAVE CHARACTERISTIC DISTRIBUTIONS 

In previoas sections, we have proposed methods to estimate the transforma- 
tion g and spectral density S ( f ) ,  so that the model G()() for X(t) accurately 
predicts the observed average wave period and amplitude. The first natural 
question iis whether the marginal probability density of G(.~') also agrees with 
the data. This is not necessarily the case, it may be achieved by a suitable 
nonlinear time transformation (proposed by Holm & de Mar6 [16]). This 
transformation does not change the crossing intensity. We shall not discuss 
this transformation, since it is complicated and affects only the distribution 
of wave period, whereas in the examples presented in this paper, the wave 
period distributions computed for the process G(f((t)) already agree well 
with the data. In addition, note that wave periods in X(t) are exactly equal to 
wave periods in the Gaussian model X(t). 

We turn now to the problem of computing the wave characteristic distribu- 
tions for the X(t)-process. As mentioned before, if the theoretical wave char- 
acteristic distribution for a Gaussian process X(t) is known then the 
corresponding distribution in X(t) is given by a simple variable transformation. 
For a Gaussian process ,~'(t), the following distributions can be accurately 
approximated using the 'regression method': the densities of wave period fr* 
and min-max wave period fr; the joint density of min-max wave period and 
amplitude fTH; the joint density of a minimum and the following maximum 
fmM; the probability that the local maximum M or the crest of a wave M* is 
higher than a fixed level u. Since the programs to compute the listed densities 
are only slightly modified algorithms already presented in papers [17, 7], we 
shall not discuss them here. We turn directly to the computation of the joint 
density of a trough and a crest fm*M*. (Obviously the crest-front amplitude 
H * = M * - m  * and hence fn* can be obtained from fm*M* by means of a 
numerical integration.) The algorithm to compute f m'M* is new and we shall 
present tile main idea in the following section, leaving details for Appendix A. 

The densiity of trough and crest fro*M* 

As before, the random model assumed for the sea state is G(X(t)), where 
X(t) is a zero-mean Gaussian process (taken to be ergodic for ease of inter- 
pretation) with given spectral density function S ( f ) .  We assume that the 
inverse fimction g is known. 

As in ]Definition 1, let u, be the reference level. Further, let u, v be fixed 
levels, u < u. < v, m*, M* the heights of a trough and crest of a wave. To 
compute the probability 

P(u,v) = P(m* < u < v < M*) 
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(and then the density f,,,M,(U, V)=-om/OuOvP(u,v))  it is necessary to be 
precise about  how P(m* < u < v < M*) is defined. 

Often, in practice, only one sample) of  a process X(t) is observed. All 
waves in X(t) are then found and, using a suitable statistical technique, the 
distributions of  wave characteristics are estimated. This ( 'Palm distribution'-  
cf. Ref. 14) approach  motivated by the ergodicity of  X, defines P(u,v) simply 
as the propor t ion  of  waves for which m* < u < v < M*. Specifically, let X be a 
sample of  X and 0 < to < tl <.. .  be the upcrossing times of  the reference level 
u, and let m~, ~ be the t rough and the crest of  the ith wave, respectively. 
Then the appropriate  (Palm) definition of  P(u, v) is 

l i m # { t i  E [0, z] :m~ < u < v < M ~ }  P(u,o) 
~-~ ~{ti  E [0, z]} (9) 
intensity of  waves with t rough < u and crest > v 

intensity of  waves 

(see Refs 9 and 14 for more  detailed discussion). Here #{} means the number  
of  elements in the set {}. As noted above, differentiation of  P(u,v) with 
respect to u and v gives the desired joint  (Palm) density for the t rough and 
crest heights of  a wave. 

Our  approximat ion  to P(u,v) will use the fact that  the intensity in eqn (9) 
can be computed  f rom the (simpler) sequence of  min-max cycles (mi, Mi) (see 
Definit ion 2). 

If  m i < U < Mi ,  (m~-< u < M~/), for a f ixed level u, it will be convenient to say 
that the ith cycle (wave) crosses the level u; similarly, if  
mi < u < v < M i ,  (m~ < u < v < M~) we shall say that the ith cycle (wave) 
crosses levels (u, v). Using this convention,  the P(u, v) function defined by 
eqn (9) is a ratio of  the intensity of  waves crossing levels (u, v) to the intensity 
of  waves. Further,  the intensity of  waves is clearly equal to the intensity of  
cycles crossing the reference level (u,). 

