Lisbon WADE — Webinar in Analysis and Differential Equations   RSS

Next session

Juan Luis Vázquez 22/04/2021, 14:00 — 15:00 Europe/Lisbon — Instituto Superior Técnico
, Universidad Autónoma de Madrid

The theory of fractional p-Laplacian equations

We consider the time-dependent fractional $p$-Laplacian equation with parameter $p>1$ and fractional exponent $0<$ $s<1$. It is the gradient flow corresponding to the Gagliardo fractional energy. Our main result is the asymptotic behavior of solutions posed in the whole Euclidean space, which is given by a kind of Barenblatt solution whose existence relies on delicate analysis. We will concentrate on the sublinear or “fast” regime, $1<$ $p<2$, since it offers a richer theory. Fine bounds in the form of global Harnack inequalities are obtained as well as solutions having strong point singularities (Very Singular Solutions) that exist for a very special parameter interval. They are related to fractional elliptic problems of nonlinear eigenvalue form. Extinction phenomena are discussed.

All seminars will take place in the Zoom platform which you need to install (although you don't need to register). In order to get the password to access the seminars, please subscribe the announcements or contact the organizers.

Organizers: Hugo Tavares, James Kennedy and Nicolas Van Goethem

Joint iniciative of the research centers CAMGSD, CMAFcIO and GFM.