Contents/conteúdo

Seminário de Teoria Quântica do Campo Topológica   RSS

11/12/2019, 11:30 — 12:30 — Sala P3.10, Pavilhão de Matemática
Paul Wedrich, Max Planck Institute and University of Bonn

Invariants of $4$-manifolds from Khovanov-Rozansky link homology

Ribbon categories are $3$-dimensional algebraic structures that control quantum link polynomials and that give rise to $3$-manifold invariants known as skein modules. I will describe how to use Khovanov-Rozansky link homology, a categorification of the $\operatorname{\mathfrak{gl}}(N)$ quantum link polynomial, to obtain a $4$-dimensional algebraic structure that gives rise to vector space-valued invariants of smooth $4$-manifolds. The technical heart of this construction is the newly established functoriality of Khovanov-Rozansky homology in the $3$-sphere. Based on joint work with Scott Morrison and Kevin Walker https://arxiv.org/abs/1907.12194.

Projecto FCT UID/MAT/04459/2019.


Para assistir aos seminários via Zoom são necessárias credenciais. Se ainda não está na nossa lista de correio, por favor subscreva os anúncios para recebê-las juntamente com a informação de novos seminários.

Organizadores correntes: Roger Picken, John Huerta, Marko Stošić.

Mathseminars

Projectos FCT PTDC/MAT-GEO/3319/2014, Quantization and Kähler Geometry, PTDC/MAT-PUR/31089/2017, Higher Structures and Applications.

CAMGSD FCT