It can be seen that  the intensity of  waves crossing levels (u, v), u < v, can 
be written as the following infinite sum 

v*(u ,v )=l im # { t i E [ O ' r ] : m ~ < u < v < M ~ } -  - y~. Vmn(U,V ) (10) 
Z----~ oO T m,n>_O 

where Voo(U, v) is the intensity of  cycles crossing levels (u, v). The remaining 
terms of  the sum are positive and will be approximated in Appendix  A. Their  
exact definitions can be omit ted without  loss of  unders tanding of  the further 
presentation, but  are given for completeness; v01 (U, /.)) is the intensity of  
cycles crossing levels (u, u*) but  not  v, and such that  the following cycle 
crosses level v but  not  u., and vl0(u, v) is the intensity of  cycles crossing levels 
(u., v), but not  u, and such that  the previous cycle crosses level u but  not  u.. 
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Furthermore, for n, re>l ,  •mn(U, V) is the intensity of cycles crossing the 
reference level u., but not levels (u, v), and such that the mth cycle to the left 
crosses level u but not the reference level u., with all the intermediate cycles 
not crossing the levels u or u., and the nth cycle to the right crosses level v 
but not u., with all the intermediate cycles not crossing the levels u. or v. 

Obviously, by dividing both sides in eqn (10) by the intensity of waves we 
obtain the probability P(m* < u < v < M * ) .  Since the intensity of local 
minima as well as the irregularity factor (Section 4) is assumed to be given, 
the joint probability density function of 2 ( m + n + l )  consecutive local 
extremes is needed in order to compute the intensity v,.,.(u, v). However, as 
mentioned before, only the joint probability density.f.,M can be accurately 
computed at present, giving the first term Voo(U, v) in the expansion eqn (10). 
Consequently, we write eqn (10) as 

v*(u, v) ---- v00(u, v) + Vr(U, v), (1 l) 

where Voo is readily obtained, but the reminder function vr(u, v) is usually 
difficult to compute. However, if the sequence of turning points form a 
stationary Markov chain, Vv(U, v) can be computed form the intensity V0o(U, v). 
Usually ocean spectra are broad band and the Markov chain approximation 
gives very accurate results. A detailed description of the computation of vr(u, v) 
using the Markov chain approximation is given in Appendix A (see also Refs 
18, 19 for other applications of Markov chain approximation). 

EXAMPLES 

It is generally accepted that a stationary fully-developed sea state at a deep 
water location can be satisfactorily modelled by a Gaussian process. As an 
example of such measurements, we use a data record referred to below as 
'Deep water, USA'. However, even at the deep water location during a 
severe storm, the sea state data may show non-Gaussian characteristics. This 
will be illustrated by the second data set, 'Deep water, North Sea'. If 
measurements are at a shallow water location, one usually observes asym- 
metry in the heights of crests and troughs. These cannot be modelled well by 
a Gaussian process. Shallow water measurements will be illustrated by two 
data sets, 'Shallow water, USA', where crests are smaller than predicted by a 
Gaussian model and 'Shallow water, Africa', where both crests and troughs 
are higher than predicted by the Gaussian model. Figure 2 shows 300 
seconds of the sample paths, and Table 1 below presents some simple statis- 
tics about the data: the sampling interval T~, the total time of measurement 
T, the maximum of empirical crossing intensity ~max = max/~*(u), the irre- 
gularity factor 
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Fig. 2. Part of the sample paths. 

TABLE I 
Statistics about the data 

T, lsec] T[secl /~max ~ a 

Deep water, USA 0.3 1809 0.1194 0.5243 5.03 
Deep water, North Sea 0.5 i 122 0.0927 0.6887 3.1193 
Shallow water, USA 0.5 10240 0.1514 0.91 0.3280 
Shallow water, Africa 0.25 2380 0.2268 0.4977 0.4730 
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maximum of empirical crossing intensity 
intensity of  local maxima in X 

and the standard deviation tr, (the mean is zero for all data sets). 

Fitting the transformed Gaussian model to data 

In this section, we present estimates of the transformation g for the four data 
sets. In Fig. 3, the estimators ff*(u), (defined just before eqn (7) and given by 
solid lines) are compared with a linear transformation g~(u) = u (representing 
the Gaussian model and given by dashed lines) and with the empirical 
transformation ~(u), (defined by eqn (6)), for the four data sets. As in all 
statistical analyses the accuracy of  the estimators depends on the amount of  
data available. In the case of wave analyses, there is the additional difficulty 
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Fig. 3. A comparison between the empirical transformation ~ (irregular line), the fitted 
transformation gS (solid line) and the theoretical transformation for a Gaussian model, i .e. ,  

gS(u) = u,  (dashed line). 
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that waves form a dependent sequence, which is particularly apparent for 
narrow band data. 

