Differential and Difference Equations

Introduction 651

22.1 Symbolic Solutions 652
22.1.1 First-Order Equations 652 DSolve
22.1.2 Second- and Higher-Order Equations 656
22.1.3 Simultaneous Equations 660

22.2 More about Symbolic Solutions 663

22.2.1 Calculating with the Solution 663
2222 Using the Laplace Transform 666 LaplaceTransform
22.2.3 Series Solutions 668 LogicalExpand

22.3 Numerical Solutions 669

22.3.1 One Equation 669 NDSolve
22.3.2 Two Equations 674
22.3.3 Three Equations 680

22.4 More about Numerical Solutions 684

22.4.1 Options 684
22.4.2 Runge-Kutta Method 687 rk
22.4.3 Boundary Value Problems 689 linbvp, nonlinbvp

22.5 Difference Equations 692

22 5.1 Linear Difference Equations 692 RSolve, GeneratingFunction, SeriesTerm
22.5.2 Nonlinear Difference Equations 694 fixedPlot
22 5.3 Bifurcation and Lyapunov Exponent 697 bifurcation, lyapunov

Introduction

God is not so cruel as to create situations described by
nonlinear differential equations. — Edward Sexton

Solving ordinary differential equations with Mathematica is straightforward: we have DSolve
for symbolic solution and NDSolve for numerical solution. Both commands accept one or
more equations, first- or higher-order equations, linear and nonlinear equations, and solve

651

652 Mathematica Navigator

both initial and boundary value problems (NDSolve only solves linear boundary value
problems).

In addition we consider solving differential equations with the Laplace transform and
finding series solutions. We implement the Runge-Kutta method and also some methods for
boundary value problems.

At the end of this chapter we consider difference equations. If such an equation is linear, a
solution in closed form can possibly be found. Nonlinear difference equations cannot gener-
ally be solved but they can be analyzed otherwise with Mathematica. We plot, for example, a
bifurcation diagram and a figure for the Lyapunov exponent.

For more about differential equations with Mathematica, see, for example, Abell & Braselton
(1997).

22.1 Symbolic Solutio

e

ns

SR

22.1.1 First-Order Equations

Here are some common commands for first-order differential equations.

DSolvel[eq, vI[x], =x] Give the general solution

sol = DSolvel[{eq, yI[x0]==y0}, yvIx], x] Give the solution of the initial
value problem

Plot [Evaluate[y[x]/.s0ol]l, {x,a,b}] Plot the solution of the initial
value problem

An example of a differential equation is y' [%x] == a y[x] + b x + c. The dependent
variable, here y, must contain the independent variable, here x, as the argument, that is, we
cannot write the equation as y' == a y + b x + c. Note, too, that the equation must
contain == (not =) and the initial condition must also contain == (not =).

= Example 1: General Solution

Here is a first-order nonlinear equation:

eq = x'[t] == k(xf - x[t])x[t];

Note that now t is the independent variable and x the dependent variable; k and x£ are
constants. It may be convenient to give a name for the equation here (you can also enter the

whole equation in DSolve). It is often convenient to give a name for the solution, too, for easy
reference:
sol = DSolveleqg, x[t], t]

Ektx‘i Xf 3
ErtxE _ BClL }H

{ [X|td =5

Chapter 22 * Differential and Difference Equations 653

The solution is given in the form of a rule (for more about rules, see Section 12.1.2). The
arbitrary constant is C[1] (we can give it whatever value we want).
In general, the solution given by DSolve consists of a list of solutions:

{{solution 1}, {solution 2}, ...}

because a given equation can have several solutions. Each solution is again a list consisting of
as many elements as there are dependent variables. In our example we have only onc depen-
dent variable, x, and we got only one solution. Thus the solution is of the form { {sclution
1 for x}}.

Note that the solution sol is a generic solution, that is, a solution valid for general values
of the parameters k and x£. For some particular values the solution may be of a different
form. For example, when x£ is zero, the solution is

DSolveleq/.xf->0, x[t], t]

1 .
{{x[€] > ﬁ'ﬁ'f”

» Example 2: Initial Value Problem

Next we solve an initial value problem:
DSolvel{eg, x[0]==x0}, x[t], t] //Simplify

EXEXE x0 xf 1
+ EkexEy %0 + xf '/

{ {=le] = g
Now we give specific values for all constants:

sol = DSolvel{eq /. {k->1/10, xf->10}, x[0]1==1/2}, =x[t]l, t]

