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Volumetric radial basis function methods
applied to gas dynamics

Edward J. Kansa &

Abstract: A set of rotational and translation transformations are applied to the Euler
gas dynamic equations. In such a transformed coordinate frame, the partial differential
equations (PDEs) appear as a set of steady ordinary differential equations (ODES) in
the rotating, translating frame. By using appropriate linear combinations of the ODEs,
we obtain a transformed set of ODEs that resemble the compatibility equations from the
method of characteristics plus additional terms for the angular momentum or
streamline bending. The new dependent variables are cast into radial basis functions
that are volumetrically integrated over each piecewise continuous subregion. At
discontinuities such as shocks or contact surfaces, these discontinuities are propagated
by the Rankine-Hugoniot jump conditions. For the case of weak shocks that are not
important to track, they are captured and dampened away by the use of artificial
viscosity. Knots over each continuous subregion may be added, deleted, or redistributed
while constraining the appropriate volumetric dependent variables to be strictly
conservative. Because volumetric integration is a smoothing operation, the numerical
solutions converge faster compared with simple collocation.

Introduction

Radial basic functions (RBFs) have been successfully applied to many areas of
engineering and science over the last decade. Two of the most notable advantages are
that RBFs are mesh-free and can be extended to any dimension of space; they are
generally higher order than the typical finite difference, linear finite element, or finite
volume methods. However, there is one major of applications that RBF methods have
not been demonstrated yet, namely hyperbolic aerodynamics. It shall be argued that
when carefully applied, RBF methods will also exhibit superior performance.

The topics that will be covered in this presentation are:

1. Why are aerodynamics different from typical PDE applications?

2 Why do we want interior points to move and what are the advantages?

3. What are the computational bottlenecks and how can they be overcome?

4. What do we want a volumetric formulation of the governing PDEs?

5 What are some preliminary results?
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1. Why are aerodynamics different from typical PDE applications?

Idealized aerodynamics are described by nonlinear wave equations that can develop
shock and contact surface discontinuities, and rarefaction waves whose endpoints have
discontinuous derivatives. Let F¢ and Uy represent the kth normal flux vector and the kth
dependent, respectively. Furthermore, let the superscripts "+" and "-" represent the
above quantities to the right and left of the discontinuity. Then the propagation speed is
given by the Rankine-Hugoniot jump condition:

Vo= (F"-F)I(UC-U)

An error in the endpoint conditions creates errors in the speed of propagation of the
discontinuity.

Landau and Lipshitz (1959) show that the shock thickness due to molecular viscosity
and thermal conduction (increasing the system entropy) is approximately a mean free
path length of the air molecules, O(10” cm). An ideal shock of zero thickness yields an
increase of entropy. Ideally, one desires to have a sufficiently fine mesh so as to capture
the shock as it propagates in a passive mode. Given the dimensions of a supersonic
aircraft can range from 6-120 m, we will still need to wait many years to adequately
resolve shock waves by shock capturing. Rarefaction wave fans are different in that
they represent regions of constant entropy and are continuous within the limits of the
fans. Rarefaction waves become progressively steeper as the geometry goes from
planar, cylindrical, or spherical.

Standard shock capturing methods smear out the step functions over one or two meshes
in the propagating direction by introducing an artificial viscosity that is typically several
orders of magnitude greater than that of air at sea level. In order words, to perform the
calculations using the standard mesh based schemes; the physics is modified to
accommodate the numerical scheme chosen. Physics is also modified by the
introduction of upwind differencing to prevent destabilizing truncation errors
contaminating the solution. Other problems are the wave dispersion problems whenever
the mesh spacing is nonuniform, and the flow skewness problem when the mesh axes
are not aligned with the flow. For this reason, multi-level adaptive mesh refinement
with its complex bookkeeping has been used to zone those regions with step gradients to
minimize the various numerical artifacts.  With sufficient experience and intuition,
uniformly fine meshing is avoided by gradually allowing the mesh to become coarser in
region of little physical interest such as the far field boundaries.