The sequences analyzed contained 216, 104, 1550 and 540 individual 
waves, respectively. All transformations g~, (shown in Fig. 3), deviate from a 
straight line, representing a Gaussian model, which indicates that the trans- 
formed Gaussian model should be considered. The departure of g~ from the 
straight line is measured by e(g~), defined by eqn (8), and will be used as a 
test quantity for the non-Gaussian nature of the data. For the four data sets, 
e(g s) is equal to 0.0946, 0.1823, 0.1323, and 0.1565, respectively, and one may 
ask how significant these values are. The following Monte-Carlo method was 
used to check their significance. 

A Gaussian model was assumed for the data, (that is gS(u)= u), and four 
spectral densities S ( f )  estimated, as described in Section 5. Next, indepen- 
dent samples of zero-mean Gaussian processes with spectra S( f ) ,  were 
simulated using an FFT-algorithm. The simulated samples, contained the 
same number of waves, on average, as the data sets. The function g~ was then 
estimated for each sample and the departure measure e(g s) computed. The 
values of e(g '~) are plotted as stars in Fig. 4. Obviously, for an ergodic 
Gaussian process, e(g "~) is zero for an infinitely long sample and hence, the 
simulated values of e(g s) (stars) show the variability of the estimator g~, due 
to the limited number of observed waves. It can be seen in Fig. 4 that the 
values of e(g "~) decrease as the number of waves increases. Now, the hori- 
zontal solid lines in Fig. 4 mark the observed e(g ~) in the respective data sets. 
The significance of the departure from Gaussian assumptions in the data 
may now be analyzed, beginning with 'Deep water, USA' data. 

In Fig. 4a, five (of the hundred) stars lie above the observed e(g ~) for 
'Deep water, USA', which could be regarded as marginal for rejection of the 
Gaussian assumption. However since the verdict is not clear we check the 
Gaussian model by using normal probability plots for the sequence X(t) and 
the linear combination X(t)+X(t+3) (which was the linear combination 
giving the highest departure from the straight line in the normal plot). The 
normal plots are given in Fig. 5 and do not show a significant departure 
from the Gaussian distribution. Consequently, on the basis of available data 
it seems reasonable to model 'Deep water, USA' measurements by a Gaus- 
sian process. 

For the 'Deep water, North Sea' data there are only 104 waves and hence 
the estimated g~, (see Fig. 3b) is not very reliable. However, the measure e(g ~) 
is large and indicates that one should not use a Gaussian process to model 
the data, see Fig. 4b. 

Finally, both shallow water data series are longer and Fig. 3 and Fig. 4 
show a significant departure from Gaussian assumptions. Furthermore, the 
estimated transformations seem to be quite reliable. 
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The data will be analyzed in detail in the following four subsections. Since 
'Shallow water, USA' data is the longest record, it will be used to validate 
the transformed Gaussian model by means of a resampling technique. This is 
the most important example, while the three other examples are given 
primarily to demonstrate that the approach is effective for different types of 
wave data. 

'Shallow water, USA' data 

In order to validate the transformed Gaussian model the transformation g* 
and the spectrum S ( f )  was estimated using only part of data, beginning at a 
random point and containing a third of the data record. This data length was 
selected since for the whole series the departure from a Gaussian assumption 
e(g ~) is equal to 0.1323 and we would like to have a short time sufficiently 
long so that 0.1323 is still significantly larger than e(g ~) values simulated for 
a Gaussian model. Figure 4 suggests that an appropriate length is approxi- 
mately 500 waves, i.e., roughly a third of the 'Shallow water, USA' data. The 
selected part contained 588 waves. The transformation g~ is given in Fig. 6 
and should be compared with that presented in Fig. 3c. It is evident that low 
values are transformed somewhat differently. The estimated spectral density 
function S ( f )  is also shown in Fig. 6. Note that, in the following, all theo- 
retical computations are for the transformed Gaussian model defined by the 
spectral density function and transformation obtained from the part of the 
data and given in Fig. 6. The theoretically computed densities will be 
compared with the whole data set. 
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Fig. 6. The transformation g~ and a spectral density S( f )  estimated from 1/3 of  the 'Shallow 
water, U S A '  data. 
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It is impor tan t  to note the following two properties of  the data. First, the 
spectral density S ( f )  is narrow band; this is also measured by the irregularity 
factor 0c, here equal to 0.91. A high or moderate  max imum with height u in a 
zero-mean, narrow band, Gaussian process is usually followed by a low local 
min imum,  with height approximately - u .  Next, the t ransformation g~ shown 
in Fig, 6 stays on the same side of  the straight line which implies that  
g ~ ( u ) - g ~ ( - - u ) ~ 2 u .  Consequently,  wave periods and amplitudes in the trans- 
formed Gaussian model  and in the Gaussian model  are close to each other. 
This is illustrated in Fig. 7 where the isolines of  the theoretical intensity o fmin-  
max cycle period and ampli tude T, H is compared with the observed periods 
and amplitudes in the data  (dots). In Fig. 7a, we have the intensity derived 
using the t ransformed Gaussian model,  while in Fig. 7b the intensity as 
obtained using a Gaussian model,  i.e. gS(u) = u. The differences are very small. 