10 EF
ﬁ; Et }}

{{X[t]-ﬁ
This solution can be plotted, because it does not contain any parameters. To get the expression
of the solution we can write

x[t] /. sol
¢ 10 ES
L19 +Et /

so that to plot the solution we write
gl = Plot[{10, Evaluatelx[tl/.soll}, ({t, 0,10}1;

8
6t
4

10

2

. 2 4 6 8 10
This is a so-called logistic curve. We also plotted the asymptote 10 of this curve. Here is a table
of values:

654 Mathematica Navigator

Table[{t, x[t]/.sol}, {t,0.,5,1}] //TableForm //PaddedForm

i 1 L 25164

® Example 3: Direction Field
We can learn the behavior of the solutions of a differential equation by plotting a set of arrows
that are tangent to the solution. The plot is called a direction field. It can be plotted with
PlotVectorField from a package (see Section 7.2.5). This command plots vectors
{exprx, expry)} for some values of x and y. We can choose exprx to be 1 and expry to be
¥' [x]. So we write:

Needs ["Graphics PlotField "]

g2 = PlotVectorField[{1l, 1/10 (10 - x)x}, {(t,0,10}, {x,0,10},

PlotPoints->11, Axes->True, DiSplayFunction->Identity] f)

We show both the direction field and one solution:

Show[gl, g2];

® Example 4: A Set of Trajectories

An even clearer plot can be obtained by plotting a set of trajectories, that is, a set of solutions
to the equation with different sta rting points:

sol = DSolve[{eq /. {k->1/10, x£->10}, x[0]==x0}, =x[t], t]

solset = Table[sol, {x0,1,20}];

655

Chapter 22 ¢ Differential and Difference Equations

{€,0,7}, PlotRange->{-0.1,20.1}];

gl = Plot[Evaluate[x[t]/.solset],

- ey)
What is the inflection point in these curves? We calculate the second derivative and find the

value of t for which the second derivative is zero:

soltt = DIsol,t,t] //S8implify
10 EF (~10 +%0) x0 (-10 +x0 +E* x0) 3

{{x'el > ——— 10+ (-1 +E") x0)°

infl = golvel(x'"[t]l /. soltt) == 0, tl //8implify

r 10
(== f - =
{{t—a— Yo lt—»Log[1+ XOI}}
According to the second solution, we get a nonnegative inflection point if %0 is at most 5. The

value of x at this point is

sol /. infl[[2]] //Simplify

({x[rog[-1+ 5511~ 5}]

L
curve the inflection point is at the fixed level 5.

that is, for each

= Example 5: Several Solutions

everal solutions:

Sometimes the problem has s
a2 - 3yl[0] + 2 == 0};

l eq = {y'Ix] == vix] + x + 1, yiol

sol = Dsolveleq, viIixl, =]
{{y[x] » -2+ 3 E* -x}, {ylx]->-2 +4 E* -x}}

the two solutions for y [01. Here is a nonlinear equation:

The two solutions correspond to
DSolvely'[x] == 1/yIxl, yIxl, x]
(y(x] > -V2 Jx-Cl11}, lyix] »V2 Jx-C[1] }}

= Example 6: Nonlinear Equations

DSolve can solve many nonlinear equations. Some examples:

pSolvely'[x]*2 == vixl, vIxl, x]

Hyix] > 5 (& -2xC[1] +CLID]}

656 Mathematica Navigator

DSolvely'[x] == y[x]1%2 + a, y[x], x]

Hy[x] > va Tan[va x++/a c[1]]}}3
If we replace the constant a in the second example by x, then the solution is much more
complicated:

DSolvely' [x] == y[x]*2 + x, vix]l, =]
{({vix) » - LD (AlryAiPrime[(-1) x] + AjryBiPrime[(-1) x] CIL]))
L AlryAi[(-1)"° x] + AiryBi[(-1) 73 x] C[1] .l

= Example 7: Equations Are Defined by ==

A common problem in solving differential equations is the following:
e = {y'[x] == y[x] + x + 1, y[0] = 1};
sol = DSolveleq, yI[x], x]
Part::partd : part specification 1[1] is longer than depth of object.
Part: :partd : Part specification 1[2] is longer than depth of cbject,

DSolve: :nvld
The description of the €quations appears to be ambiguous or invalid.

DSolve::degn : Element 1 in the equation list is not an egquation.

