Contents/conteúdo

Topological Quantum Field Theory Seminar   RSS

01/04/2014, 11:30 — 12:30 — Room P3.10, Mathematics Building
, University of Zagreb

Coherent states for quantum groups

Quantum groups at roots of unity appear as hidden symmetries in some conformal field theories. For this reason I. Todorov has (in 1990s) used coherent state operators for quantum groups to covariantly build the field operators in Hamiltonian formalism. I tried to mathematically found his coherent states by an analogy with the Perelomov coherent states for Lie groups. For this, I use noncommutative localization theory to define and construct the noncommutative homogeneous spaces, and principal and associated bundles over them. Then, in geometric terms, I axiomatize the covariant family of coherent states which enjoy a resolution of unity formula, crucial for physical applications. Even the simplest case of quantum \(\operatorname{SL2}\) is rather involved and the corresponding resolution of unity formula involves the Ramanujan's \(q\)-beta integral. The correct covariant family differs from ad hoc proposed formulas in several published papers by earlier authors.

See also

lispr1.pdf
Note: unusual time/day and room

To join the session on Zoom a password is required. If you are not already on the mailing list, please subscribe the announcements to receive password info and updates.

Current organizers: José MourãoRoger Picken, Marko Stošić

Mathseminars

FCT Projects PTDC/MAT-GEO/3319/2014, Quantization and Kähler Geometry, PTDC/MAT-PUR/31089/2017, Higher Structures and Applications.

CAMGSD FCT