Intensit:[es are used instead of  probability densities in these examples, since 
intensities are easier to compare  visually with observations. (The probability 
densities can still be obtained f rom the intensities by a simple renormaliza- 
tion.) The intensity function has the following interpretation: the integral of  
an intensity over a region is the expected number  of  dots in the region. Thus  
the accuracy of  the approximat ion  could be checked by count ing the dots in 
suitably chosen regions. However,  the time sampling of  a signal introduces a 
bias into the counts  or empirical distributions, mainly because short  or small 
waves can be misclassified but  also because some modera te  waves have wave 
periods which are too long. This occurs if, for example, local extremes have 
been smoothed  out  by the relatively large sampling intervals. 

The accuracy of  the theoretically computed  intensities is checked in 
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Fig. 7. Isolines of the intensity of min-max period and amplitude in 'Shallow water, USA' 
data computed using (a) the transformed Gaussian process X = G(.0 and (b) the Gaussian 

process ,Y together with the observed periods and amplitudes in the data (dots). 
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Fig. 8. The empirical distributions of min-max period T and half wave period T* observed in 
'Shallow water, USA' data compared with those computed for the transformed Gaussian 

process X = G(X), (a) and (b), respectively. 

Fig. 8a and Fig. 9a where the marginal distributions of  min-max period T 
and amplitude H are compared with empirical distributions obtained from 
the whole 'Shallow water, USA' data set. The accuracy is very good. 

The density of  the half wave period T* is computed for the transformed 
Gaussian process using the regression method. The theoretical distribution 
of T* is compared with the empirical distribution of wave period in the 
whole data set, in Fig. 8b, with good agreement. 
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The joint intensity of troughs and crests, given in Fig. 10b, was 
obtained using the Markov chain approximation to the sequence of turn- 
ing point,~ in X (see Appendix A for a presentation of the algorithm). The 
input to the algorithm is the joint intensity of each minimum with the 
following maximum in X. This is computed for the transformed Gaussian 
process and presented in Fig. 10a. Isolines of the intensities are compared 
with pairs (mi,Mi) and (m~,M~i) observed in the whole data set and 
graphicallty visualised as dots. One can see in both plots that the inten- 
sities are asymmetrical with crests relatively smaller than troughs which 
seems somewhat surpassing. As before the integral of the intensity over a 
fixed region gives an expected number of the dots in that region. From the 
intensity of (m~,M~,.) we integrate the density of crest front amplitudes 

= M ~ -  m~. The distribution of H* is compared with the empirical 
distribution, showing the accuracy of the method (see Fig. 9b). The 
deviation between the distributions for small amplitudes can be explained 
by the fact that these amplitudes are the most biased by the time sampling 
of the signal. 

As mentioned earlier, equally accurate approximations of wave period and 
amplitude, densities may be obtained by using the Gaussian model. However, 
the important properties of waves, such as the height of a local maximum 
and the height of crests, are not modeled well by a Gaussian process. In 
Fig. 1 la the empirical distributions of local maxima and crest heights are 
compared with the computed distributions for the transformed Gaussian 
process, with very good agreement. Fig. 1 l b presents similar distributions to 
Fig. 1 1 a, with the difference that the theoretical distributions are computed 
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Fig. 11. The empirical distributions of local maxima M and crest M* heights, M<M*, 
observed in 'Shallow water, USA' data compared with those computed (a) for the trans- 

formed Gaussian process X = G(.~') and (b) for a Gaussian process, i.e., g~(u)= u. 

using a Gaussian model. We can see that these theoretical distributions 
overestimate the heights of  crests and local maxima. 