DSolve[{y' [x] ==1+x+y[x], 1}, y[x], x]
What went wrong? We observe that the initial condition ¥ [0] =1 is not a correct equation. It
must be written as y[0]==1. When we wrote yv[0]l=1, we actually assigned the value 1 for
Y [0], and this causes the error messages. Before we solve the initial value problem, we must
clear the value of ¥[0] and correct the initial condition:

y[0]=.

eq = {y'[x] == y[x] + % + 1, y[0] == 13;

sol = DSolveleq, yI[x], x]

H{y[x] »-2+3 E* - x}}

22.1.2 Second- and Higher-Ovrder Equations

Here are commands for second-order equations. They generalize directly to higher-order
equations.

DSolveleq, ylI[x], x] General solution

sol = DSolvel{eq, v [al==r, y'[al==s}, yIx], x] Initial value problem

sol = DSolve[{eq, yl[a]l==r, Y[bl==s}, y[x], x] Boundary value
problem

Plot [Evaluate [y[x]/.sol] r {x,a,b}] Plot the solution

=

The initial and boundary conditions mentioned here are the simplest ones. The conditions can
be more complex.

Chapter 22 ¢ Differential and Difference Equations

m Example 1: Basic Techniques

We ask for a general solution of a second-order equation:

== 1;

eq = y''[x] - y' [x]

sol = DSolveleq, yixl, xI]

({y[x] - —x+E e[1] +Ci21})

The arbitrary constants are C [1] and C[2].
sol = DsSolvel{ea, y[0]1==0, y'[01==1}, yI[x]l. x]
({yix] »-2+2E -X}}

plot [Evaluate [ylxl/ .soll, {x,0,2}];:

~%& 1 18 =&
Now we give two boundary conditions,
y[0]==0, y[21==8}, yIxl, x]

oneatx=0andoneatx=2:

sol = DSolvel{eq.,
10 10 E* .
[' 11
Uyxl>-—5g * —1vm)

Plot [Evaluate [y[x]/.soll. {x,0,2}]1;

0.5 1 1.5 2

The boundary conditions can be ev
y[0] == 0, v[2] + y'[2] == 2},

en more complex:
sol = DSolvel{eq, yvIixl, =]
5 5 E*

i g — . —
2

{y®l»-—7328 = -1+2

Plot [Evaluately [x1/.s0l1ll, {x, 0,2}1;

m Example 2: Constant Coefficients

All linear second-order equations with constant coefficient

Next we give two initial conditions:

657

s can be solved. For example,

658 Mathematica Navigator

eq = y''[x] == a y'[x] + b y[x] + c;

DSolveleq, yvIx], x]

{{Y[X] L -;—+Eé |:a -.\-—;L'_.gb:x C[l] _,_Eé, :a__.u_.-d.;'l4b xclzj}}

Note that this is a generic solution. For special values of the parameters the solution can be of

another form. The following solution is of the preceding form:
DSolvel{eq/.{a->1,b->2,c->1}, y[0]==0, y'[0]==1}, yI[x]l, x]

r i1

. 1 o
{yixl » 5 E® (-E*+E") }]

but this solution is not:
DSolvel[{eq/.{a->2,b->-1,c->1}, y[0]==0, y'[0]==1}, vixl, =]
{{y[x] »1-E*+2E" x}}

Next we get powers of —1, but the solution is simplified considerably by using ComplexEx-

pand:
sol = DSolvel[{eg/.{a->1,b->-1,c->1}, y[0] == 0, y'[0] == 1}, vixl, x1 //
Simplify
{{Y[X] 51 g0l _ (=1)2 3 g (-1 x c (-1)23 R ilﬁ”:x?}

vIx] /. sol //ComplexExpand

{l-—E""2 Cosr-yérf_z+-J§ /2 Sin[‘dg X}}

m Example 3: A Set of Trajectories
Here is a second-order equation:
eq = y''[x] + y'[x] + y[x] == 1;

sol = DSolvel{eq, vI[0l==a, y'[0]l==b}, v¥I[x], x] //Simplify

({wlx] s B V7>
\ (DM (clras (D) oegae I(CED 4 (D asb) BV)4,
Lk (=1)3 | V3)

We consider solutions for which y* [0] is 0 and ¥y [0] takes on values between 0 and 2:
solset = Tablel[sol/.b->0, {a,0,2,0.2}];
Plot [Evaluate[y([x]/.solset]l, {x,0,4}];

1.4

1.2

0.8

0.6

Chapter 22 * Differential and Difference Equations 659

= Example 4: A Third-Order Equation

Here is a third-order equation:

eq = y''"[x] - y'[x] == 1;

sol = DSolveleq., vixl, x]

