Topological Quantum Field Theory Seminar   RSS

Brent Pym 15/01/2021, 17:00 — 18:00 — Online
, McGill University

Multiple zeta values in deformation quantization

In 1997, Kontsevich gave a universal solution to the deformation quantization problem in mathematical physics: starting from any Poisson manifold (the classical phase space), it produces a noncommutative algebra of quantum observables by deforming the ordinary multiplication of functions. His formula is a Feynman expansion whose Feynman integrals give periods of the moduli space of marked holomorphic disks. I will describe joint work with Peter Banks and Erik Panzer, in which we prove that Kontsevich's integrals evaluate to integer-linear combinations of multiple zeta values, building on Francis Brown's theory of polylogarithms on the moduli space of genus zero curves.
Inventiones mathematicae 222 (2020), pp. 79-159

See also

Pym slides.pdf

To join the session on Zoom a password is required. If you are not already on the mailing list, please subscribe the announcements to receive password info and updates.

Current organizers: Roger Picken, John Huerta, Marko Stošić.


FCT Projects PTDC/MAT-GEO/3319/2014, Quantization and Kähler Geometry, PTDC/MAT-PUR/31089/2017, Higher Structures and Applications.