'Shallow water, Africa' data 

The 'Shallow water, Africa'  data  contains 540 waves, which seems to be 
sufficient for the reliable estimation of  the t ransformat ion g. As 
mentioned before, the departure of  the 'Shallow water, Africa'  data  from 
Gaussian assumptions is clearly significant and hence we use the trans- 
formed Gaussian model with the gS t ransform presented in Fig. 3d to 
model the data. The estimated spectral density function S ( f )  is given in 
Fig. 12a and is seen to be broad band. The t ransformat ion g makes local 
maxima and minima higher and, as in the previous subsection, 
g~(u)-gS(-u),,~2u. Since the spectrum S ( f )  is much broader  than in the 
previous example a greater difference would be expected between ampli- 
tudes in a t ransformed Gaussian model and in a Gaussian model. 
However,  as can be seen in Fig. 13, where the isolines of  the theoretical 
intensity of  min-max period and ampli tude T, H are compared  with the 
observed periods and amplitudes in the data  (dots) for the t ransformed 
Gaussian model (Fig. 13(a)) and the Gaussian model  (Fig. 13(b)), the 
difference between the densities is not  large. This is also illustrated in 
Fig. 12b where the marginal distributions of  min-max amplitude, obtained 
by means of  numerical  integration of  the joint  densities in Fig. 13, are 
given in the graphs starting at zero. The theoretical distributions shown 
using dashed lines are computed for the Gaussian model. The line starting 
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(dots). 

at zero seems to deviate significantly from the empirical data. This 
departure  is due to the joint  density of  T, H having a peak for short  waves 
with small ampli tudes (see Fig. 13b) and hence, the numerical integration 
can have low accuracy for small amplitudes. In order  to check this 
hypothesis,  the condit ional  distr ibution o f  ampli tudes bigger than 0.3m 
was computed  (see the second dashed line in (Fig. 12b) and compared  
with the empirical distr ibution of  ampli tudes greater than 0.3m, the 
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second irregular line. Both lines are now close to each other. Fig. 15 
shows that the distributions o f  crest front amplitudes predicted by a 
transformed Gaussian process and a Gaussian process are also very simi- 
lar. Consequently, we conclude that as long as the densities o f  wave peri- 
ods and amplitudes are of  interest, a Gaussian model is appropriate. 

The accuracy of  the theoretically computed intensities is also checked in 
Fig. 14, where the marginal distributions o f  min-max period T and half wave 
period T* are compared with empirical distributions. The accuracy is very 
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S ,.n - , = ~J(X), together with the observed (mi, Mi) and (mi, M~) in the data (dots). 

good. (Recall that both Gaussian and transformed Gaussian process give the 
same period densities.) 

The joint intensity of troughs and crests is given in Fig. 16b. The joint 
intensity of minimum and the following maximum in X, which is the input 
for the algorithm computing the intensity of troughs and crests heights, is 
presented in Fig. 16a. Isolines of the densities are compared with pairs 
(mi, Mi) and m~, M~, visualised as dots. It can be seen that the intensities are 
asymmetrical with crests relatively higher than troughs. This is the opposite 
behaViour to that observed in the previous example. 

From the intensity of m~,M~, we integrate the density of crest front 
amplitude: H * = M * - m  *. The distribution of H* is compared with the 
empirical distribution, showing the accuracy of the method, see Fig. 15a. 
Since the small amplitudes are corrupted by the sampling frequency, we 
have used only the amplitudes larger than 0.3m to compute the empirical 
distribution and compared it with the conditional distribution of H* 
given that H*>0.3 .  Fig. 15b compares the same empirical distribution 
with the theoretical, but computed for the Gaussian model. The differ- 
ence is larger than in the previous example but probably not significantly 
so. (Fig. !16) 

As before the height of a local maximum and the height of crests are not 
modelled 'well by a Gaussian process. In Fig. 17a, the empirical distributions 
of local maxima and crests heights are compared with the computed distri- 
bution for the transformed Gaussian process, giving very good agreement. 
Fig. 17b presents the similar distributions as in Fig. 17a with the difference 
that theoretical distributions are computed using a Gaussian model. It can 
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be seen that those theoretical distributions underestimate the heights of  
crests and local maxima. 

'Deep water, North Sea' data 

As we have concluded before, the 'Deep water, Nor th  Sea' data is clearly 
non-Gaussian. It contains only 104 waves which is not  sufficient for reliable 
estimation of  the transformation g. While, therefore, the use of  the trans- 
formation g'~, given in Fig. 3b, is questionable, we will see that the trans- 
formed Gaussian model describes the wave characteristic distributions 
remarkably well. 