({y[x] >-x-E*C[1] +E°C[2] +C[3]}}
We solve an initial value problem:

sol = DSolvel{eq, v[01==0, y'[0]1==1, y"[0]==—312}. vixl, x]
o 3 TEX E*

(e » 3 - 15)

Plot[Evaluate{y[x]/.sol]. {x,0,2}1:

|
08 |
0.6 |

a Example 5: An Implicit Solution

Here is a second-order equation for which the solution is not explicit:
eq = y''[x] == 1/y[x]*2;
(sol = psolvel{eg, y[0]l==1, yv'[0]1==0}, vixl, x1) //Timing
DSolve: :cond
Conditioned integral encountered, SO SOme solutions may be not found.
Solve: :tdep :

The equations appear to involve transcendental functions of
the variables in an essentially non-algebraic way.

{67.6167 second,

2 Log [1 + /1 - 1] +Log(yix]]+2 1- <+ y[x]
2‘@5

{Solve[~

-

-

r = f___'_'_F
2109 [1++f1- ya7 | *Log ¥[x]] *2 - - =]
SolveL_____L__{_g;J_ L ~Ni-gur Yo x|}

—

The solution is implicit: if the equations inside the two Solve commands could be solved for

vy [x], we would get two solutions for the differential equation.
Is the solution correct? Let us see. We extract the first equation which implicitly defines the
first solution:

soll = soll(1,11]

2Log[1+1- 5oy) *Leglylxl]+ 1- 2o yx]

il
I
w

660 Mathematica Navigator

We take the first and second derivatives:
{dsoll = D[soll,x]//Simplify, ddsoll = D[dsocoll,x]//Simplify)}

‘ll—y-_—X]__ == l, y [}{_,’ = I_ JI = U\

(2 - 55r) yix]?

fo 2
N

We can now solve y' [x] and y' ' [x] from these equations:

{dyl = Solve[dsoll, v'[x]]1[[1,1]1], ddyl = Sclve[ddsoll/.dyl,
vy ' [=]1]1[[1,111}

2 1
[Tl =5 =) B : , Vi [x] = =
B TR g Y YxI®)

Lastly we substitute the derivatives into the equation and hope for the best:
eg /. {dyl,ddyl} True
The first implicit solution seems to satisfy the equation. We check lastly that the initial condi-

tions are satisfied. We substitute the value 0 for % and the value 1 for y[0] in soll. The result
should be a true statement:

soll /. x->0 /. y[0]->1 True

Then we substitute the same values in dy1. The value of y' [0] should be 0O:
dyl /. x->0 /. y[0]->1 y'[0] -> 0

Similarly we could show that the second implicit solution is correct.

22.1.3 Simultaneous Equations

In simultaneous equations we have several dependent variables. Here are some typical com-
mands for two equations. It is a relatively simple procedure to generalize the commands to
more equations and different initial and boundary conditions.

DSolvel{eqgql,eq2}, {vIxl.,=z[xl1)}, =] General solution
sol = DSolve[{eql,eq2, ylal==r, z[al==s}, {yI[x],z[x]}, =x]

Initial value problem
DSolve[{eqgl,eq2, yl[al==r, z[bl==s}, {yvIx],z[x]}, =x]

Boundary value problem
Plot [Evaluate[{y[x],z[x]}/.s0l1l], {x,a,b}] Plot y [%x] and z [x]
ParametricPlot [Evaluate[{y([x],z[x]}/.80l1l], {x,a,b}]

Plot a phase trajectory

sol

m Example 1: Basic Techniques
First we ask for a general solution:
eq = {y'[x] == y[x]l, z'[x] == 2yI[x] + z[x]};

DSolveleq, {vI[x]l,z[xl1}, xI]
{{y[x] > E*C[1], z[x] >2E*xC[1] +E*C[2]}}

661

Chapter 22 ¢ Differential and Difference Equations

The solution of this constant coefficient system can also be obtained by the matrix exponential:

MatrixExp[{{l,O},{Z,l}} x] . {ecl,c2}

{c1 E*, c2E" P) R
Here is a boundary value problem:

sol = DSolvelJoinleq, {z[0]1==0, z'[1]1==1}1, {yI[x]l,z[x]1}, x]

. -l+x -
{*I.\yl.){_'l _-,_4__‘ Z[XJ —)%El'x}i}}
Plot [Evaluate[{y[x] ,z[x]1}/.s0l1], {x,0,1},
plotStyle->{{}., Dashing[{0.012}13}1;

