Topological Quantum Field Theory Seminar   RSS

Past sessions

Alexis Virelizier 11/09/2020, 17:00 — 18:00 — Online
, Université de Lille

Homotopy Quantum Field Theories

Homotopy quantum field theories (HQFTs) generalize topological quantum field theories (TQFTs) by replacing manifolds by maps from manifolds to a fixed target space $X$. For example, any cohomology class in $H^3(X)$ defines a 3-dimensional HQFT with target $X$. If $X$ is aspherical, that is $X = K(G, 1)$ for some group $G$, then this cohomological HQFT is related to the Dijkgraaf-Witten invariant and is computed as a Turaev-Viro state sum via the category of $G$-graded vector spaces. More generally, the state sum Turaev-Viro TQFT and the surgery Reshetikhin-Turaev TQFT extend to HQFTs (using graded fusion categories) which are related via the graded categorical center.

This is joint work with V. Turaev.

See also

Slides of the talk

Ezra Getzler 24/07/2020, 17:00 — 18:00 — Online
, Northwestern University

Gluing local gauge conditions in BV quantum field theory

In supersymmetric sigma models, there is frequently no global choice of Lagrangian submanifold for BV quantization. I will take the superparticle, a toy version of the Green Schwarz superstring, as my example, and show how to extend the light-cone gauge to the physically relevant part of phase space. This involves extending a formula of Mikhalkov and A. Schwarz that generalizes the prescription of Batalin and Vilkovisky for the construction of the functional integral.

This is joint work with S. Pohorence.

See also

Slides of the talk

Pedro Boavida de Brito 17/07/2020, 17:00 — 18:00 — Online
Pedro Boavida de Brito, Instituto Superior Técnico and CAMGSD

Galois symmetries of knot spaces

I’ll describe how the absolute Galois group of the rationals acts on a space which is closely related to the space of all knots. The path components of this space form a finitely generated abelian group which is, conjecturally, a universal receptacle for integral finite-type knot invariants. The added Galois symmetry allows us to extract new information about its homotopy and homology beyond characteristic zero. I will then discuss some work in progress concerning higher-dimensional variants.

This is joint work with Geoffroy Horel.

See also

Slides of the talk

Ricardo Campos 10/07/2020, 17:00 — 18:00 — Online
, CNRS - University of Montpellier

The homotopy type of associative and commutative algebras

Given a topological space, how much of its homotopy type is captured by its algebra of singular cochains? The experienced rational homotopy theorist will argue that one should consider instead a commutative algebra of forms. This raises the more algebraic question

Given a dg commutative algebra, how much of its homotopy type (quasi-isomorphism type) is contained in its associative part?

Despite its elementary formulation, this question turns out to be surprisingly subtle and has important consequences.

In this talk, I will show how one can use operadic deformation theory to give an affirmative answer in characteristic zero.

We will also see how the Koszul duality between Lie algebras and commutative algebras allows us to use similar arguments to deduce that under good conditions Lie algebras are determined by the (associative algebra structure of) their universal enveloping algebras.

Joint with Dan Petersen, Daniel Robert-Nicoud and Felix Wierstra and based on arXiv:1904.03585.

Tom Sutherland 03/07/2020, 17:00 — 18:00 — Online
, Group of Mathematical Physics, University of Lisbon

Mirror symmetry for Painlevé surfaces

This talk will survey aspects of mirror symmetry for ten families of non-compact hyperkähler manifolds on which the dynamics of one of the Painlevé equations is naturally defined. They each have a pair of natural realisations: one as the complement of a singular fibre of a rational elliptic surface and another as the complement of a triangle of lines in a (singular) cubic surface. The two realisations relate closely to a space of stability conditions and a cluster variety of a quiver respectively, providing a perspective on SYZ mirror symmetry for these manifolds. I will discuss joint work in progress with Helge Ruddat studying the canonical basis of theta functions on these cubic surfaces.

See also

Slides of the talk

Marko Stošić 26/06/2020, 17:00 — 18:00 — Online
, Instituto Superior Técnico and CAMGSD

Rational and algebraic links and knots-quivers correspondence

I will start with a brief overview of knots-quivers correspondence, where colored HOMFLY-PT (or BPS) invariants of the knot are expressed as motivic Donaldson-Thomas invariants of a corresponding quiver.

This deep conjectural relationship already had some surprising applications.

In this talk I will focus on showing that the knots-quivers correspondence holds for rational links, as well as much larger class of arborescent links (algebraic links in the sense of Conway). This is done by extending the correspondence to tangles, and showing that the set of tangles satisfying tangles-quivers correspondence is closed under the tangle addition operation.

This talk is based on joint work with Paul Wedrich.