Since the 1940’s, and with millions of dollars of research support, shock-capturing
methods have been rather successful in describing the steady state locations of shocks
and interacting shocks, and Mach stems. Boundaries, especially those representing
fixed far-field boundaries, pose a problem since out-going waves can reflect off the
boundaries and contaminate the interior solution. The price for this success is much
effort in the very high front-end overhead of generating a problem free mesh that is
several times longer than actually longer than the calculation itself. In theory, the
standard mesh based schemes will represent the actual partial differential equations in
the limit as the mesh cells in each dimension goes uniformly to zero; in practice, there is
no computer existing that can or will be conceivably compute infinitely fast with
infinite memory.
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Lagrangian methods are more useful in problems with multiple materials in which the
interfaces must be tracked by permitting interior points to move at the fluid velocity.
The benefit of this approach is that no upwind differencing is used for the advective flux
transport better representing the physics. The disadvantage is that meshes eventually
become so distorted that the order of convergence of a scheme that is initially second
order accurate drops to first order or even zeroth order accurate. Those mesh cells that
undergo a severe amount of distortion must be interpolated onto regular mesh typically
by first order interpolation known to be diffusive.

2. Why do we want interior points to move and what are the advantages?

The governing equations of inviscid gas dynamics are:

oU
ot

+E FU)=0

where U = [ p, E, mz, my, mg]" where p is the mass density, E is the total energy density,
and my, my, ms are the components of the momentum densities along the 1, 2,and 3
coordinate axes, and e;, €, e; are the corresponding unit vectors along the 1, 2,and 3
coordinate axes, The flux vector, F(U), is a three dimensional nonlinear vector represent the
advective transport of mass, total energy, and the components of the momentum vector.

At an arbitrary point, X;, one can find two consecutive rotations having angles, 8 and y, of
the principal momentum vector and local coordinate system that transforms the three-
dimensional conservation equations into (1) one-dimensional time dependent PDEs for the
conservation of mass, total energy, and principal momentum densities, and (2) two different
two dimensional PDEs for the angular momentum component conservation equations. This
is a local reduction of the dimensionality of the problem. Scalar quantities are invariant
under rotation, but vectors are not. Note that the flux vector F(U) is transformed under
rotation into a new vector F'(U).

Rather than keeping the positions of the discretization points always fixed, a simple
alternative would be to permit points to move to regions that have steepening gradients
moving at a velocity, A, that will be determined. In a local moving frame, the rotated
conservation equations become

% +ATI"U + { M F'(U)-As[1"U} =0

Choose A so that

e F'(U)-As00"U=0
then

du/dt=0

along dx"/dt = A,
and where dU/dt :% + Ae[0"U.



4 E. J. Kansa

By taking linear combinations of the dependent variables, we obtain the compatibility
equations along the familiar characteristic velocities, u”+a, u”, u”-a. Additional two angular
momentum components that account for streamline bending.

de/dt =0,

along dx’';/dt = u" and dx’,/dt = px2/m'By1, and

dy/dt =0,
along dx"”/dt = u" and dx" s/dt = pys-/m"Py-3.

Details of these transformations can be found in Kansa(2002) and Kansa,
Power, Fasshauer and Ling (2003).

Since the conservation equations are nonlinear and hyperbolic, it is possible that wave
steepening may occur, eventually steeping so much, that the wave breaks and forms a shock.
The conservation PDEs also apply at the boundaries, and the usual Dirichlet or Neumann
boundary conditions are algebraic constraints that are solved in addition to the PDEs at the
boundaries. Thus, with simple local and translational transformations upon the system of
PDEs, we have reduced the entire problem to a set of ordinary differential equations (ODES).
Note that at each x;, these local transformations are applied without an imposed ordering of a
mesh. This can be readily achieve by a meshless method to solve the system of PDEs or
transformed ODEs using radial basis functions (RBFs).

3. What are the computational bottlenecks and how can they be
overcome?

One misperception is that low order schemes yielding sparse systems are always more
computationally efficient than arbitrarily higher order RBF schemes having very broad
banded or even full systems of equations. However, we argue that the true test is
whether the total number of operations is measured and compared. Consider the case in
which we have an exact analytic solution, Uect , and we wish to calculate the
approximate solution Uggprox, SO that | Uexact - Uapprox| <€. T0 achieve this precision, the
low order scheme requires O operations per point, and N, points, whereas the higher
order RBF scheme requires Ogrgr Operations per point and Nggr points. It was common
to assume OrgrJ(NRBF) * so the RBF method is more efficient if Nrge<  [NLO{]Y%.
Even with Gaussian elimination of full matrices, there are documented cases that RBFs
are more efficient.