The estimated spectral density function S( f )  is given in Fig. 18a. The 
transformation g makes crests much higher than the Gaussian model would 
predict, but the negative minima are unchanged and hence one expects a 
more transparent difference between the amplitudes in a t ransformed Gaus- 
sian model and in a Gaussian model than in previous examples. This can 
also be seen in Fig. 19, where the isolines of  the theoretical intensity of  min- 
max period T and amplitude H is compared with observed periods and 
amplitudes in the data (dots) for the transformed Gaussian model 
(Fig. 19(a)) and a Gaussian model (Fig. 19(b)). Clearly, the Gaussian model 
predicts somewhat smaller waves. This is also illustrated in Fig. 18b where 
the marginal densities of  min-max amplitudes, obtained by means of  
numerical integration from the joint densities in Fig. 19, are given. Further,  
in Fig. 21 b it can be seen that even the crest front amplitudes obtained using 
Gaussian model are shorter than obtained for the transformed Gaussian 
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ison between the empirical distribution of min-max amplitude H and the theoretical distribu- 
tions based on transformed Gaussian m o d e l  (solid line) and a Gaussian model (dashed line) 
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Fig. 19. Isolines of the intensity of min-max period and amplitude in 'Deep water, North 
Sea' data computed using the transformed Gaussian process X =  G(.Y) (a) and the 
Gaussian process k (b) together with the observed periods and amplitudes in the data 

(dots ) .  

model (see Fig. 21a). However, taking into account that the transformation 
g is based only on 104 waves, and that the differences are not so large, it still 
seems reasonable to conclude that, as long as the densities of  wave periods 
and amplitudes are o f  interest, a Gaussian process could be used to model 
the data. 

The accuracy of  the theoretically computed intensities is also checked in 



38 I. Rychlik, P. Johannesson, M. R. Leadbetter 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

2 4 6 8 10 
M i n - m a x  w a v e l e n g t h  [sec]  

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0•3 

0.2 

0.1 

5 10 
H a l f  w a v e  p e r i o d  [see]  

15 

Fig. 20. The empirical distributions of min-max period T and half wave period 7"* observed 
in 'Deep water, North Sea' data compared with those computed for the transformed Gaussian 

process X = G(X), (a) and (b), respectively. 

Fig. 20, where the marginal distributions of min-max period T and half wave 
period T* are compared with the empirical distributions. The agreement is 
acceptable for this type of data. 

We turn now to the joint intensity of troughs and crests, which is given 
in Fig. 22b. The joint intensity of minimum and the following maximum 
in X, which is the input for the algorithm computing the intensity of 
troughs and crests heights, is presented in Fig. 22a. Isolines of the densi- 
ties are compared with pairs (mi, Mi) and m~, M~/, visualised as dots. It is 
clear that the intensities are asymmetrical with crests relatively higher than 
troughs. 

From the intensity of m~,M~ we integrate the density of crest front 
amplitudes ~ - - M ~ / -  m~. The distribution of H* is compared with the 
empirical distribution, showing the accuracy of the method, see 
Fig. 21a. Fig. 21b compares the same empirical distribution with the 
theoretical, but computed using the Gaussian model. The difference is 
greater than in the previous example but not large enough to be 
important. (Fig. 22) 

As before the height of a local maximum and the height of crests are 
not modelled well by a Gaussian process. In Fig. 23a the empirical distri- 
butions of maxima and crests heights are compared with the computed 
distribution for the transformed Gaussian process, showing very good 
agreement. Fig. 23b differs from Fig. 23a in that the theoretical distribu- 
tions are computed using a Gaussian model. It is apparent that these 
theoretical distributions underestimate the heights of crests and local 
maxima. 
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'Deep water, USA' data 

As has been previously concluded, a Gaussian model cannot be rejected for 
the 'Deep water, USA' data. However, since the estimated g~ function devi- 
ates considerably from the straight line, one cannot expect good agreement 
between the empirical and theoretical distributions based on a Gaussian 
model. 

Figure 24b shows the isolines of  the theoretical intensity of  min-max 
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model together with the observed wave periods and amplitudes in the data (dots) (b). 

period T and amplitude H, together with the observed wave periods and 
amplitudes in the data (dots). The accuracy of  the Gaussian model is checked 
by comparing the theoretical distribution of min-max amplitudes with the 
empirical one (see Fig. 26a). As in previous examples, after excluding small 
amplitudes the agreement between the lines is acceptable. The accuracy of  
the theoretically computed intensities is found to be very good in Fig. 25, 
where the marginal distributions of min-max period T and half wave period 
T* are compared with empirical distributions. (Fig. 26) 
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Fig. 26. The empirical distributions of min-max (H) and crest front (H*) amplitudes observed 
in 'Deep w~Lter, USA' data compared with those computed for a Gaussian model ((a), (b), 

respectively). 