See also

Slides of the talk

Mikhail Khovanov 19/06/2020, 17:00 — 18:00 — Online
, Columbia University

Introduction to foam evaluation

Foam evaluation was discovered by Louis-Hardrien Robert and Emmanuel Wagner slightly over three years ago. It's a remarkable formula assigning a symmetric function to a foam, that is, to a decorated 2-dimensional CW-complex embedded in three-space. We'll explain their formula in the 3-color case in the context of unoriented foams and discuss its relation to Kronheimer-Mrowka homology of graphs and the four-color theorem.

See also

Slides of the talk

Antti Kupiainen 12/06/2020, 17:00 — 18:00 — Online
, University of Helsinki

Integrability of Liouville Conformal Field Theory

A. Polyakov introduced Liouville Conformal Field theory (LCFT) in 1981 as a way to put a natural measure on the set of Riemannian metrics over a two dimensional manifold. Ever since, the work of Polyakov has echoed in various branches of physics and mathematics, ranging from string theory to probability theory and geometry.

In the context of 2D quantum gravity models, Polyakov’s approach is conjecturally equivalent to the scaling limit of Random Planar Maps and through the Alday-Gaiotto-Tachikava correspondence LCFT is conjecturally related to certain 4D Yang-Mills theories. Through the work of Dorn, Otto, Zamolodchikov and Zamolodchikov and Teschner LCFT is believed to be to a certain extent integrable.

I will review a probabilistic construction of LCFT developed together with David, Rhodes and Vargas and recent proofs of the integrability of LCFT:

See also

Slides of the talk

John Huerta 05/06/2020, 17:00 — 18:00 — Online
John Huerta, Instituto Superior Técnico and CAMGSD

Bundle Gerbes on Supermanifolds

Bundle gerbes are a generalization of line bundles that play an important role in constructing WZW models with boundary. With an eye to applications for WZW models with superspace target, we describe the classification of bundle gerbes on supermanifolds, and sketch a proof of their existence for large families of super Lie groups.

See also

Slides of the talk

Danica Kosanović 29/05/2020, 17:00 — 18:00 — Online
, Max-Planck Institut für Mathematik

Knot invariants from homotopy theory

The embedding calculus of Goodwillie and Weiss is a certain homotopy theoretic technique for studying spaces of embeddings. When applied to the space of knots this method gives a sequence of knot invariants which are conjectured to be universal Vassiliev invariants. This is remarkable since such invariants have been constructed only rationally so far and many questions about possible torsion remain open. In this talk I will present a geometric viewpoint on the embedding calculus, which enables explicit computations. In particular, we prove that these knot invariants are surjective maps, confirming a part of the universality conjecture, and we also confirm the full conjecture rationally, using some recent results in the field. Hence, these invariants are at least as good as configuration space integrals.

See also

Slides of the talk

Sergei Gukov 22/05/2020, 17:00 — 18:00 — Online
, California Institute of Technology

Hidden Algebraic Structures in Topology

Which 4-manifold invariants can detect the Gluck twist? And, which 3-manifold invariants can detect the difference between surgeries on mutant knots? What is the most powerful topological quantum field theory (TQFT)? Guided by questions like these, we will look for new invariants of 3-manifolds and smooth 4-manifolds. Traditionally, a construction of many such invariants and TQFTs involves a choice of certain algebraic structure, so that one can talk about "invariants for SU(2)" or a "TQFT defined by a given Frobenius algebra." Surprisingly, recent developments lead to an opposite phenomenon, where algebraic structures are labeled by 3-manifolds and 4-manifolds, so that one can speak of VOA-valued invariants of 4-manifolds or MTC-valued invariants of 3-manifolds. Explaining these intriguing connections between topology and algebra will be the main goal of this talk.

See also


11/12/2019, 11:30 — 12:30 — Room P3.10, Mathematics Building
Paul Wedrich, Max Planck Institute and University of Bonn

Invariants of $4$-manifolds from Khovanov-Rozansky link homology

Ribbon categories are $3$-dimensional algebraic structures that control quantum link polynomials and that give rise to $3$-manifold invariants known as skein modules. I will describe how to use Khovanov-Rozansky link homology, a categorification of the $\operatorname{\mathfrak{gl}}(N)$ quantum link polynomial, to obtain a $4$-dimensional algebraic structure that gives rise to vector space-valued invariants of smooth $4$-manifolds. The technical heart of this construction is the newly established functoriality of Khovanov-Rozansky homology in the $3$-sphere. Based on joint work with Scott Morrison and Kevin Walker

27/11/2019, 15:00 — 16:00 — Room P3.10, Mathematics Building
, University of Leeds

$3+1D$ Dijkgraaf-Witten theory and the Categorified Quantum Double

The quantum double is a quasi-triangular Hopf algebra whose category of representations can be interpreted physically as describing the processes of fusion and braiding of anyons in the $2+1D$ Dijkgraaf-Witten TQFT. Motivated by the possibilities of topological quantum computing in $3+1D$, in this talk I will give an informal overview of my ongoing research towards understanding the categorified quantum double and its bicategory of $2$-representations. In particular, I will focus on the relation between such constructions and the Hamiltonian formulation of $3+1D$ Dijkgraaf-Witten TQFT in order to describe the braiding and fusion of extended excitations such as loops.