Although RBFs are meshless and converge faster than standard methods, some bad
publicity has been associated with them. Namely, the complaint is that they give rise to
systems of very large equations that are horribly ill conditioned and too expensive to be
seriously used. However, this perception is out-dated.

" Domain decomposition, using small ranked matrices per subdomain, not
only lowers condition numbers and flop rates, but also is essential for parallelization.
. Preconditioners developed by Beatson and coworkers and Ling and Kansa

transform matrices with very large condition numbers to ones have condition numbers
of O(10). Solution of expansion coefficients is achieved by GMRES iteration. (Note
preconditioning and domain decomposition can be combined). The number of
operations is O(N?)

. Fast multipole expansions reduce vector-matrix multiplies considerably
reduce the number of operations to O(NlogN).
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. Appending appropriate asymptotic terms to RBF expansion can introduce a
tunable degree of sparsity, even lower the estimates further.

Research is required to establish bounds to the question of which method is more
efficient and under what circumstances.

4. What do we want a volumetric formulation of the governing PDEs?

There are two basic reasons to prefer a volumetric formulation in solving PDEs. First,
density is a mathematical construct whereas volume extensive quantities such as mass,
momentum, and total energy are measurable physical quantities. These total quantities
must be conserved as a basic tenant of physics. No matter how points are moved, added,
or deleted numerically, the total quantities must be invariant. The local velocities
associated with the characteristic velocities are not calculated by gradients, but
integrated quantities. In fact, integration is defined a discontinuity whereas
differentiation is not.

Second, volume integration is a smoothing anti-differentiation method that increases,
rather than decreases the rate of convergence. The objective is to obtain very highly
accurate numerical solutions with the least amount of effort. So higher convergence
rates are welcome. The drawback is that the search for nearest neighbors about a test
point, x;, is required; however, this search is parallelizable.

5. What are some preliminary results?

The problem that was examined is planar 1D geometry problem in which there are a
right traveling rarefaction fan followed by a contact surface and a strong shock at the
initial time, to. At the far right boundary is a rigid wall. The purposes of the calculations
were to determine the convergence rates of the RBF collocation method with the
volumetric RBF collocation methods and compute the errors in the conservation of
mass, momentum, and total energy. Discretization nodes were allowed to move in time.
An ideal gas was assumed having y=7/5

The rarefaction wave remains at constant entropy even though it may reflect off the
rigid wall. The discretization was performed over piece-wise continuous regions. The
mass, momentum, and total energy densities of the shock and contact surface are
essentially constant functions within the continuous regions, and only a minimum of
two RBF basis functions are required in these continuous regions. On the other hand,
the mass, momentum, and total energy densities are continuous within the endpoints of
the rarefaction fan. They vary as a fifth, sixth, and seventh degree polynomial for the
mass, momentum, and total energy densities, respectively. So a minimum number of 14
points were used to discretize the rarefaction fan containing 14 RBFs within the fan.

We know that within a rarefaction fan, the entropy is constant. Although the fluid

. : N . 2 .
velocity, u, and sound speed, a, vary at each discretization point, the sum u - —ais

constant. Each discretization point moves at a characteristic velocity, dxi/dt = uj+a;.
Before the rightmost point in the rarefaction wave hits the rigid wall, the solution is a
trivial self-similar.
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However, the situation becomes much more interesting when the rightmost part of the
rarefaction waves collides with the rigid wall, reflects, and interacts with the parts of the
rarefaction wave on the left. The reflected characteristic that had be previously a right
traveling characteristic now becomes a left traveling characteristic. However, entropy

. : : : 2 2
does remain constant but a new Riemann invariant u, + —1ar = Uin t+ —lam where
Y- y-

the subscript r refers to the reflect portion of the rarefaction fan, and “in” refers to the
right incoming portion of the fan. The compatibility equations for ith reflected wave and
the jth incoming wave must be solved simultaneously to determine the result of the
interacting waves.

The interactions were solved by RBF and volumetric RBF collocation. It was found
that the results from volumetric RBF collocation were superior in preserving
conservation and were more accurate. The small inaccuracies observed with the
volumetric RBF scheme are on the order of machine round-off errors.
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