We turn now to the joint intensity o f  troughs and crests which is given 
in Fig. 27b. The joint intensity of  min imum and the following maximum 
in a Gaussian process, which is the input for the algorithm computing the 
intensity o f  t rough and crest heights is presented in Fig. 27a. Isolines of  
the densities are compared  with pairs (mi, Mi) and m~, M~, visualised as 
dots. 

F rom the intensity of  m~,M~ we integrate the density of  crest front 
amplitudes ~ = ~ -  m~. The distribution of  H* is compared with the 
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empirical distribution, in Fig. 26b. However, there is less agreement in this 
case between the theoretically computed and observed distributions. 

Finally, we present the theoretical distributions of  heights of  local 
maxima and crests for a Gaussian process, in Fig. 28a and for a trans- 
formed Gaussian process in Fig. 28b. As expected, the transformed 
Gaussian process predicted the distributions more accurately than a 
Gaussian model. 
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Fig. 28. The empir ica l  d i s t r ibut ions  of  local maxima M and crest M* heights, M<M*, 
observed in 'Deep water, USA'  data compared  with those computed for a Gaussian model,  

i.e., g*(u)= u, (a) and the t ransformed Gaussian process X = G( ,~ ,  (b), respectively. 
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CONCLUSIONS 

We have examined four data sets from shallow and deep water locations and 
found that the transformed Gaussian process predicts the distributions of 
different wave characteristics very well, especially the heights of  local 
maxima and wave crests, for which simpler Gaussian models give less satis- 
factory approximations. This implies that the transformed Gaussian model 
should be used if the extreme wave properties have to be modeled. Further it 
is evident that the wave period and amplitude distributions are satisfactorily 
approximated by a simpler Gaussian model, at least for the data sets exam- 
ined here. This indicates that, if the fatigue life analysis is to be performed, 
then a Gaussian process could be an acceptable model. Finally, we stress that 
if one needs to model a sea state as input to a linear or nonlinear system it 
may happen that the transformed Gaussian model is still too simple and one 
needs to consider a more general class of processes, e.g., 
X( t) = G( f(i ( t), -~'2( t) ) where f(i( t) are zero-mean Gaussian processes. 
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A P P E N D I X  A: M A R K O V  A P P R O X I M A T I O N  OF T R O U G H S  A N D  
CRESTS INTENSITY 

Let m~, Ml, m2, M2, m3 ..... be a sequence of  turning points of  a waveform 
assumed to have been digitally recorded in a finite number  of  discrete levels 
u~ > u2 > ... > un. (This is the usual case for the sea wave data). Let the refer- 
ence level u. be also one of  these levels u~, say, 1 < N < n .  The input to the 
algorithm is the index N and the n x n  intensity matrix F ~M = 20., where 

2,.-/= lim~_~ { ~  E [0, z]: mk = ui, Mk = uy} 
T 



Analysis of ocean-wave data 45 

= intensity of  local maxima.  P(m = ui, M = UJ) 

in tens i tyof localmaxima-  fmg(Ui, Uj) 
~'~i,ifmM( Ui, uj ) ' 

wherefmM(Ui, uj) is the original (continuous) Palm density of minima and the 
following maxima. Further, ~ is a time for the kth local minimum.The 
intensity matrix b ~M is first used to compute the transition matrices P and 15 
from a minimum to a maximum and a maximum to a minimum, respec- 
tively, i.e. P = (P0)and P = (fi,7), where 

pij = P(Mk  = u/lmk = ui) -- ~ 1 2 i  t andb~i = P(mk+l = uj Mk = ui) = ~ l  21i " 