0.5}
04 |
03|
02|
0.1}

m Example 2: Phase Trajectories

Consider the following system:

eq = {y'[x] == y[x] - z[x], z'[x] == 5yIx] - 3z [x],

y[0] == 10000, z[0] == 0};

sol = DSolveledq. {yvIx]l,z[x]}, x] //Fullsimplify

| - 10000 E™ (Cos[x] +2 Sin[x]), z %]

3

(gl 5 50000 E ™ Sin [x] }}

Plot[Evaluate[{y[x],z[x]}/.sol], {x,0,7},
PlotStyvle->{{}, Dashing[{0.012}1},
Ticks->{Rangel7], {5000,10000,15000}}];

15000] ™

10000 /]

v
1
i
'

5000 |

With parametricPlot we can plot phase trajectories for equations with two dependent

variables. A plot of this kind describes how the point {y [x],z[x]} moves on the (y, z) plane.
We plot four figures of the solution sol. These figures show how the curve approaches the
point (0, 0) like a spiral:

amatricPlot[Evaluate[{y[x],z[x]}/.sol],{x,O,&O},

PlotRange->#, Display?unction—>Identity]&,
{ {{-1000,11500},{—1000,16500}}, {{—520,120}.{-700,1700}},
{{-2,22},(-70,35}}, {{-1-1.0-1},{-1.4,3.2}} }1:

Map [Par

662 Mathematica Navigator

Show[GraphicsArray[%]];

15000 150 3
12500 ol
10000 | 1000 i
7500 1
5000 200

2500
) ;) ~5p0-400-300-200- 100 -1 408 -06 -0.4 -
20004000600(8000 0000 —500 -1

Plotting individual points shows the speed of the point as it moves on a curve:
Table [Evaluate[{y[x],z[x]}/.s01[[1]1]],{x,0,6,0.1}];
ListPlot[%, Ticks->{{5000, 10000}, {5000,10000,15000}}];

150001

10000

5000

A 5000 10000

® Example 3: A Set of Trajectories

Plotting several trajectories from different starting points gives a good description of the
behavior of the system. We consider the same system again:
eq = {y'[x] == y[x] - z[x], z'[x] == 5y[x] - 3z[x]};
sol = DSolvel[Joinleq, {y[0l==y0, z[01==20}1, {y[x],=z[x]1}, x1//
FullSimplify
{{y[x] > E™ (y0Cos[x] + (2y0 - z0) Sin[x]),
z[x] »E™ (z0Cos[x] + (3 y0-220) Sin[x])}}
We let ¥0 vary from —12 to 12 in steps of 2, and then we give z0 first the value 30 and then the
value -30:
solset = Table[sol[[1]], {y0,-12,12,2}1;
Map [ParametricPlot [Evaluate[{y[x],z[x]}/.solset/.z0->#], {x,0 +6},

PlotStyle->AbsoluteThickness[0.25], DisplayFunction->Identity]&,
{30,-301}1;

Show([%, DisplayFunction—>$Disp1ayFunction];

We can also plot a direction field:

Chapter 22 * Differential and Difference Equations 663

sol = DSolvelJdoinleq, {y[0]l==-8, z[01==20}]1, {yIxl,z[x1}, xI];
Needs ["Graphics PlotField "]

Block[{$DisplayFunction = Identity},

gl = PlotVectorField[{u - v, 5u - 3Vv}, {u,-20,20}, {v,-20,20},
PlotPoints->111]1;

g2 = ParametricPlot [Evaluate[{y[x],z[x]}/.s0l], {x,0,6}11;

Showl[gl,g2, Axes->True];

If we have three equations, then ParametricPlot3D can be used to plot trajectories in
three dimensions; for an example see Section 22.3.3.

22.2 More about Symbolic Solutions

22.2.1 Calculating with the Solution

If we want to calculate with the solution, then the form of the solution considered in Section

221 is not suitable, as will be seen shortly. In this section we consider other forms for the
solution which can be used in calculations.

m Solution as a Pure Function

Thus far we have asked for the solution to y [x]. The solution is then in a familiar form, but if
we want to do calculations with the solution, then this form is not suitable. As an example,
solve an equation and ask for its value at some point:

eq = {y'[x] == y[x] + x + 1, y[0] == 1};
soll = DSolveleqg, vIx], xI ({y[x] -> -2 + 3 EX - x}}
y[0] /. soll[I[1]] vI[0]

We did not obtain the value of ¥[01]. In fact, the solution for y[x]1 knows the value of ¥ only

for x and not for any other argument like 0. There is a special form of DSolve that gives the
solution in a form suitable for calculations.