Please note that there is also a TQFT Club talk in the morning on the same day starting at 11h15.

27/11/2019, 11:15 — 12:15 — Room P3.10, Mathematics Building
, ICMAT (Madrid)

Topological recursion in the motivic theory of character varieties

The algebraic structure of the moduli spaces of representations of surface groups (aka character varieties) has been widely studied due to their tight relation with moduli spaces of Higgs bundles. In particular, Hodge-type invariants, like the so-called E-polynomial, has been objective of intense research over the past decades. However, subtler algebraic invariants as their motivic classes in the Grothendieck ring of algebraic varieties remain unknown in the general case.

In this talk, we will construct a Topological Quantum Field Theory that computes the motivic classes of representation varieties. This tool gives rise to an effective computational method based on topological recursion on the genus of the surface. As application, we will use it to compute the motivic classes of parabolic $\operatorname{SL}(2,\mathbb{C})$-character varieties over any compact orientable surface.

Please note the earlier starting time 11h15!

Also please note that there is a second TQFT Club talk on the same day starting at 15h.

06/11/2019, 16:30 — 17:00 — Room P3.10, Mathematics Building
Pedro Brito, Instituto Superior Técnico

Galois symmetries in geometry

I’ll say a few words about some homotopical (“higher”) methods to study knot spaces and diffeomorphism groups. A fascinating appearance, and one of my current obsessions, is made by the absolute Galois group of the rationals.

06/11/2019, 16:00 — 16:30 — Room P3.10, Mathematics Building
Aleksandar Mikovic, Universidade Lusófona

Categorification of LQG spin-network basis

We describe an approach of how to find a $2$-group generalization of the spin-network basis from Loop Quantum Gravity. This gives a basis of spin-foam functions which are generalizations of the Wilson surface holonomy invariant for the $3$-dimensional Euclidean $2$-group.

06/11/2019, 14:30 — 15:00 — Room P3.10, Mathematics Building
Manuel Araújo, Instituto Superior Técnico

Coherence for $3$-dualizable objects

I will explain the notion of coherence for duals and adjoints in higher categories. I will discuss a strategy for using knowledge of coherence data and the cobordism hypothesis to give presentations of fully extended bordism categories and mention some progress in dimension $3$.

06/11/2019, 14:00 — 14:30 — Room P3.10, Mathematics Building
John Huerta, Instituto Superior Técnico

Higher structures on supermanifolds

My recent work has concerned two projects, both concerned with higher structures on supermanifolds. I will probably focus on my work extending the classification theorems for gerbes to supermanifolds, with an eye to examples on super Lie groups. My other project, that I will probably not discuss, concerns applying cyclic cohomology to super-Yang-Mills theory in the so-called superspace formalism (i.e., formulated as a theory on a supermanifold).

06/11/2019, 11:30 — 12:30 — Room P3.10, Mathematics Building
Marco Mackaay, Universidade do Algarve

$2$-Representation theory

The $2$-representation theory of $2$-categories is a categorical analogue of the representation theory of algebras. In my talk, I will recall its origins, its purposes, its basic features and explain some important examples. This talk is based on joint work with Mazorchuk, Miemietz, Tubbenhauer and Zhang.

See also

Related talk in Norwich - 1
Related talk in Norwich - 2

05/11/2019, 17:30 — 18:00 — Room P3.31, Mathematics Building
Marko Stosic, Instituto Superior Técnico

On Colored HOMFLY homology

I’ll try to give a brief description of the categorification of colored HOMFLY polynomial for knots, and discuss various open problems related with these invariants, including their definition, properties, relationship with string theory, as well as surprising combinatorial identities and properties of these invariants in special cases of torus knots and rational knots.

Older session pages: Previous 2 3 4 5 6 7 8 9 10 11 12 13 14 Oldest

To join the session on Zoom a password is required. If you are not already on the mailing list, please subscribe the announcements to receive password info and updates.

Current organizers: José MourãoRoger Picken, Marko Stošić


FCT Projects PTDC/MAT-GEO/3319/2014, Quantization and Kähler Geometry, PTDC/MAT-PUR/31089/2017, Higher Structures and Applications.