The sequence of 'discretized turning points' ml, Mi, m2, M 2  . . . . .  is called a 
Markov chain of  turning points if it is a time homogenous Markov chain 
with transition matrices P, P. Before turning to the description of the algo- 
rithm, it is important  to specify more exactly how the discrete levels for the 
local extremes are chosen from u...., u,,, in order to properly define crossings 
of  levels (ui, uj) by the discretized cycles (mk, Mk). (However, if the grid is fine 
any scheme can be used.) Here we use the following scheme: if the local 
minimum is in the interval [ui, ui_,] then the discrete value is u;, and if the 
local maximum is in (ui, u;_l] then the discrete value is ui-l.  (Note that 
u~<ui_~.) Consequently, the cycle amplitudes are systematically over- 
estimated. Let (ui, u~), Ui<_UN<Uj and ui<ui, be fixed levels, note ( i>j) .  For 
simplicity, write u = ui and v = U/. To calculate the intensity v*(u, v) defined by 
eqn (10), the following submatrices of  P , P  are needed: if UN<V, i.e., j <  N, 
then 

A + = (Pkt), k = j +  1 , . . . , U ,  l - - j , . . . , N -  1, (12) 

B+ = ~kt), k = j ; . . . , N -  1, 1 = j +  1 , . . . , N ,  

and if u <  UN, i.e., N < i ,  then 

( A - )  T = (Pkt), k = N +  1 , . . . , i ,  l =  N , . . . , i -  1, (13) 

(B-) T-- (fikl), k -- N , . . .  , i -  1, 1-- N +  1, . . .  ,i. 

Define also the following vectors, 

(e+) r = PO+,)t... E P N t  , e-  ---- 
l= I L l=n I=n 

(14) 
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The matrix A + contains the condit ional  probabilities of  transitions f rom a 
min imum in [UN, uj) to a max imum in (UN, Uj], B ÷ contains the condit ional  
probabilities of  transitions f rom a max imum in (UN, Uj] to a m in imum in [UN, 
@. Similarly, (A - r  contains the condit ional  probabilities of  transitions f rom 
a m in imum in [ui, UN) to a max imum in (ui, UN], while (B-) r is a matrix of  
transit ion probabilities f rom a max imum in (ui, UN] to a m in imum in [ui, UN). 
The vector e + contains the condit ional  probabilities that  given a min imum in 
[UN, u]) the following max imum is higher than us, while e-conta ins  the 
condit ional  probabilities that  given a max imum in (ui, UN] the following 
min imum is smaller than u~.Further, we require the intensity of  cycles which 
cross the critical level UN but  not  the levels u and v. Those are given by the 
submatrix of  firnM, F, say, 

F =  (2kt), k = N +  1,. . . , i ,  l = j , . . . , N -  1. (15) 

Now, using the Markov  property of  the chain of  turning points,  it is not  too 
difficult to see that  for m, n_>l the intensities Vmn(U, v), defined in eqn (10), 
can be computed  as follows, 

Vm,(U, v) = e- (A-B-  )m-IA-FB+ (A + B+ )n-le+, 

and by s tandard matrix algebra, we obtain the following formula  for 

~m,n>l Ymn( u' V) 

v.,.(.,v) =e-(I-A-B-)-IA-FB+(I-A+B+)-le +, (16) 
re,n> I 

where I is an identity matrix.  Turn ing  now to formulae for 
)--~,,_>1 Vo"(u,v),~-,m>_Z Vmo(U,V), first define the following two vectors d ÷ 
and d-  which contain  the intensities of  cycles crossing levels (UN, Uj) but  
n o t  u; and intensities of  cycles crossing levels (u;, UN) but  not  ui, respec- 
tively, 

(17) 

In a similar way to eqn (16) it follows that  

Z }'0m(U' V) = d-B+(l  -A+B+)-le+ 
m_>l 

(18) 

Z V,,o(U, v) = e-(I  - A - B - ) - I A - d  +. 
m>_l 

(19) 
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Consequent ly ,  by adding  eqn (16), eqn (18) and eqn (19) we obtain the 
the term Vr(U, v). Next,  the term Voo(U, v) is evaluated f rom the matr ix 
b - 'M, i.e., 

j -1  i+l 

Voo(U,V) = Z Z 2kl, (20) 
l=1 k=n 

and the f imction v*(u, v )=  Voo(U, v)+ vr(u, v) can now be computed .  Note  
that  matrices and vectors defined in eqns 12-17 and eqn (20), used to 
compute  v*(u, v), depend on indices i, j and have to be recomputed  for 
each pair  of  levels u = ui, v = Ui. Finally, when the matr ix with values of  
F * = (  v*(ui, Ui)), say, is evaluated,  then the intensity of  t roughs  and 
crests is compu ted  by means  of  numerical  differentiations,  i.e., 

intensity of  waves : m* = u~, M* = UJ 

= v*(~;, uJ) + v*(~;_t,  u;+~) - v*(u~_,, uJ) 

- v*(ui, uj+t). 


