###
31/10/2018, 11:30 — 12:30 — Room P3.10, Mathematics Building

Leonardo Santilli, *Grupo de Fisica Matematica, Univ. Lisboa*

```
```###
A Chern-Simons view on noncommutative scalar field theory

We present a recent result establishing a bridge between noncommutative scalar field theory in $2$ dimensions and topological field theory in $3$ dimensions.

The content of the seminar is split in two main parts, according to the twofold aspect of the result. In the first half, we show that a version of Abelian gauge theory on $\mathbb{R}^3 _{\lambda}$, when restricted to a single fuzzy sphere, reduces in the large $N$ limit to the Langmann-Szabo-Zarembo (LSZ) matrix model, which originally emerges in the study of scalar field theory on the Moyal plane. Then, throughout the second part, we prove that the LSZ matrix model is actually equivalent to the matrix model of $U(N)$ Chern-Simons theory on the three-sphere. The correspondence holds in a generalized sense: depending on the spectra of the two external matrices of the LSZ model, the Chern-Simons matrix model either describes the Chern-Simons partition function, the unknot invariant, given by quantum dimensions, or the Hopf link invariant. Equivalently, the partition function of the LSZ model can be written in terms of the $S$ and $T$ modular matrices of the WZW model.

Based on: arXiv:1805.10543 [hep-th].